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The Coulomb-nuclear interference (CNI) has recently been used by the
TOTEM Collaboration to analyse proton–proton elastic-scattering data
from the LHC and to draw physics conclusions. This paper will present
an eikonal calculation of the CNI effects performed to all orders of the
fine structure constant, α. This calculation will be used as a reference to
benchmark several widely-used CNI formulae and to verify several recent
claims by other authors.
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1. Introduction

Elastic scattering of nucleons is a process mediated by electromagnetic
(Coulomb) and strong (nuclear) force. In the domain of small squared four-
momentum transfer, |t|, the two interactions are of similar strength result-
ing in observable interference effects, so-called Coulomb-nuclear interference
(CNI).

The TOTEM Collaboration has recently used the CNI to extract the
value of the ρ parameter, the real-to-imaginary ratio of the forward ampli-
tude, from elastic scattering differential cross section at the collision energy
of
√
s = 13 TeV and interpreted the results as an argument in favour of the

Odderon existence [1]. This has also revived some theoretical interest in CNI;
some recent publications are briefly discussed in the following paragraphs.

Petrov has studied CNI in an eikonal framework [2, 3]. Some of his
results take a similar form to the formulae previously obtained by Cahn [4]
and Kudrát–Lokajíček (KL) [5], but have one term less. Petrov argued that
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this is due to a wrong treatment of proton form factors in the work by
Cahn. This hypothesis will be checked in this paper. Further details of the
proposed mistakes in Cahn’s derivations were given in Refs. [6, 7], in addition
suggesting that the expansion in orders of the fine-structure constant, α, was
insufficiently truncated. This suggestion will be also tested in the present
paper.

Godizov [8] has proposed that CNI effects may be negligible on ampli-
tude level, since the Coulomb and nuclear eikonals have very little overlap.
A similar statement has been made by Donnachie and Landshoff [9]. These
proposals will be verified in this paper.

Khoze et al. [10] have re-confirmed the relevance of CNI amplitude effects
and, furthermore, have evaluated the impact of inelastic intermediate states
which are not taken into account in the traditional eikonal framework.

In this paper, we focus on eikonal description of CNI, which is the com-
mon basis of works by Cahn, KL, Petrov and others. For a more complete
historical review and other approaches, see e.g. Ref. [11].

This paper follows an approach complementary to the aforementioned
publications: instead of analytic manipulations, we present a numerical anal-
ysis starting with the fundamental assumption of the eikonal framework —
the additivity of eikonals (method first used in thesis [11]). This approach
allows to double-check the analytic derivations, some steps of which were
found questionable even by the original authors, see e.g. the comment above
Eq. (18) in Ref. [4].

Finally, the numerical approach used in this paper provides an explicit
evaluation of the CNI to all orders of α, to our knowledge, for the first time.
Petrov has also provided a formula to all orders of α [2] but, in our opinion,
it is not well-suited for numerical evaluation. Petrov has recently published
another and more explicit CNI formula including all orders of α [7], but we
have not had a chance to test its numerical properties yet.

After a preprint of this work has been made available [12], Petrov has
published a critical reaction [13]. His critical comments are addressed in this
revised version of the document.

The paper is organised as follows. In Section 2, we briefly outline the
essence of the eikonal framework. Section 3 will show predictions of dif-
ferent CNI formulae applied to nuclear amplitudes reflecting the TOTEM
measurements at

√
s = 8 TeV [14]. Section 4 gives technical details of the

numerical calculation. The paper is concluded with a summary in Section 5.
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2. Eikonal calculation

The CNI treatment in the eikonal framework can be sketched as follows.
The Coulomb amplitude in Born approximation, e.g. from QED, is used

as an input
FC
Born(t) = ±

αs

t− λ2
F2(t) , (1)

where F stands for proton’s form factor and the upper (lower) sign refers
to proton–proton (proton–antiproton) scattering. The fictious photon mass,
λ, is kept explicitly in the expression to act as an infrared regulator. The
Coulomb eikonal can be obtained via the Fourier–Bessel transform

δC(b) =
1

s

∞∫
0

dq q J0(bq)F
C
Born

(
−q2

)
, (2)

where J0 is the zeroth order Bessel function of the first kind. In the special
case with F ≡ 1 (i.e. point-like protons), the eikonal can be evaluated
analytically [4]

δCasym(b) = −αK0(λb) , (3)

where K0 stands for the modified Bessel function of the second kind and
zeroth order.

