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A general procedure of local reduction for the Dirac equation is in-
troduced to study one- and n-body interacting systems. In the one-body
case, we show that the reduction allows for an approximate solution of the
Dirac equation, correlating the upper and the lower components of the wave
function. The two-body case is studied in more detail. We show that the
method prevents from introducing spurious, unphysical states. The reduc-
tion is also applied to another relativistic equation. Finally, the method
is used to construct a specific model in order to study the charmonium
spectrum.
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1. Introduction

Relativistic wave equations for bound systems represent a relevant, con-
troversial and extremely extended area of investigation in theoretical physics.
The aim of this work is to propose a three-dimensional reduction of the Dirac
and Breit equations in order to describe in a relativistic way, avoiding some
known inconsistencies, the dynamics of spin 1/2 particles bound states.

The article is organized as follows: in the remainder of the introduction,
in Subsection 1.1, we contextualize the present study in the field of the rel-
ativistic equations and define the aim of the work; in Subsection 1.2, we
introduce the symbols and the notation of the article; then, in Section 2,
we study an approximate formal method of solution of the one-body Dirac
equation; taking advantage of the obtained results, in Section 3, we discuss
reduction procedure starting from the one-body case; in Section 4, we gener-
alize the reduction procedure to the two-body case that will be analyzed in
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more detail, and to the n-body case that will be introduced at formal level;
in Section 5, we apply our reduction procedure to the modified Dirac equa-
tion proposed by Mandezweig and Wallace; in Section 6, we introduce, as an
example, an interaction model for the study of the charmonium spectrum;
the numerical method of solution for the equation is briefly discussed in Sec-
tion 7; in Section 8, we discuss the results and make a comparison with the
experimental data for the charmonium spectrum; finally, some conclusions
are drawn in Section 9. Appendix A is devoted to analyze the technical de-
tails of some three-dimensional relativistic equations, particularly relevant
for this work. The reduction of the one- and two-body interaction is analyzed
in the Appendixes B and C, respectively.

1.1. Context and aim of the work

In this subsection, before defining the objective of the work, we try
to contextualize the content of the present paper in the framework of the
three-dimensional relativistic wave equations (TDRWEs), with no attempt
to cover the whole subject. For a concise description of the technical details
about the TDRWEs related to this work, the interested reader is referred to
Appendix A.

We start by recalling that Dirac equation represents the basic element
for the study of all the field theories, as QED, electroweak theory and QCD.
Historically, that equation, considered as a one-body relativistic equation
for a bound electron in an external potential, has been successfully used to
determine the fine structure effects of the hydrogen atom spectrum.

On the other hand, the study of relativistic equations for two- and n-body
bound systems (that is very relevant for atomic, nuclear and, particularly,
for hadronic physics) is much more complex and many different strategies
have been proposed.

In principle, it is possible to construct the Hamiltonian for two- and
n-body systems as a straightforward sum of the one-body Dirac Hamilto-
nians. This procedure gives rise to the Breit equation [1–3] that will be
conventionally denoted in the present paper as Dirac-like equation (DLE) in
order to emphasize its relationship with the original Dirac theory.

The DLE is a TDRWE in Hamiltonian form. A specific, relevant ad-
vantage of this equation consists in its full locality, if a local interaction is
taken.

In recent years, the derivation of the DLE has been formally revised
considering direct interactions between spin 1/2 particles [4]. Furthermore,
this equation has been deeply analyzed and successfully used to calculate
finite size perturbative corrections in the hydrogen atom [5] and in mesonic
atoms [6].
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A semi-analytic study has been performed for some bound states with a
Coulomb potential [7]. A calculation of the spectra of quarkonia has been
also developed [8].

However, for that equation a relevant formal difficulty has been found:
the so-called continuum dissolution problem (CDP) [9]. Essentially, it is
related to the presence of spurious null mass solutions for the case of non-
interacting particles; in more detail, considering a two-body system, it is
possible to have a positive energy solution for one particle and a negative
energy solution for the other particle; in consequence, in the rest frame,
a zero total mass is obtained. Equivalently, these null mass free solutions
correspond to unphysical poles in the three-dimensional Green function, as
shown in Eq. (A.20). The CDP is related to the difficulty of treating the
negative energy states generated by the one-body Dirac terms of the Hamil-
tonian.

As a consequence, in nonperturbative calculations, the reliability of the
solutions of the DLE is strongly questioned, while it can be safely used in
the perturbative ones.

Many other different methods have been followed to study relativistic
bound states. Among them, we only quote the Dirac’s constraint dynamics
[10–12] and the relativistic path integral Hamiltonian approach [13–15].

We now discuss some models, more strictly related to the present work,
that have been derived from the Bethe–Salpeter equation (BSE) [16, 17]; for
this equation, an extensive didactic exposition can be found in Ref. [18].

The BSE is an explicitly covariant four-dimensional formalism that, in
principle, allows to sum up the infinite series of all the Feynman graphs
for two interacting particles, reproducing completely the dynamics of the
bound system. However, this procedure would require to introduce in the
interaction kernel all the corresponding irreducible Feynman graphs. Un-
fortunately, this task cannot be accomplished: only the tree-level boson
exchange graph is usually considered for the kernel. In this way, the BSE
could only reproduce the series of the ladder graphs. However, at this point,
also another problem is found: the tree-level boson exchange graph, due
to its singularities, gives rise to abnormal (unphysical) solutions [19]; for
this reason, one is forced to assume an instantaneous tree-level interaction.
With this assumption, the BSE is reduced to the three-dimensional Salpeter
instantaneous equation (SIE) [18, 20]. (In this concern, we recall that for
the electromagnetic interaction in the Coulomb gauge, the Coulomb term is
instantaneous.) The SIE is, in any case, a nonlocal equation that is practi-
cally written as an integral equation by means of the Green function that
propagates the ++ and the −− states but not the +− and −+ states that
are excluded from the model. For this reason, the Green function of this
model is not invertible. The technical details about this point are given in
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Appendix A; in particular, see Eq. (A.21). Incidentally, we recall that a
comparison between the numerical solutions of the SIE and of the DLE has
been performed, finding for the DLE equation unphysical effects related to
the CDP [21].

Many efforts have been devoted to improve the SIE trying to incorporate,
with some approximation, the crossed graphs in order to go beyond the
ladder approximation for the full series of the equation.

This objective has been achieved in part by putting on-shell one fermion,
in the so-called Relativistic Spectator Formalism, originally developed for
nuclear systems and also applied to quark bound states; see, for example
Refs. [22–25].

In another approach, that is the Mandelzweig and Wallace equation
(MWE) [26–28], the crossed graphs are taken into account, in the eikonal
approximation, by means of a suitable definition of the Green function. In
this way, the Green function is that of the SIE, plus the contributions of
the +− and −+ states, as shown in Eq. (A.22). As a result, one obtains an
invertible Green function that finally gives rise to a modified Dirac equation
for the bound state. This equation has not the form of an eigenvalue equa-
tion for the total energy of the system; the noninteracting term depends
on nonlocal operators but the interaction term has a local form. Due to
its structure, the MWE is free from the CDP and represents an interesting
improvement with respect to the SIE. However, when applied to an effective
gluon exchange interaction, it should be carefully reexamined considering in
particular the noncommutativity of the interaction vertices for the crossed
graphs.

The MWE has been also applied to study relativistic corrections for few-
body nuclear systems, taking into account, in that case, the non-Abelian
character of the one-pion exchange interaction [29–31].

Given the structure of the MWE and, in particular, due to the locality
of the interaction term, we shall apply also to this model the reduction
procedure developed in the present work.

