
Vol. 52 (2021) Acta Physica Polonica B No 2

ON A HIGHER-DERIVATIVE SPINOR THEORY

M.D. Pollock

V.A. Steklov Mathematical Institute, Russian Academy of Sciences
Ulitsa Gubkina 8, Moscow 119991, Russia†

mdp30@cam.ac.uk

(Received January 25, 2021; accepted March 05, 2021)

We study a linear spinorial theory for a field ψ of rest-mass m in which
the Dirac Lagrangian L0 = ψ̄Dψ is augmented by a higher-derivative term
L1 = r0ψ̄D2ψ, where D = iγk∂k −m and r0 is a constant with the dimen-
sion of length. Defining operators through L = ψ+L̂ψ and setting pκ =
−i∂/∂xκ, the velocity of the charge cloud is ακ ≡ γ0γκ = −∂L̂0/∂pκ ≡
dxκ/dt, which commutes with xκ, as pointed out by Schrödinger. There-
fore, ακ can be regarded as a coordinate (independent of position xκ),
to which there corresponds a canonical momentum πκ = −∂L̂1/∂α̇

κ that
anti-commutes with ακ. We also discuss the high-energy limit valid at
radii r . r0 . 10−16 cm � 1/m, where ψ is approximately massless, and
in the static case obeys the Laplace equation ∆ψ ≈ 0. Expansion of ψ
in spherical harmonics shows that a non-vanishing electric charge density
J 0 = e

√
−gψ+ψ is only finite at the origin r = 0 if ψ is spherically sym-

metric, in agreement with experiment.
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1. Introduction

Following earlier papers by Breit [1] and Fock [2] on the Dirac [3, 4] the-
ory of the electron, it was pointed out by Schrödinger [5] that the velocity
dxκ/dt of the charge cloud (κ = 1, 2, 3), interpreted as ακ ≡ γ0γκ, commutes
with both the position xκ and its conjugate momentum pκ ≡ −i~∂/∂xκ (see
footnote 2 on p. 421 of Ref. [5]). This seems to imply that the velocity
should be regarded as a coordinate independent of the position, a viewpoint
reminiscent of higher-derivative theories of gravity, especially in the mini-
superspace idealization, where the radius function α and its corresponding
velocity dα/dt are also independent coordinates that commute with one an-
other, each possessing its own canonically conjugate momentum. This cir-
cumstance naturally leads one to a study of the electron theory augmented
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by the presence of a higher-derivative spinorial term. For the difference be-
tween dxκ/dt and the quantity pκ/m (where m is the rest mass) emphasized
in Ref. [2] (see the discussion starting from Eq. (19) on p. 132) and in Ref. [5]
(see p. 418) can be understood by associating the former with the micro-
scopic motion of the electron cloud, reflecting its formulation in terms of the
Dirac field Lagrangian L0 = ψ̄Dψ, while the latter defines the macroscopic
motion of the electron cloud when considered as a point particle.

This approach is further motivated by analogy with the two-dimensional
world sheet of the superstring theory, the Lagrangian L(1)2 of which can be
modified by the addition of a higher-derivative “rigidity” term L(2)2 propor-
tional to the square of the equation of motion derived from the unmodi-
fied L(1)2 , as shown by Curtright et al. [6, 7]. A modification of this type
is a natural hypothesis in the Dirac theory, which is so contrived that the
square of the equation of motion, namely the Klein [8]–Gordon [9] equation
(see also Schrödinger [10]), is automatically satisfied by all solutions of the
original Lagrangian. (See also Ref. [11] and references therein for further
details and discussion.)

Another way of looking at this problem is summarized in the abstract
of Ref. [2] (on p. 127), which states that: To one and the same classical
mechanical quantity — the velocity of the electron — correspond in the Dirac
theory two different quantum-mechanical quantities, which one can designate
as corpuscular and wave velocity of the electron.