The nuclear amplitude in the impact-parameter space, AN(b), can be
obtained from the amplitude in the momentum space, FN(t), with a Fourier–
Bessel transform

AN(b) =
1

s

∞∫
0

dq q J0(bq)F
N
(
−q2

)
(4)

and the corresponding nuclear eikonal

δN(b) =
1

2i
log
(
2iAN(b) + 1

)
. (5)

Following the assumed eikonal additivity, the total eikonal is obtained
by summing the Coulomb and nuclear eikonals

δC+N(b) = δC(b) + δN(b) . (6)

The total amplitude, reflecting both the Coulomb and nuclear interactions
acting simultaneously, is given by the inverse Fourier–Bessel transform

FC+N(t) =
s

2i

∞∫
0

db b J0
(
b
√
−t
) (

e2iδ
C+N(b) − 1

)
. (7)
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Neglecting δN in Eq. (6), Eq. (7) yields the complete Coulomb amplitude
(i.e. summation to all orders of α). In the special case of F ≡ 1, Cahn has
found that the summation affects only the phase

FC(t) = ± αs

t− λ2
eiαη(t) , η(t) = log

λ2

−t
. (8)

Although this structure does not hold with a general form factor F , Cahn
used the following approximation for developing his CNI formula

FC(t) ≈ ± αs

t− λ2
eiαη(t)F2 , (9)

which is the subject of criticism by Petrov [2]. The same approximation is
found in the KL formula.

Differential cross section is obtained from the corresponding amplitude by

dσ

dt
=
π(}c)2

sp2
|F |2 . (10)

3. Results

In this section, predictions from several CNI formulae will be compared:

— numerical: numerical evaluation of Eq. (7),

— Cahn: Eq. (30) in Ref. [4],

— KL: Eq. (26) in Ref. [5],

— Petrov: Eq. (17) in Ref. [2] (taking into account the erratum [3]),

— SWY: Eq. (26) in Ref. [15],

— trivial: plain sum of the Coulomb and nuclear amplitude, as suggested
e.g. in Ref. [8].

For completness: Eq. (13) in Ref. [2] (to all orders of α) is not considered here
— not for lack of interest, but for difficulties in constructing a correspond-
ing numerical-integration computer program. We believe that it is worth a
forthcoming study, along with considering another represation proposed by
Petrov, e.g. Eq. (13) in Ref. [13].

To test the numerical calculation, one needs to assume a certain nuclear
amplitude, FN(t). This unavoidably introduces some model dependence in
our results. In order to focus on physics-relevant models, we will use the
two nuclear amplitudes published by the TOTEM Collaboration in an anal-
ysis of

√
s = 8 TeV proton–proton data [14, Table 5]. While the differential
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cross-section measurement puts strict constraints on the amplitude modulus,
the phase remains almost arbitrary. Consequently, two extreme/alternative
options will be tested: “central” with nuclear phase constant in t and “pe-
ripheral” with nuclear phase rapidly varying in t. The labels have been
chosen to reflect the different impact-parameter behaviour: the “central”
model yields a profile function peaking at smaller impact-parameter value
w.r.t. the “peripheral” model.

The proton form factor will be modelled according to Puckett et al. [16].
In the numerical calculation, the λ regulator cannot be strictly set to

zero, but instead it can be chosen small enough not to have any significant
impact on the results in the b and t ranges of interest. This is illustrated for
example in figure 1: results for different values of λ are shown in different
colours and line styles. As λ gets smaller, the difference between results
diminishes. In particular, there is almost no visible difference between λ =
3× 10−5 (solid blue) and 10−5 GeV (dashed green). This indicates that the
former value of λ is small enough (for our |t| range) and will be often used
as a reference for comparisons.