A common problem of the DLE and MWE equations is the lack of explicit
relativistic covariance. This problem is standardly solved by defining in a
covariant way the variables of the center of mass (CM), where these equations
are originally derived [27, 30, 32].

Finally, we note that the contribution of the ++ states to the Green
function is the same for the DLE, SIE and MWE.

For this reason, and also considering the dynamical uncertainties dis-
cussed above and the difficulties of the numerical solutions, a possible start-
ing point for a relativistic study of the bound systems consists in projecting
any TRWE, that is the DLE, SIE or MWE, only onto the positive energy
states, excluding completely the +−, −+ and −− states. In this way, the
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equation shown in Eqs. (A.32) and (A.35) has been obtained. We denote this
equation as positive energy state equation (PESE). Moreover, it is possible
to introduce into this equation some retardation contributions without for-
mal difficulties. This equation has been used to study the spectra of heavy
quarkonia [33, 34].

The previous discussion shows that the problem of the relativistic equa-
tions for bound states is still an open issue, with different levels of complexity.

From the numerical point of view, in the two-body case, for the DLE and
MWE, one has to solve a coupled equation for four two-component spinors.
For the DLE, one has an eigenvalue equation with standard differential op-
erators in the coordinate space. For the MWE, the noninteracting term is
energy-dependent and nonlocal; in consequence, a specific strategy should
be studied. For the SIE, due to its nonlocal form, one has to solve a coupled
integral equation for two two-body spinors, corresponding to the ++ and
−− components of the wave function. In the case of Eq. (A.35) for ++
states only, one has an integral equation for one two-body spinor.

From the dynamical point of view, we note that, in any case, starting
from a hypothetical exact theory, many (and not completely justified) ap-
proximations are required to define a specific model.

In particular, assuming that the BSE represents the correct starting
point, one has to take into account that the crossed graphs are not included
or approximately included in the SIE and MWE, respectively. On the other
hand, the DLE can be considered an equation based on first principles but
the unphysical singularities of the Green function must be removed.

This situation has motivated the development of the present study.
In particular, the aim is to find a reduction of the DLE equation by es-

tablishing a relationship, or correlation, between the lower and upper com-
ponents of the Dirac spinors of each interacting fermion. This correlation
has the same structure of the solutions of the one-body Dirac equation in the
“spin-symmetry” case [35, 36]. We recall that a simplified Dirac–Coulomb
equation was proposed for atomic systems [37]. A Dirac harmonic oscilla-
tor shell model with spin-symmetry was also used to study quark–antiquark
spectroscopy [38].

The reduction of this work is mainly oriented to the study of few-body
hadronic systems and avoids from the beginning the CDP. An energy-de-
pendent, three-dimensional, completely local equation is obtained; conse-
quently, a relatively simple numerical solution is achievable in the coordinate
space. For the two-body case, one has to handle only one two-body spinor.

Our reduction can be considered equivalent to the standard PESE when
applied to the scattering of on-shell particles but includes, for bound states,
some contributions of the negative energy states. More details are given in
Eqs. (A.38), (A.39).
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After studying the reduction procedure for the DLE, we also apply it to
the MWE. In this case, for the reduced noninteracting term of the equation,
we obtain a nonlocal operator but, for the reduced interaction operator, we
have the same local form obtained for the DLE. In consequence, it is possible
to use for the variational solution, the harmonic oscillator (HO) basis that
admits an analytic Fourier transform. We shall use the momentum space HO
wave functions for the noninteracting term, while the coordinate space wave
functions will be used for the interaction term, as discussed in Section 7.

As an example of application, we use our reduced equation to study the
charmonium spectrum by means of a standard interaction given by a vector
and a scalar term. The results given in Section 8 show that a good quality
reproduction of the spectrum can be obtained.

1.2. Symbols and notation

In the present work, we use the gamma matrices γµ in the standard
representation. Given that we shall employ the Hamiltonian formalism for
the Dirac equation, we also introduce β = γ0 and the matrices γ0γµ =
(I,α), where I represents the identity matrix in the 4× 4 Dirac space.

In the two- and n-body cases, for the matrices and the operators, a
particle lower index i = 1, 2, . . . n is introduced; but for the one-body case,
the index 1 is omitted.

The following shorthand notation is used: Oi = O(mi,pi;αi, . . . ) where
the generic one-body operator O(m,p;α, . . . ) is calculated for the ith par-
ticle.

An operator specifically introduced for a n-body system will be denoted
by the subscript (n), with parentheses.

The letter Ψ denotes the complete Dirac wave functions for the n-body
system. The letter Φ is used for the spinorial (reduced) wave functions.

For the general equations, we use the bra-ket Dirac notation |Ψ〉, |Φ〉.
The interaction operators W(n) are referred to the Hamiltonian formal-

ism, that is Ψ †W(n)Ψ = Ψ̄γ0
1 . . . γ

0
nW(n)Ψ .

The reduced operators derived in the present work will be denoted by a
hat.

The spin indices will be generally omitted. Only in Section 7 the spin
quantum numbers are explicitly indicated for the variational wave functions.

Finally, throughout the work, we use the so-called natural units, that is
~ = c = 1.
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2. The Dirac equation and its approximate solution

In order to introduce the reduction procedure, we previously analyze a
solution method for the Dirac equation. Then, the reduction procedure of
the one-body case will be studied in Section 3 and then generalized to two-
and n-body DLE and to MWE.

We write the Dirac equation in the Hamiltonian form of(
H free − E +W(1)

)
|Ψ〉 = 0 , (1)

where H free represents the standard one-body, free, Dirac Hamiltonian,
that is

H free = H free(m;p,α, β) = α · p+ βm (2)

with the Dirac matrices recalled in Subsection 1.2; p and m, respectively,
represent the particle momentum and mass; furthermore, in Eq. (1), E is
the energy eigenvalue and W(1) represents the one-body interaction with an
external field. Finally, |Ψ〉 represents the four-component Dirac spinor that
in the coordinate representation reads Ψ(r) = 〈r|Ψ〉.

In view of the formal development of the work, we also introduce here
the Dirac operator in the form of

D = D(m,E;p,α, β) = H free − E . (3)

We take, for the following introductory discussion, a specific interaction with
a scalar field Vs(r) and the time component of a vector field V 0

v (r); in this
way the one-body interaction has the form of

W(1) = βVs(r) + V 0
v (r) . (4)

We split the four-component one-body Dirac spinor into two two-component
spinors, for the upper and the lower components

|Ψ〉 =

(
|ΦU〉
|ΦL〉

)
. (5)

For the interaction fields, we introduce the shorthand notation

VU(r) = V 0
v (r) + Vs(r) ,

VL(r) = V 0
v (r)− Vs(r) . (6)

With this notation, the total interaction of Eq. (4) can be written as

W(1) = 1
2β[VU(r)− VL(r)] + 1

2 [VU(r) + VL(r)] . (7)
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In this way, the Dirac equation (1) can be conveniently written as a matrix
equation in the form of(

m− E + VU(r) σ · p
σ · p −(m+ E) + VL(r)

)(
|ΦU〉
|ΦL〉

)
= 0 (8)

that represents a coupled equation for the two spinors |ΦU〉 and |ΦL〉.
Assuming that the quantity m + E − VL(r) is nonvanishing, one can

express |ΦL〉 by means of |ΦU〉 in the form of

|ΦL〉 = [m+ E − VL(r)]−1 σ · p|ΦU〉 . (9)

In this way, one correlates exactly the upper and the lower components of
the Dirac state |Ψ〉.