If the velocity ακ of the electron is considered as a coordinate, one might
therefore expect, on the basis of the analyses of Refs. [1, 2] and [5], that an
extended form of the spinor Lagrangian, including higher-derivative terms,
would imply a momentum πκ canonically conjugate to ακ, which is simply
related to the momentum pκ canonically conjugate to xκ, and also commutes
with pκ. We shall now show that these expectations are both realized for the
theory L = L0+L1, where L1 = r0ψ̄D2ψ, starting from the basic Lagrangian
description in Section 2, then deriving πκ and the commutation relations in
Section 3. The high-energy limit is discussed in Section 4.

2. The Lagrangian analysis

We shall formulate the problem in Minkowski space-time, defined by the
line element

ds2 = ηijdx
idxj , (1)

for which the metric in the rest frame of the electron is ηij = diag(1,−1,−1,
−1,−1), assuming Cartesian coordinates xi =

(
x0, xκ

)
, and the associated

gamma matrices γi obey the Clifford algebra

γiγj + γjγi = 2ηij . (2)
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It is also useful to introduce the alpha matrices [3, 4] αi = (αo ≡ β, ακ ≡
βγκ), where β = γ0, which satisfy the Euclidean algebra

αiαj + αjαi = 2δij . (3)

The Dirac Lagrangian for the spinor field ψ of rest-mass m can then be
written in the alternative forms

L0 = ψ̄
(
iγk∂k −m

)
ψ = ψ+ (i∂0 + iακ∂κ − βm)ψ , (4)

where ψ̄ ≡ ψ+γ0 is the Hermitian adjoint spinor and ψ+ = ψ∗T. The Dirac
equation of motion is then derived by regarding ψ and ψ̄ as independent
fields, so that

∂L0/∂ψ̄ =
(
iγk∂k −m

)
ψ = 0 . (5)

Either by premultiplication of Eq. (5) by β or by setting ∂L0/∂ψ
+ = 0, we

obtain the Dirac equation in Hamiltonian form,

Hψ ≡ i∂0ψ = (−iακ∂κ + βm)ψ , (6)

since γ0 = γ0, and hence β2 = 1, in the rest frame, so that αi = (β, βγκ).
On the basis of analogy with the standard Lagrangian theory, and since

the operator momentum canonically conjugate to xκ is pκ = −i∂κ, the
operator expression for the velocity ẋκ, where · ≡ d/dx0, was identified in
Ref. [1] from Eq. (4) as

ẋκ = ακ (7)

(up to a minus sign which, from Eq. (3), is inconsequential). This identifi-
cation was confirmed in Refs. [2, 5] (see also Ref. [12]) by application of the
Born–Jordan equation [13] for the time derivative of an arbitrary operator A

Ȧ =
i

~
(HA−AH) . (8)

As emphasized in Ref. [5], Eq. (8) presupposes that the Hamiltonian H is
constant, for setting A = H we have Ḣ = 0. Setting instead A = xκ in
Eq. (8), from Eq. (6) and the commutation relation

xκpλ − pλxκ = i~δκλ , (9)

we obtain Eq. (7), which implies that the instantaneous velocity is the ve-
locity of light [1, 2, 5], the xκ not commuting with H.
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A further interesting consequence of Eq. (8) is that the γi depend upon
time, since they do not commute with H, although the ηij remain constant
and the Klein–Gordon operator is unchanged, provided that Eq. (4) is sat-
isfied. From Eq. (115) of Ref. [12], we have

β̇ = −2γκ∂κ , γ̇κ = 2β (∂κ + imγκ) . (10)

Now let us return to the Dirac Eq. (4). Premultiplication by the factor
−
(
iγl∂l +m

)
yields the equation[

2 + β
(
β̇∂0 + γ̇κ∂κ

)
+m2

]
ψ = 0 , (11)

assuming that γi = γi(x
0). On-shell, the term proportional to β vanishes,

leaving the Klein–Gordon equation(
2 +m2

)
ψ = 0 . (12)

Off-shell, however, this term does not vanish in general and, therefore, it is
meaningful to consider the hypothetical Lagrangian

L ≡ L0 + L1 = ψ̄
[(
iγk∂k −m

)
+ r0

(
iγl∂l +m

)(
iγk∂k −m

)]
ψ . (13)

On-shell, the second term in Eq. (13) reduces to the Klein–Gordon La-
grangian after removal of a total divergence, when it can be written in the
standard quadratic form

L1 = −r0ψ̄
(
2 +m2

)
ψ = r0

[(
∂kψ̄

) (
∂kψ

)
−m2ψ̄ψ

]
. (14)

Note, however, that the constant prefactor r0, which would be dimensionless
for a scalar field φ, instead has the dimension of length, since [φ] = l−1,
while [ψ] = l−3/2. (We do not discuss the “Elko” theory of a spinor field
with dimensionality l−1, since this does not satisfy the Dirac equation that
is the basis of the present analysis.)