Then, the equation for |ΦU〉 can be written exactly as[
m− E + VU(r) + σ · p (m+ E − VL(r))−1 σ · p

]
|ΦU〉 = 0 . (10)

The last term of this equation, for a central interaction VL = VL(r), can be
rewritten by using the transformation given in Eq. (B.7) of Appendix B.

In order to introduce our reduction technique, we factorize the constant
factor (m+ E)−1. With standard algebra we write

[m+ E − VL(r)]−1 = [1 +B(E; r)] · 1

m+ E
(11)

with
B(E; r) = F (E; r) · 1

1− F (E; r)
(12)

and
F (E; r) =

VL(r)

m+ E
. (13)

Replacing Eq. (11) in Eq. (10), one obtains[
m− E +

p2

m+ E
+ VU(r) +

1

m+ E
σ · pB(E; r)σ · p

]
|ΦU〉 = 0 , (14)

where one has to remember the definitions of Eqs. (12) and (13) for B(E; r).
Equation (14) is an energy-dependent, still exact equation for |ΦU〉; |ΦL〉 can
be reconstructed by means of Eq. (9). With respect to Eq. (10), the previous
transformations have allowed to isolate the energy-dependent pseudo-kinetic
term, that is

TK(E) =
p2

m+ E
. (15)
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For the last term in the parenthesis of Eq. (14), analogously to what ob-
served for Eq. (10), one can use the transformation given in Eq. (B.7) of
Appendix B. In this way, a momentum-dependent term and the spin-orbit
interaction are obtained.

A case of special interest is when

VL(r) = 0 . (16)

In this case, due to the definition of Eq. (6), one has V 0
v (r) = Vs(r). Fur-

thermore, Eq. (9) does not depend on VL(r) and, in consequence, we also
have

B(E; r) = F (E; r) = 0 . (17)

This case, traditionally denoted as spin-symmetry case [35, 36], allows for
simple solutions of the Dirac equation, in which the spin-orbit interaction is
absent and the orbital angular momentum and the spin are decoupled.

We now consider the case in which the absolute values of the matrix ele-
ments of the adimensional quantity F (E; r) are small. In this case, B(E; r),
defined in Eq. (12), can be expanded in a power series of F (E; r)

B(E; r) =
∞∑
k=1

[F (E; r)]k . (18)

At the first order (k = 1), one simply has

B(E; r) ' F (E; r) . (19)

One can replace this relation in Eq. (14) obtaining an approximated equation
for |ΦU〉.

3. The one-body reduction

Let us now study the formal reduction procedure suitable for the gener-
alization to the two- and n-body cases.

In the first place, we write the four-component Dirac spinor that repre-
sents the correlated (approximate) solution, in the form of

|Ψcorr〉 = N(1) ·K · |Φ〉 , (20)

where N(1) represents the one-body numerical normalization constant, to be
discussed in the following, K is the local reduction operator that transforms
the (reduced) spinor |Φ〉 into a four-component Dirac spinor; it is defined as

K = K(m,E;p,σ) =

(
1
σ·p
m+E

)
. (21)
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In Eq. (20), we have taken as approximate solution a Dirac spinor that
represents the exact solution in the case of Eq. (16), that is when VL(r) = 0.

The operator K of the last equation defines the correlation between the
upper and lower components of |Ψcorr〉.

We now replace in the original Dirac equation (1) (written by means
of the Dirac operator D of Eq. (3)) the exact solution |Ψ〉 with |Ψcorr〉;
furthermore, in order to obtain an Hermitean reduced operator acting on
|Φ〉, we also multiply the same equation from the left by K†.

In consequence, the reduced (approximated) equation for |Φ〉 is formally
written in the form of

K†
[
D +W(1)

]
K|Φ〉 = 0 . (22)

For the Dirac operator D of Eq. (3), with standard calculations, one finds
the corresponding reduced noninteracting operator D̂ in the form of

D̂ = D̂(m,E;p) = K†DK = m− E +
p2

m+ E
. (23)

The one-body reduced interaction is written, in general, in the form of

K†W(1)K = Ŵ(1) . (24)

For the specific Dirac interaction of Eq. (7), the one-body reduced interaction
takes the form of

Ŵ(1) = VU(r) +
1

m+ E
σ · pF (E; r)σ · p

= VU(r) +
1

(m+ E)2
σ · pVL(r)σ · p . (25)

The reduction procedure can be generalized to any interaction. The whole
Appendix B is devoted to calculate the reduction of the one-particle inter-
action with external scalar and vector fields. At the end of that Appendix,
the corresponding transformation equations are also given.

Note that Ŵ1, in the previous equation, and also, in the following, the
two- and n-body reduced interactions Ŵ(2), Ŵ(n) are all energy-dependent
operators.

Considering Eqs. (23) and (24), we can write the one-body Dirac reduced
equation in the form of [

D̂ + Ŵ(1)

]
|Φ〉 = 0 . (26)

We have obtained for |Φ〉 the same equation derived for |ΦU〉, see Eq. (14),
with B(E; r) expanded up to the order of k = 1, as given in Eq. (19).
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We now introduce

Q̂ = Q̂(m,E;p) = K†K = 1 +
p2

(m+ E)2
. (27)

By means of this operator, we can define the one-body normalization con-
stant, N(1), that is irrelevant for obtaining the energy eigenvalue E but is
necessary to determine in a complete way the correlated Dirac spinor and to
calculate the matrix elements of any (other) Dirac operator. The normaliza-
tion constant N(1) can be obtained by requiring that, for a bound state, the
correlated Dirac spinor of Eq. (20) is normalized to unity. By using Eq. (27),
one has the following implicit definition:

1 = N2
(1)〈Φ|Q̂|Φ〉 = N2

(1)

∫
d3 r Φ†(r) Q̂ Φ(r) (28)

from which one can immediately obtain N(1). We consider N(1) as a numer-
ical constant, not included in the definition of K, in order to have a local
reduced Dirac equation. Otherwise, one could introduce the normalized,
nonlocal, reduction operator, in the form of

Knorm = K ·
[
1 +

p2

(m+ E)2

]−1/2

. (29)

This choice will not be used in the present work because we prefer to obtain
a local equation.

Finally, we anticipate that N(2) and N(n) that respectively represent the
two-body and the n-body normalization constants, will be determined with
an analogous procedure in Section 4.

We also note that exact equation (14), without expansion of B(E; r),
can be recovered if in the interaction (see Eq. (25)) one replaces VL(r) with
V eff

L (r) defined as

V eff
L (r) = VL(r) · 1

1− F (E; r)
. (30)

Otherwise, if the fundamental interaction is not known, one can construct a
phenomenological model for W(1), by using a suitable parametrization and
then fitting the results to the experimental data.

4. Two- and n-body reduction of the DLE

We introduce here the generalization of our model to the two- and
n-body case. We start analyzing in detail the (relatively simple) two-body
case. The DLE is formally written in the form of[

D1 +D2 +W(2)

]
|Ψ〉 = 0 , (31)
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where we have used, for each particle (i = 1, 2), the standard one-body
Dirac operator defined in Eq. (3) with the shorthand notation introduced in
Subsection 1.2. Furthermore, W(2) represents the Dirac interaction operator
for the two-body case and |Ψ〉 is the Dirac state of the system. Finally, the
total energy is ET = E1 + E2.

In a relativistic context, the separation of variables into CM and relative
variables is a difficult problem that will not be studied here in detail. In
order to calculate the mass M of the two-body bound system, it is sufficient
to study the problem in the CM reference frame, where ET = M and the
total momentum P is vanishing. In this respect, without introducing a new
notation, we assume in the following that all the states we use (i.e., Dirac
states, correlated Dirac states and reduced states) satisfy the condition of
vanishing momentum:

P |Ψ〉 = 0 , P |Ψcorr〉 = 0 , P |Φ〉 = 0 . (32)

In order to define the relative variables, we shall focus our attention on a
specific, relatively simple case that corresponds directly to the very relevant
physical systems of the qq̄ mesons. (However, as we shall see in the following,
the formal reduction procedure of our model is quite general and does not
depend on the specific choice of the CM and relative variables.)

Now, we consider two equal mass particles

m1 = m2 = m, (33)

furthermore, we assume that, in the CM, the two particles have the same
energy

E1 = E2 =
ET

2
=
M

2
. (34)

The momentum operators of the two particles are given by

p1 = −p , p2 = p , (35)

where p represents the relative momentum operator (in the CM reference
frame), canonically conjugated to the relative distance vector

r = r2 − r1 . (36)

In this way, we can introduce, in that frame, the Dirac wave function Ψ(r) =
〈r|Ψ〉; furthermore, in a local model, the interaction operator depends on
the spatial variable r, that is W(2) = W(2)(r).

We construct the reduced equation by introducing, for the Dirac corre-
lated wave function, the following expression:

|Ψcorr〉 = N(2) ·K1 ·K2 · |Φ〉 , (37)
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where Ki represents the one-particle reduction operator of the ith particle
(i = 1, 2), as given in Eq. (21). Specifically, for the arguments of these
operators (and of all the other operators in the following), the definitions of
Eqs. (33)–(35) are used. Finally, in Eq. (37), |Φ〉 is the two-particle reduced
state, and N(2) is the numerical two-body normalization constant. This last
quantity is implicitly defined by normalizing |Ψcorr〉 to unity, that is

1 = N2
(2)〈Φ|Q̂1Q̂2|Φ〉 = N2

(2)

∫
d3r Φ†(r) Q̂1 Q̂2 Φ(r) . (38)

By using Eqs. (33)–(35), for a two-body, equal mass system, one has Q̂1 = Q̂2

and

Q̂1 · Q̂2 =

[
1 +

p2

(ET/2 +m)2

]2

. (39)

As in the one-body case, after replacing |Ψcorr〉 in Eq. (31), we multiply
from the left the same equation by K†1 ·K

†
2 in order to obtain an Hermitean

reduced operator. We have

K†1 ·K
†
2

(
D1 +D2 +W(2)

)
K1 ·K2|Φ〉 = 0 . (40)

Using for the one-body operators Q̂i and D̂i their definitions of Eqs. (27)
and (23) respectively, the previous equation can be rewritten as[

Q̂2D̂1 + Q̂1D̂2 + Ŵ(2)

]
|Φ〉 = 0 , (41)

where the two-body reduced interaction is

Ŵ(2) = K†1 ·K
†
2 W(2)K1 ·K2 . (42)

The reduction of a scalar and vector two-body interaction is studied in detail
in Appendix C.

With the specific definitions for the arguments of the operators, given in
Eqs. (33)–(35), one has Q̂1 = Q̂2 and D̂1 = D̂2; in consequence, the explicit
reduction of the noninteracting operator, in the CM, gives

Q̂2D̂1 + Q̂1D̂2 = −Ĝ−1
(2)D(ET)

=

[
1 +

p2

(ET/2 +m)2

](
2p2

ET/2 +m
+ 2m− ET

)
, (43)

where, analogously to Eq. (A.26), we have introduced the shorthand notation
Ĝ−1

(2)D(ET) for the reduced operator, inverse of the Green function. In this
way, the reduced equation can be written as[

−Ĝ−1
(2)D(ET) + Ŵ(2)

]
|Φ〉 = 0 . (44)
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The explicit expression of Eq. (43) clearly shows that our model does not
admit any free solution with ET = 0, avoiding the CDP. Note also that both
the reduced interaction of Eq. (42) and the operator of Eq. (43) are local
quantities.

From the previous discussion, one can easily find the generalization to
the case of a system with n constituents. The DLE has the form of[

n∑
i=1

Di +W(n)

]
|Ψ〉 = 0 . (45)

In the CM frame, one has to introduce as spatial variables the set of n−1
Jacobi variables, collectively denoted as {r} and their conjugated Jacobi
momenta {p}. Furthermore, one has to express the particle momenta pi in
terms of the Jacobi momenta. All the states satisfy, in the CM, the vanishing
momentum condition (32). The Dirac correlated state is defined as

|Ψcorr〉 =
n∏
j=1

Kj · |Φ〉 . (46)

Then, the reduction of the DLE is performed analogously to Eq. (40), giving

n∏
i=1

K†i ·

[
n∑
k=1

Dk +W(n)

]
·
n∏
j=1

Kj · |Φ〉 = 0 . (47)

In consequence, the reduced equation, that generalizes Eq. (41), takes the
form  n∑

i=1

 n∏
j 6=i

Q̂j

 D̂i + Ŵ(n)

 |Φ〉 = 0 , (48)

where the product is performed over all the n particles, excluding the ith
one. The reduced interaction is

Ŵ(n) =
n∏
i=1

K†i ·W(n) ·
n∏
j=1

Kj . (49)

Finally, the implicit normalization condition for the reduced wave function is

1 = N2
(n)〈Φ|

n∏
i=1

Q̂i|Φ〉 = N2
(n)

∫
d3{r}Φ†({r})

n∏
i=1

Q̂i Φ({r}) (50)

that generalizes the two-body case of Eq. (38).
Obviously, all the expressions for the n-body reduced operators become

increasingly more complex as n increases.



A Local Reduction of the Dirac Equation Applied to the Study of Quark . . . 139

5. Reduction of the MWE

The present reduction procedure can be also applied to the two-body
MWE. We recall that this equation avoids from the beginning the CDP by
including in the definition of the Green function the so-called crossed graphs,
as discussed in Appendix A. For the two-body case, the MWE takes, in our
notation, the following form:[

D1S2 +D2S1 +W(2)

]
|Ψ〉 = 0 , (51)

where the first two terms represent the noninteracting operator given by
−G−1

(2)M of Eq. (A.27). The MWE should be compared with the DLE of
Eq. (31), analyzed in Appendix A. In particular, the difference with respect
to that equation consists in the insertion of the energy-sign operators Si
(denoted as ρ̂i in the original paper [26]). These operators are introduced in
Eq. (A.6) and are calculated here for the ith particle. When applied to the
free Dirac spinors, they give the energy sign of the free particle, as shown in
Eq. (A.7). Note that, due to the presence of the Si, in the MWE it is not
possible to introduce an Hamiltonian operator.

The reduction of the MWE (51) is performed with the same technique
used for the DLE in Section 4. The vanishing momentum condition (32) is
used. Also, the same definitions of Eqs. (33)–(36) for the two-body equal
mass problem are used here. The correlated Dirac state is given by Eq. (37).
Analogusly to Eq. (40), we have

K†1 ·K
†
2

[
D1S2 +D2S1 +W(2)

]
K1 ·K2|Φ〉 = 0 . (52)

This reduced equation can be rewritten as[
D̂1Ŝ2 + D̂2Ŝ1 + Ŵ(2)

]
|Φ〉 = 0 (53)

that replaces the Dirac-like reduced equation (41). In the previous equation,
we have introduced the reduced Ŝi operators. The reduced Ŝ operator has
the general form

Ŝ = Ŝ(m,E;p) = K†SK =
1

ε

[
D̂ + EQ̂

]
=

1

ε

[
m+

p2

m+ E
+

p2E

(m+ E)2

]
.