This is important, for it shows that the modified Lagrangian (13) nat-
urally introduces an additional length scale r0, which is a priori arbitrary,
but evidently should not exceed the (reduced) Compton wavelength λC ≡
~/m = 3.86 × 10−11 cm, in order that the Dirac Lagrangian L0 hold at
large radii r � r0, while the Klein–Gordon Lagrangian L1 predominates at
small radii r � r0. L1 contains only second-order derivatives, and hence the
causality problem associated with the fourth-order derivatives that occur
generically in higher-derivative theories does not arise here.

A second important feature is that the field equation is linear in ψ. The
question of whether the fundamental field equation for the wave function is
linear or non-linear in ψ is intrinsically complicated. Here, we recall that the
Einstein gravitational theory L(1) = −R/2κ2 + Lmatter, although classically
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non-linear, yields a linear equation for the cosmological wave function Ψ ,
even when a higher-derivative geometrical term L(2) = BR2 is included [14],
after application of the Wheeler–DeWitt [15, 16] quantization method, thus
justifying consideration of a field theory that is linear in the spinor wave
function ψ.

A theory of the electron that is linear in the potential φ was proposed
by Bopp [17], who modified the Maxwell Lagrangian of electrodynamics
LM = −FijF ij/4 by the addition of a higher-derivative term of the form
∼ λ2 (∂kFij)

2, in such a way that the equation for a static, spherically-
symmetric potential is changed from ∆φ = 0 to

∆
(
∆− λ−2

)
φ = 0 . (15)

By requiring φ to be properly behaved both at infinity and at the origin, we
derive the solution (see p. 353 of Ref. [17])

φ(r) = e
(

1− e−r/λ
)
/r . (16)

This theory assumes a point electron of charge e for which φ(r →∞) = e/r,
φ(r = 0) = e/λ, implying a finite self-energy, the field equations being
similar to the Proca–Yukawa equations of nuclear theory.

The general higher-derivative Lagrangian theory

L = L (φa, ∂jφa, ∂j∂κφa) (17)

was analysed by Podolsky and Kikuchi [18], applying the Ostrogradski [19]
method.

Interestingly, Stelle [20] found that the addition of a higher-derivative
gravitational term BR2 ≡ B

(
R2 − ξRijRij

)
to the Einstein–Hilbert La-

grangian −R/2κ2 (where κ2 = 8πGN, GN being the Newton gravitational
constant), produces the same improvement in the Newtonian gravitational
potential φg of a point particle of rest-mass M as does the Lagrangian of
Ref. [17] in the case of a point electron of charge e. Thus, in place of the
electrostatic potential φ(r) defined by Eq. (16), from Eq. (3.7) of Ref. [20]
we have

φg(r) =
−2GNM

r

(
1 +

1

3
e−M0r − 4

3
e−M2r

)
, (18)

where the spin-0 and spin-2 higher-derivative masses are [20]

M0 =
1

2
√

(3− ξ)Bκ
, M2 =

1√
2ξBκ

, (19)

and consequently φg(r) is also properly behaved both at infinity and at the
origin, since φg(r →∞) = −2GNM/r, φg(r = 0) = −2GNM(4M2 −M0)/3.
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For the effective action of the heterotic superstring theory of Gross et al.
[21–23], after reduction to four dimensions [14], the dimensionless parameters
have the values B = constant, ξ = 1, and therefore M2 = 2M0.