(54)
With the definitions of Eqs. (33)–(35) one has Ŝ1 = Ŝ2 and D̂1 = D̂2. The
reduction of the noninteracting operator that appears in Eq. (53), takes the
form

D̂1Ŝ2 + D̂2Ŝ1 = −Ĝ−1
(2)M(ET)

=
1

ε

[
m+

p2

m+ ET/2
+

p2ET/2

(m+ ET/2)2

](
2p2

ET/2 +m
+ 2m− ET

)
, (55)
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where, in analogy with Eq. (43), we have introduced the shorthand notation
Ĝ−1

(2)M(ET). Inserting Eq. (55) into Eq. (53), one can write the complete
reduced equation as [

−Ĝ−1
(2)M(ET) + Ŵ(2)

]
|Φ〉 = 0 . (56)

Finally, the reduced interaction Ŵ(2) is the same as that of the DLE, given
in Eq. (42); the same implicit normalization condition of Eq. (38) is used
here.

6. Model of qq̄ interaction for the charmonium spectrum

We shall apply our reduction to the study of charmonium spectrum. In
the present work, we consider only a relatively simple effective interaction
model, following the standard prescriptions used for the study of heavy
quarkonia. A study of different possible interactions with an analysis of the
physical meaning of the various terms must be performed in a work apart.

In the present model, for the two-body interactionW(2), we take the sum
of a vector and scalar term that is

W(2) = W v
(2) +W s

(2) . (57)

For the vector interaction, we take the following standard expression:

W v
(2) = V v

(2)(r)γ
0
1γ

0
2 · γ

µ
1 γ

ν
2gµν (58)

with the Dirac matrices recalled in Subsection 1.2. The potential function
V v

(2)(r) will be discussed in the following.
In order to have a local interaction operator, we have not included the

retardation contributions. This approximated choice can be considered con-
sistent with Eq. (34): we make the hypothesis that the quark energies are
fixed ; consequently, the quarks do not interchange energy with the effective
gluonic field that mediates the interaction.

For the scalar interaction, we take the expression

W s
(2) = V s

(2)(r)γ
0
1γ

0
2 . (59)

We now discuss the spatial potential functions V v
(2)(r) and V s

(2)(r) of the
model. For the vector potential function of Eq. (58), we take the following
effective, regularized, expression:

V v
(2)(r) = V̄v −

4

3
· αv

r
· Fv(r) , (60)
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where 4/3 is the color factor and αv ≡ αstrong represents the effective strong
coupling constant; we use the subscript “v” (that denotes the vector inter-
action) to avoid confusion with the scalar terms.

The regularization for r → 0 is performed having in mind a nonpoint-
like chromo-electric charge distribution of the quarks that gives rise to the
additive energy constant V̄v and to the regularization function Fv(r), as
shown in Ref. [39]. A detailed study of the relationship between these two
quantities must be done in a different work. Here, we recall that V̄v is
introduced also to reproduce phenomenologically the quark confinement.
As for Fv(r), we choose

Fv(r) = erf
(r
dv

)
(61)

being dv the regularization range. Note that Fv(∞) = 1, not altering the
long distance Coulombic behavior, and, for r → 0, Fv(r) ' 2√

π
r
dv
; in this

way, the Coulombic singularity is eliminated.
As for the scalar interaction, after trying different expressions, we take

the potential function of Eq. (59) in the following form:

V s
(2)(r) = V̄s

1

2

[
erf

(
(r − rs)

ds

)
− 1

]
. (62)

Note that this potential represents a hole of depth approximately equal to
−V̄s at r = 0, while for r → ∞, one has Vs = 0; the width of the hole is
approximately rs; finally, the parameter ds is related to the squareness of
the hole.

As it will explained in Section 8, we shall use different numerical val-
ues for some parameters of the model in order to reproduce accurately the
resonances above the open charm threshold.

The reduced interactions Ŵ v
(2) and Ŵ s

(2) for our equation are obtained
reducing the expressions of Eqs. (58) and (59), respectively. To this aim, we
use the two-body reduction equations of Appendix C, specifically: Eq. (C.3)
for the product of the time components (t) of the vector interaction and for
the scalar (s) interaction; Eq. (C.5) for the product of the spatial parts of
the vector interaction.

7. Solution method

In order to solve Eq. (44) for the DLE and Eq. (56) for the MWE, we use
a variational procedure, introduced in Ref. [40], that consists in diagonalizing
the operators of the equations in a HO basis. The trial wave functions of
this basis can be written in the coordinate space as

Φn;L,S,J(r) = 〈r|n;L, S, J〉 = Rn,L(r; r̄)[YL(r̂)⊗ χS ]J . (63)
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In the previous equation, the trial radial function is represented byRn,L(r; r̄),
being n the principal HO quantum number and r̄ the variational parameter
with the dimension of longitude; YL,ML

(r̂) is the corresponding spherical
harmonic and χS,MS

, with S = 0, 1 is the cc̄ coupled spin function. The
orbital angular momentum and the spin are standardly coupled to the total
angular momentum J,MJ . For brevity, we do not write MJ because it is
irrelevant for the calculations of rotationally scalar operators.

Furthermore, for simplicity reasons, we do not consider the possibility of
mixing between states with different values of L, because these effects have
been shown to be negligible in semirelativistic calculations.

The radial HO functions have the explicit form

Rn,L(r; r̄) =
1

r̄
3
2

[
2(n!)

Γ
(
n+ L+ 3

2

)] 1
2

sLLL+ 1
2

n

(
s2
)

exp

(
−s

2

2

)
, (64)

where s = r/r̄ is the adimensional variable and LL+ 1
2

n (s2) are the generalized
Laguerre polynomials.

The matrix elements of the operator Ĝ−1
(2)D(ET) of Eq. (43) can be cal-

culated in the coordinate space, because in that operator there only appear
finite powers of the momentum operator, that is p2q, with 0 ≤ q ≤ 2. On the
contrary, Ĝ−1

(2)M(ET) of Eq. (55), due to the factor 1/ε, depends nonlocally on
the momentum; in consequence, its matrix elements must be evaluated in the
momentum space. To this aim, we use the standard analytic expression of
the HO wave functions in the momentum space Φn;L,S,J(p) = 〈p|n;L, S, J〉.
We recall that in both DLE and MWE, Ŵ(2) is a local operator whose matrix
elements are calculated in the coordinate space. In particular, the σi · pi
operators are applied to the wave functions of Eq. (63). As explained in
Appendix A, this procedure would not be possible if positive (and negative)
energy projectors where used, requiring, in any case, an integral equation in
the momentum space.

We note that our reduced Eqs. (44) and (56) do not represent standard
eigenvalue equations. On the contrary, due to the reduction procedure,
Ĝ−1

(2)D(ET) and Ĝ−1
(2)M(ET) (given in Eq. (43) and Eq. (55), respectively),

and also Ŵ(2), depend on the total energy ET; consequently, we have to
solve for both models an energy-dependent equation.

To this aim, we make the following replacement for Ĝ−1
(2)X(ET) :

−Ĝ−1
(2)X(ET) = F̂X(ET)− ET , (65)

where the subscript X = D, M stands for DLE or MWE.
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In this way, the energy-dependent equation can be formally written as[
F̂X(ET) + Ŵ(2)(ET)

]
|Φ〉 = ET|Φ〉 . (66)

We replace ET in the l.h.s. with the auxiliary parameter EV , obtaining the
following fictitious eigenvalue equation:[

F̂X(EV ) + Ŵ(2)(EV )
]
|Φ〉 = ET|Φ〉 . (67)

We can solve variationally this equation (as explained above) for a given EV
and determine the corresponding value of ET in the r.h.s. Then, we vary
EV until the value found for ET is equal to EV of the l.h.s. This value gives
the solution of Eq. (66) and represents the energy of the system.