3. The commutation relations

The fundamental commutator relating the position xκ and momentum pκ
of the electron is given by Eq. (9), which follows automatically from the oper-
ator substitution pκ → −i~∂/∂xκ, while the separate components commute
with one another

xκxλ − xλxκ = 0 , pκpλ − pλpκ = 0 . (20)

By contrast, the matrix operators ẋκ ≡ ακ are unrelated to the pκ, as
emphasized in Ref. [5], and therefore commute with the xκ, although their
separate components do not commute with one another. Rather, they obey
the anti-commutation law expressed by Eq. (3), and consequently the α̇κ
and ακ anti-commute, for differentiation of Eq. (3) with respect to x0 yields
the equation

α̇καλ + αλα̇κ = 0 , (21)

after symmetrisation.
Since the matrices ακ behave differently from the c-numbers xκ, then the

relationship between ακ and its canonically conjugate momentum πκ differs
from Eq. (9). From the Lagrangian L0 expressed in the Hamiltonian form
of Eq. (4), we see that the operator H is related to the scalar Hamiltonian
density H by the equation

H = ψ+Hψ . (22)

Thus, writing in general
L = ψ+L̂ψ , (23)

we can define the momentum canonically conjugate to xκ via the Lagrangian
operator L̂ as

pκ = −∂L̂0/∂ẋ
κ ≡ −∂L̂0/∂α

κ . (24)

Considering now the Lagrangian L defined by Eq. (13), after substitution
from Eqs. (3) and (10) we find that, off-shell,

L1 = −r0ψ̄
(
2 +m2

)
ψ + r0ψ

+
[(
ακβ̇ + α̇κβ

)
∂κ − β̇∂0

]
ψ , (25)

and therefore if the ακ is regarded as a coordinate, then its canonically
conjugate momentum πκ is defined by

πκ = −∂L̂1/α̇
κ = −βr0∂κ = −iβr0pκ . (26)
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Equation (26) shows, as stated in Section 1, that πκ and pκ are simply
related and commute with one another, since ∂κβ = 0, assuming that β =
β(x0). Further, in place of the commutator relating xκ and pλ, we find that
ακ and πλ anti-commute, since

ακπλ + πλα
κ = −r0 (ακβ + βακ) ∂λ = 0 . (27)

4. Discussion

The theories of Refs. [17] and [20] briefly described in Section 2 above
analyse the effect of higher-derivative corrections to the static, spherically-
symmetric electromagnetic or gravitational potential generated by a point
charge or mass, which inevitably leads to problems with the implicit singu-
larity at the spatial origin, where the source is idealized as a delta function.
Here, we recall that Einstein and Pauli [24] proved that there exists no sta-
tionary non-singular solution to the vacuum equations of general relativity
which represents a field of non-vanishing total mass or charge. While the
theory of Dirac [3, 4], on the other hand, deals with the probability four-
amplitude density P i =

√
−gψ̄γiψ, which, when multiplied by the electronic

charge e, yields the distribution of electrical charge and current density in
the form

J i = e
√
−gψ̄γiψ , (28)

where g is the determinant of the metric gij , and is therefore obviously
relevant from a complementary standpoint.

For the sake of simplicity, let us consider a static, spherically-symmetric
configuration, as a first approximation to the notion of a spatially extended
electron. Close to the origin, at distances r � 1/m, the spinor is almost
massless, the only solution to Eq. (5) being ψ ≈ ψ0, where ψ0 is a constant,
in which case the charge density is J 0(r) ≈ eψ2

0r
2, which thus tends to zero

at r → 0 (and diverges as r →∞ if m = 0, unless ψ0 = 0).
Consider then instead the modified theory of Eq. (13). Since the electron

is known to exhibit no structure down to scales ∼ 10−16 cm, we now assume
that r0 . 10−16 cm � 1/m, whereupon the field equation (11) derived from
L1 alone reduces to [

2 + β
(
β̇∂0 + γ̇κ∂κ

)]
ψ ≈ 0 . (29)

After substitution from Eq. (10), assuming the static case ∂0ψ = 0 and also
that ∂κ � imγκ, we obtain approximately the Laplace equation

∆ψ ≈ 0 . (30)
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In spherical polar coordinates xi = (t, r, θ, ϕ), for which gij = diag(1,−1,
−r2,−r2 sin2 θ) and