As for the variational procedure to solve the fictitious eigenvalue equation
(67), we obtain good numerical convergence for ET, taking the first ten trial
wave functions of the basis for each state. In more detail, the 10× 10 l.h.s.
matrix is diagonalized and minimized by means of the standard variational
approach [40].

8. Study of the charmonium spectrum

In this section, we apply the reduced DLE and MWE to study the
charmonium spectrum with the interaction introduced in Section 6. The
obtained theoretical results and the experimental data [41] are shown in
Table I; the values of the parameters used for the calculation are given in
Table II.

The present model, that takes into account a fixed number of degrees
of freedom, is expected to work properly for the resonances below the open
charm threshold. For higher resonances some mechanism that takes into
account the creation of new particles should be implemented.

We consider here the very simple, purely phenomenological, strategy of
taking different values of some parameters of the interaction above the open
charm threshold. In more detail, we introduce three intervals for the values
of the resonance mass M of the spectrum. These intervals, I1, I2 and I3,
are defined as:

— I1 , M < Ma,

— I2 , Ma ≤M < Mb,

— I3 , M ≥Mb ,
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where Ma corresponds to the open charm threshold and Mb has been fixed,
after some trials, to obtain a good reproduction of the data. Their values are
given in Table II. As shown in Table I, in the interval I1, we have considered
all the eight experimentally observed resonances; in the intervals I2 and I3,
we have considered respectively five and three not controversial resonances.
For a discussion about the phenomenological interpretation of the resonances
in different models, the interested reader is referred to Ref. [33].

TABLE I

Comparison between the experimental values of the charmonium spectrum and the
results of the model. The states of the spectrum are grouped in the three mass
intervals I1, I2 and I3 defined in the text. The intervals are separated by a line. The
quantum numbers n, L, S and J have been introduced in Eq. (63); they represent
the principal quantum number, the orbital angular momentum, the spin and the
total angular momentum, respectively. All the masses are in MeV. The results of
the columns Theor. (A) and Theor. (B) refer to the fits A and B, as specified in
the text.

Name n2S+1LJ Theor. (A) Theor. (B) Experiment

ηc 11S0 2984 2983 2983.9± 0.5
J/ψ 13S1 3096 3096 3096.9± 0.006
χc0 13P0 3420 3422 3414.71± 0.30
χc1 13P1 3504 3506 3510.67± 0.05
hc 11P1 3519 3521 3525.38± 0.11
χc2 13P2 3564 3567 3556.17± 0.07
η′c 21S0 3639 3638 3637.5± 1.1
ψ′ 23S1 3685 3680 3686.097± 0.025

ψ(3770) 13D1 3776 3765 3773.13± 0.35
ψ(3823) 13D2 3816 3813 3822.2± 1.2
χc1(3872) 23P1 3869 3877 3871.69± 0.17
χc2(3930) 23P2 3936 3936 3927.2± 2.6
ψ(4040) 33S1 4035 4034 4039± 1

χc1(4140) 33P1 4148 4148 4146.8± 2.4
ψ(4260) 43S1 4228 4228 4230± 8
χc1(4274) 43P1 4275 4275 4274± 7

In principle, the parameters of the model are the quark mass mq and
the interaction parameters, introduced in Section 6, that are: αv(Ii), V̄v(Ii),
dv(Ii), V̄s(Ii), rs(Ii) and ds(Ii) for the three intervals I1, I2 and I3.

The quark mass mq has not been considered as a free parameter but has
been fixed at the current mass QCD value [41], as shown in Table II.
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TABLE II

Numerical values of the parameters of the model; mq is fixed; Ma and Mb define
the mass intervals. For the other parameters, as explained in the text, DLE and
MWE stand for the two reduced equations; A and B stand for the two fits that
have been performed. The reported numerical values represent the results of the
fits of the free parameters. The parameters not given in this table are vinculated
as explained in the text.

Units
mq 1275 MeV
Ma 3700 MeV
Mb 4080 MeV

DLE(A) DLE(B) MWE(A) MWE(B)
αv(I1) 1.566 1.614 1.574 1.615
V̄v(I1) 1.807 1.803 1.806 1.802 GeV
dv(I1) 0.2405 0.2500 0.2428 0.2510 fm
V̄s(I1) 0.8270 0.8187 0.8230 0.8177 GeV
rs(I1) 1.484 1.518 1.488 1.520 fm
ds(I1) 0.7059 0.8800 0.7149 0.8838 fm

αv(I2) 1.956 1.879 1.962 1.883
V̄v(I2) 2.005 1.854 2.001 1.853 GeV
rs(I2) 1.905 1.905 fm

We have performed two fits, denoted as “A” and “B”, with the objec-
tive of obtaining an accurate theoretical reproduction of whole experimental
spectrum with the smallest possible number of free parameters. To this aim,
we have vinculated the numerical values of some parameters in the different
intervals.

In more detail, as shown in Table II, in the interval I1, all the interaction
parameters are free parameters of the fit.

In the interval I2, αv(I2), V̄v(I2) are free parameters; the vinculated
parameters are: dv(I2) = dv(I1), V̄s(I2) = V̄s(I1), ds(I2) = ds(I1); in the
fit A, rs(I2) is a free parameters, while in the fit B, it is vinculated: rs(I2) =
rs(I1).

In the interval I3, all the parameters (in both fits A and B) are vinculated
as follows: αv(I3) = αv(I2), V̄v(I3) = V̄v(I1), dv(I3) = dv(I1), V̄s(I3) =
V̄s(I1), rs(I3) = rs(I1) and ds(I3) = ds(I1).

As a result of the fit procedure, the same theoretical masses have been
obtained by using the reduced DLE and MWE; these values, for the two
fits, are shown in the columns Theor. (A) and Theor. (B) of Table I. The
results of the fit A, with one more free parameter, are slightly better than
the results of fit B.
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The values of the free parameters of the fits present small differences
for the two equations, as reported in the columns DLE(A), DLE(B) and
MWE(A), MWE(B) of Table II.

Both the reduced DLE and MWE allow for an accurate reproduction
of the spectrum, showing that for the charmonium case, there is no argu-
ment to prefer one of the two equations. Some more comments are given in
Conclusions.

9. Conclusions

A local, energy-dependent reduction of the DLE has been derived. The
same technique has been also applied to the MWE, obtaining in both cases a
relativistic equation that can be solved with standard numerical techniques.
Further investigation is needed to relate more strictly the reduced equation
to the dynamics of the underlying field theory.

The reduced equations have been applied to the study of the charmonium
spectrum obtaining accurate results. Both the DLE and the MWE give the
same spectrum with small differences of the free parameters. This result
can be related to the reduction procedure: the contributions of the +−, −+
and −− states, that are different for the DLE and MWE, are diminished
by the reduction operators Ki while, in both equations, the more relevant
contributions are given by the ++ states that are the same for the two
equations.

A deeper study of the interaction, possibly considering different Lorentz
structures beyond the standard vector–scalar model, should be also under-
taken.

The author thanks the group of “Gestión de Recursos de Computo Cien-
tífico, Laboratorio de Biología Computacional, Facultad de Ciencias — Uni-
versidad Nacional de Colombia” for the access to the cluster that was used
to perform the numerical calculations of this work.

Appendix A

Three-dimensional two-body wave equations

We give here some technical details about the TDRWEs for two-body
bound systems related to the present work.

One-body case. We start from some relevant one-body quantities.
The spinors for a free Dirac particle of momentum p (omitting the two

component spin factor), can be written in the form of

uλ = uλ(m;p,σ) = M · Uλ , (A.1)
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where λ = ±1 is the energy sign; the Uλ are written as

U+ = U+(m;p,σ) =

(
1

+
σ·p
ε+m

)
, U− = U−(m;p,σ) =

(
−σ·pε+m

1

)
,

(A.2)
where

ε = ε(m;p) = +
√
p2 +m2 (A.3)

is the on-shell positive energy of the particle. The factor

M = M(m;p) =

√
ε+m

2ε
(A.4)

normalizes to 1 the spinors, that is u†λuξ = δλξ. Note that the Uλ, due to ε,
depend nonlocally on the momentum p.

The spinors of Eq. (A.1) obviously diagonalize the free Dirac Hamiltonian

u†λH
free uξ = λ · δλξ · ε . (A.5)

We also introduce here the energy-sign operator

S = S(m;p,α, β) =
1

ε
·H free (A.6)

that, applied to the free spinors, gives

Suλ = λuλ . (A.7)

The operator S appears in the MWE and will be used in the following when
discussing that three-dimensional relativistic equation.

We introduce the one-particle projection operators onto positive (λ =
+1) and negative (λ = −1) energy states

Λλ = Λλ(m;p,α, β) =
1

2ε

(
ε+ λH free

)
=

1

2
(1 + λS) =

∑
λ

uλu
†
λ , (A.8)

where ε is the relativistic particle energy, defined in Eq. (A.3), and H free is
the free Dirac Hamiltonian of Eq. (2).

One can use the positive and negative energy Dirac spinors uλ of Eq. (A.1)
to rewrite the original Dirac equation (with interaction) as a coupled equa-
tion for positive and negative energy components.

A generic Dirac state, decomposed into the two spinors of Eq. (A.1), is
written, in the ket notation, as

|Ψ〉 =
∑
ξ

uξ|Φξ〉 . (A.9)
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We recall that the two-component wave functions, in the momentum space,
are standardly written as: Φξ(p) = 〈p|Φξ〉.

We consider the Dirac equation (1) for the state of Eq. (A.9) and multiply
from the left by u†λ. We also introduce the projected interaction operator
W λ,ξ

(1) = u†λW(1) uξ. With standard calculations and using Eq. (A.5), one
obtains the following coupled equations:∑

ξ

[
(λ · ε− E)δλξ +W λ,ξ

(1)

]
|Φξ〉 = 0 . (A.10)

To solve this coupled equation, it is not possible to use the coordinate space.
Even if a local interaction W(1) = W(1)(r) were considered, the presence of
the nonlocal u†λ and uξ in W

λ,ξ
(1) requires, in any case, to use the momentum

space. Defining
Wλ,ξ

(1)

(
p,p′

)
= 〈p|u†λW(1) uξ|p′〉 , (A.11)

one obtains the following coupled integral equations:∑
ξ

[
(λ · ε− E)δλξΦξ(p) +

∫
d3p′Wλ,ξ

(1)

(
p,p′

)
Φξ
(
p′
)]

= 0 . (A.12)

If the off-diagonal matrix elements can be considered small, that is

Wλ,ξ
(1)

(
p,p′

)
' 0 for λ 6= ξ (A.13)

and also Φ−(p) is negligible, one obtains an approximate equation for Φ+(p)
in the form of

(ε− E)Φ+(p) +

∫
d3p′W+,+

(1)

(
p,p′

)
Φ+(p′) = 0 . (A.14)

Equation (A.14) represents the projection of the Dirac equation onto the
positive energy states only. It can be solved numerically or used to obtain a
nonrelativistic reduction by means of an expansion in powers of p/m.

We introduce now the Green function for the one-body case; it can be
written as

Γ(1) =
1

Eγ0 − p · γ −m
=

[
Λ+

E − ε
+

Λ−

E + ε

]
β = G(1) · β , (A.15)

where E represents the particle energy; in the propagator of the Feynman
graphs, E is replaced by p0 and the singularity of the denominator is avoided
by means of the substitution m→ m− iη (η > 0).
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The inverse of the one-body Green function is straightforwardly obtained
in the form of

Γ−1
(1) = β

[
Λ+ · (E − ε) + Λ− · (E + ε)

]
= βG−1

(1) . (A.16)

With standard algebra, one finds

D = −βΓ−1
(1) = −G−1

(1) , (A.17)

where D is the one-body Dirac operator defined in Eq. (3). In consequence,
the Dirac equation for an interacting particle can be written in the following
equivalent forms:(

D +W(1)

)
|Ψ〉 = 0 , |Ψ〉 = G(1)W(1)|Ψ〉 . (A.18)

The first form is the standard one, the second form has been obtained by
means of Eq. (A.17); due to the nonlocal character of G(1), it must be
transformed into an integral equation in the momentum space.

Two-body case. The three-dimensional two-body Green function can be
written in a general form (for different models) by means of the projection
operators of the two particles

Γ(2)X =
∑
λ,ξ

Λλ1Λ
ξ
2 g

λξ
X · β1β2 = G(2)X · β1β2 , (A.19)

where the subscript X denotes the selected model. Specifically, for the DLE
one has

gλξD =
1

E1 + E2 − λε1 − ξε2
, (A.20)

note that in the CM one has ε1 = ε2 = ε; consequently, for (ξ, λ) = (+,−)
and (ξ, λ) = (−,+), one has unphysical poles in the Green function; for the
SIE one has

g++
S =

1

E1 + E2 − ε1 − ε2
,

g+−
S = g−+

S = 0 ,

g−−S =
1

−E1 − E2 − ε1 − ε2
, (A.21)

finally, for the MWE, one has

gλξM =
λξ

λE1 + ξE2 − ε1 − ε2
. (A.22)
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Note that with respect to the SIE, in the MWE the crossed graphs are taken
into account by means of the eikonal approximation and give nonvanishing
values to the coefficients g+−

M , g−+
M , while g++

M = g++
S , g−−M = g−−S .

The equation for the wave fuction, in all the three cases discussed here,
is formally written as

|Ψ〉 = G(2)XW(2)|Ψ〉 . (A.23)

Given that G(2)X is, in any case, a nonlocal operator, also for a local inter-
action W(2), Eq. (A.23) must be written as an integral equation in order to
perform practical calculations.

The two-body Green function G(2)X is invertible if all the coefficients
gλξX are nonvanishing. This is the case of the DLE and MWE, but not of the
SIE. The inverse has the form of

G−1
(2)X =

∑
λ,ξ

Λλ1Λ
ξ
2 ·

1

gλξX
. (A.24)

For the DLE and MWE, one can write the wave equation in the following
general form: [

−G−1
(2)X +W(2)

]
|Ψ〉 = 0 . (A.25)

With standard calculation, one finds

D1 +D2 = −G−1
(2)D (A.26)

for the DLE, and
D1S2 +D2S1 = −G−1

(2)M (A.27)

for the MWE, with the energy sign operators Si of Eq. (A.6). In this way,
Eqs. (31) and (51) are obtained.