√
−g = r2 sin θ, we have the familiar eigenfunction ex-

pansion for the wave function

ψ(r, θ, ϕ) =
∑∑

ψlmRl(r)P
m
l (cos θ) eimϕ , (31)

the radial part of which obeys the equation

d2Rl
dr2

+
2

r

dRl
dr
− k2Rl

r2
= 0 , (32)

while the angular part, defined by the associated Legendre polynomials
Pml (cos θ), obeys the equation

d2Pml
dθ2

+ cot θ
dPml
dθ

+
(
k2 −m2cosec2θ

)
Pml = 0 , (33)

setting the separation constant k2 = l(l + 1), where in Eqs. (31) to (35),
l and m denote the azimuthal and magnetic quantum numbers, respectively
(l ≥ 0,−l ≤ m ≤ l). In the axisymmetric case m = 0, Eq. (33) reduces to
Legendre’s equation for P 0

l ≡ Pl, when written as a function of x ≡ cos θ.
The solutions to the radial Eq. (32) are

Rl(r) = rl , r−(l+1) , (34)

substitution of which into Eq. (28) shows that the charge distribution den-
sity is

J 0 = e
√
−gψ+ψ ∼ r2(l+1) , r−2l . (35)

Since l ≥ 0, for the first solution Eq. (35) J 0(r → 0) → 0 for all l, while
the second solution for J 0 diverges at the origin for all l ≥ 1. If we seek a
solution for which the charge density is finite and non-divergent at r = 0,
the only possibility is l = 0, which is the case of spherical symmetry, since
then m = 0 and P0(x) = 1.

Note that the first solution R0(r) of Eq. (34) is a constant, which is
simply the solution ψ ≈ ψ0 to Eq. (5). While all solutions to the linear first-
order Eq. (5) are necessarily also solutions to the second-order Eq. (11), the
converse is evidently not true, and it is really the second solution (34) which
is of interest to us here.

Thus, we find the important result, for this model, that the charge dis-
tribution has to be spherically symmetric if it is to be regular and non-zero
at the origin. Although this quantity is beyond the reach of direct exper-
imental detection for the electron, precise measurements have been made
of its electric dipole moment de. Theoretically, the Lagrangian L defined



On a Higher-derivative Spinor Theory 167

by Eq. (13) is Hermitian, local and invariant under Lorentz transformations
ηij → η′ij = Λ2ηij , xi → x′i = Λ−1xi, and consequently also invariant un-
der the discrete symmetry TCP. In fact L1 is invariant under T (remember
that the operator Eq. (8) is invariant under T, since t → −t implies that
H → −H) and P separately, which leads to the prediction that de = 0,
consistent with the current upper limits |de| ≤ 10−29 − 10−28 cm listed by
Zyla et al. [25] and references therein, and thus allowing a spherical charge
distribution.

On the basis of a similarity between the Proca–Yukawa equations of
nuclear theory and the equations of electromagnetism derived from the
Maxwell Lagrangian modified by the addition of higher-derivative terms
∼ λ2(∂kFij)

2, it was conjectured in Ref. [17] (see p. 345) that the Yukawa
force is responsible not only for holding the nuclei together, but also for the
cohesion of electrons. From the viewpoint of this analogy, it is therefore also
interesting that the r.m.s. charge radius of the proton rp can be determined
experimentally. An early analysis of the scattering of high-energy electrons
off protons showed that the charge distribution of the proton is relatively
smooth, and that rp ≈ 0.8 × 10−13 cm — see Hofstadter [26] for a review.
Subsequent experimental developments and elaboration of method have left
this result virtually unchanged to the present day — from Ref. [25] and ref-
erences therein we find the current average rp = 0.8409±0.0004×10−13 cm.
Also, the nuclear density profile is assumed to be spherically symmetric,
depending upon radius as

ρ(r) = ρ0

/[
1 + e(r−r1)/a

]
, (36)

so that ρ(r1) = ρ0/2, where r1 = r∗A
1/3, r∗ = 1.07× 10−13 cm, A ≡ Z +N

is the atomic weight, Z and N being the proton and neutron numbers,
respectively, ρZ(r) is proportional to ρN (r), and a is a phenomenological
constant.

Clearly, further investigation of this problem is necessary.

This paper was written at the University of Cambridge, Cambridge, Eng-
land.
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