For the SIE, using the properties of the projectors Λλ1 , Λ
ξ
2, with some

algebra, one can write[
D1 +D2 +

(
Λ+

1 Λ
−
2 − Λ

−
1 Λ
−
2

)
W(2)

]
|Ψ〉 = 0 ,

Λ+
1 Λ
−
2 |Ψ〉 = Λ−1 Λ

+
2 |Ψ〉 = 0 . (A.28)

Note that the interaction term is multiplied from the left by the nonlocal
projection operators and that one has to require the second line conditions
for the ket |Ψ〉. We observe that in the DLE, both the noninteracting and
interaction term are of local form; in the MWE, the noninteracting term is
nonlocal but the interaction term is local; the SIE is globally nonlocal due
to the projection operators that multiply the interaction term.
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Equation (A.25) can be also written as a coupled equation for the positive
and negative energy components of |Ψ〉. These components are defined,
analogously to the one-body case of Eq. (A.9), by means of the following
equation:

|Ψ〉 =
∑
λ,ξ

u1,λu2,ξ · |Φλξ〉 . (A.29)

We also introduce the following projections for the interaction operator:

W λξ,ηρ
(2) = u†1,λu

†
2,ξW(2)u1,ηu2,ρ . (A.30)

In this way, the wave equation can be written in the form of

∑
η,ρ

[
− 1

gλξX
· δληδξρ +W λξ,ηρ

(2)

]
|Φηρ〉 = 0 . (A.31)

In the case of the SI equation, one has |Φ+−〉 = |Φ−+〉 = 0.
Note that g++

X has the same form for all the models. In consequence, if
one considers only the projections onto the ++ states (disregarding all the
other components of the wave function), the wave equation takes the form of[

ε1 + ε2 − E1 − E2 +W++,++
(2)

]
|Φ++〉 . (A.32)

In the last two Eqs. (A.31), (A.32), the interaction operator has a nonlocal
form. For this reason, one has to transform these equations into integral
equations. In the CM frame, one has to specify the relative variables of the
bound system; for equal mass particles, using Eqs. (33)–(36), one defines

Wλξ,ηρ
(2)

(
p,p′

)
= 〈p|W λξ,ηρ

(2) |p′〉 . (A.33)

One also has gλξX = gλξX (m,ET;p); in this way, Eq. (A.31) can be transformed
into the following coupled integral equations:

∑
η,ρ

[
− 1

gλξX
δληδξρΦηρ(p) +

∫
d3p′Wλξ,ηρ

(2)

(
p,p′

)
Φηρ

(
p′
)]

= 0 . (A.34)

The projection onto positive energy states ++ of Eq. (A.32) becomes

[2ε(p)− ET]Φ++(p) +

∫
d3p′W++,++

(2)

(
p,p′

)
Φ++

(
p′
)

= 0 . (A.35)

In this equation, denoted as PESE, one can include, without inconsisten-
cies, some retardation contributions. Furthermore, this equation has been
successfully used to study heavy quarkonium spectra in a relativistic model.
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Comparison with the projection of our model. In our model, the projec-
tion operator K of Eq. (21) is a local, energy-dependent operator. Note that
for an on-shell particle

K(m,E = ε;p,σ) = U+(m;p,σ) . (A.36)

The normalization factor of Eq. (28) also reduces to M of Eq. (A.4).
We observe that a correlated state of our model |Ψcorr〉 contains positive

and negative energy components. To analyze this point, we have previously
introduced

U †+ ·K =
ε+ E

m+ E
,

U †− ·K =
(ε− E)p · σ

(ε+m)(m+ E)
. (A.37)

Then, the positive energy amplitude for a state |Ψcorr〉 is given, in the mo-
mentum space, by the following equation:

〈p; +|Ψcorr〉 = N(1) ·M ·K† · U+ · Φ(p)

= N(1) ·
[
ε+m

2ε

]1/2

· ε+ E

m+ E
· Φ(p) . (A.38)

For the negative energy amplitude, one has

〈p;−|Ψcorr〉 = N(1) ·M ·K† · U− · Φ(p)

= N(1) ·
(ε− E)

(2ε)1/2(ε+m)1/2(m+ E)
p · σ · Φ(p) . (A.39)

To obtain the previous equations, Eqs. (A.4), (A.37) and the implicit defi-
nition of N of Eq. (28) have been used; Φ(p) is the two component spinor
in the momentum space.

We note that, in any case, our model introduces automatically some
negative-energy component in the correlated Dirac wave function.

Again, for E = ε, we have 〈p; +|Ψcorr〉 = Φ+(p) and 〈p;−|Ψcorr〉 = 0.
In this limit, our model is equivalent to the standard projection onto posi-
tive energy states, represented by Eq. (A.14) for the one-body case and by
Eqs. (A.32), (A.35), denoted as PESE, for the two-body case.
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Appendix B

Reduction of the one-body interaction

We generalize here the procedure for calculating the one-body reduced
interaction.

For the one-body scalar interaction, we have

W s
(1) = β · V s

(1)(r) . (B.1)

The reduced interaction is obtained by means of the reduction operator K
of Eq. (21), that is

Ŵ s
(1) = K†W s

(1)K = V s
(1)(r)−

1

(m+ E)2
σ · pV s

(1)(r)σ · p . (B.2)

In the case of a vector interaction, for the time component we have

W 0
(1) = I · V 0

(1)(r) . (B.3)

The reduced interaction is

Ŵ 0
(1) = K†W 0

(1)K = V 0
(1)(r) +

1

(m+ E)2
σ · pV 0

(1)(r)σ · p . (B.4)

For the 3-vector part of the interaction, we take a vector function that
depends, in general, on r

W v
(1) = α · V v

(1)(r) . (B.5)

The corresponding reduced interaction is

Ŵ v
(1) =

1

(m+ E)
·
[(
σ · V v

(1)(r)
)

(σ · p) + (σ · p)
(
σ · V v

(1)(r)
)]

. (B.6)

With straightforward calculations, one obtains the following transformation
equations that can be used to simplify the previous expressions that contains
two Pauli matrices σ:

σ · pV (r)σ · p =
1

2

{
p2, V (r)

}
+

1

2
∇2V (r) + l · σ1

r
V ′(r) (B.7)

with the orbital angular momentum l = r × p, and

(σ ·V (r))(σ ·p)+(σ ·p)(σ ·V (r)) = p·V (r)+V (r)·p+σ ·∇×V (r) . (B.8)
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Appendix C

Reduction of the two-body interaction

For the two-body scalar interaction, we have

W s
(2) = β1β2 · V s

(2)(r) . (C.1)

For the product of the time components of the vector interaction, we have

W t
(2) = I1I2 · V t

(2)(r) . (C.2)

In both cases, the reduced interaction is obtained by using (with a simi-
lar procedure) the operators K1 and K2; we summarize the results in the
following way:

Ŵ c
(2) = K†1K

†
2W

c
(2)K2K1

= V c
(2)(r) + τ c ·

[
1

(m1 + E1)2
σ1 · p1V

c
(2)(r)σ1 · p1

+
1

(m2 + E2)2
σ2 · p2V

c
(2)(r)σ2 · p2

]
+

1

(m1+E1)2(m2+E2)2
(σ1 · p1)(σ2 · p2)V c

(2)(r)(σ2 · p2)(σ1 · p1) ,

(C.3)

where the superscript c denotes the two interactions, that is c : s, t; we also
introduced τ c, with τ s = −1 and τ t = +1 .

For the product of the spatial parts of the vector interaction, we have

W v
(2) = α1 ·α2 · V v

(2)(r) . (C.4)

The reduction is obtained by means of the operators K1 an K2, applying for
the two particles the procedure used for deriving Eq. (B.6). The result is

Ŵ v
(2) = K†1K

†
2W

v
(2)K2K1 =

1

(m1 + E1)(m2 + E2)

×
[
V v

(2)(r)(σ2 · σ1)(p2 · σ2)(p1 · σ1) + (p1 · σ1)V v
(2)(r)(σ2 · σ1)(p2 · σ2)

+(p2 · σ2)(σ2 · σ1)V v
(2)(r)(p1 · σ1) + (p1 · σ1)(p2 · σ2)(σ2 · σ1)V v

(2)(r)
]
.

(C.5)

Finally, we recall that, for the charmonium spectrum calculation, the mo-
mentum operators p1, p2 are given in Eq. (35) and r = |r|, with r given in
Eq. (36).
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