Figure 1 compares the complete (i.e. to all orders of α) Coulomb cross
section from the numerical calculation to the input Born-level expression
(reference). The top plot, corresponding to point-like protons, shows a per-
fect agreement between the numerical calculation (for sufficiently small λ)
and the Born curve, as expected from Eq. (8). The bottom plot, corre-
sponding to a realistic proton form factor, shows small relative deviations,
O(10−4).

Figure 2 shows the phase of the complete Coulomb amplitude which
depends on the choice of λ (different colours and line styles). The top plot,
for point-like protons, indicates a perfect agreement with the η(t) calculation
by Cahn (thick dots). The bottom plot, for a realistic form factor, shows
small deviations, O(10−3).

Figure 3 compares the total (Coulomb + nuclear) cross section from the
numerical calculation for several choices of λ. Like in figure 1, the smaller λ,
the smaller difference in predictions. When λ . 3 × 10−5 GeV, almost no
visible difference is present. This has been further verified for λ values down
to 3 × 10−6 GeV and agrees with the expectation from Eq. (1): introduc-
ing λ makes negligible effect whenever λ2 � |t|. In conclusion, we believe
that we can choose λ sufficiently small such that the numerical calculation
gives predictions comparable (on our |t| range starting at 10−4 GeV2) with
the λ→ 0 limit. We find misleading the comment below Eq. (1) in Ref. [13]
that a single value of λ is used. On contrary, a series of λ values is sys-
tematically considered and the corresponding results are analysed. Only the
fact the results evolve with λ as expected allows us to make the presented
interpretation.
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Fig. 1. (Colour on-line) Complete Coulomb cross section — relative difference be-
tween numerical calculation (Eq. (7) with δN ≡ 0) w.r.t. Born-level input, Eq. (1)
with λ = 0. The different colours and line styles represent different choices of λ.
Top: for point-like charges, F ≡ 1, bottom: with a realistic proton form factor.

Figure 4 compares predictions from several CNI formulae to the refer-
ence from the numerical calculation (to all orders of α). For both central
(top) and peripheral (bottom) cases, the predictions by Cahn and KL are
almost identical and they overlap with the numerical-calculation reference
— the relative difference is O(10−4). The trivial sum of the Coulomb and
nuclear amplitudes can deviate up to about 3.5%. The formula by Petrov
(missing one term w.r.t. Cahn/KL) can deviate by almost 5%. The SWY
formula provides relatively good description in the “central” case (relative
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Fig. 2. (Colour on-line) Phase of the complete Coulomb amplitude. The lines come
from numerical calculation (with different choices of λ). The thick dots correspond
to π + αη(t), the phase of the amplitude in Eqs. (8) and (9). Top: for point-like
charges, F ≡ 1, bottom: with a realistic proton form factor.

deviationsO(10−3)) and somewhat worse description in the “peripheral” case
(deviations up to about 1%). This is not surprising since the SWY formula
assumes a slow nuclear phase variation.
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Fig. 3. (Colour on-line) Full Coulomb+nuclear cross section as obtained from the
numerical calculation, Eq. (7), for different values of λ (colours and line styles). The
dashed green curve suffers from little numerical instabilities (negligible compared
to typical experimental uncertainties). Top: for central nuclear amplitude, bottom:
for peripheral nuclear amplitude.

Let us emphasize that the numerical calculation presented in this article,
the work by Cahn [4], the work by Kundrát and Lokajíček [5] and the work by
Petrov [2], are all based on the identical set of assumptions and expressions:
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the additivity of eikonals1 and the expression for the Coulomb eikonal2.
Therefore, the differences reported in the previous paragraph can only be due
to approximations (analytic or numerical) or mistakes in the corresponding
works.
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Fig. 4. (Colour on-line) Relative difference between various CNI formulae and the
reference from the numerical calculation (λ = 3 × 10−5). Top: for central nuclear
amplitude, bottom: for peripheral nuclear amplitude.

1 Our Eq. (6) is equivalent to Eq. (12) in Ref. [4] (implicitely), to Eq. (7) in Ref. [5],
and to Eq. (3) in Ref. [2].

2 Our Eq. (2) is equivalent to Eq. (10) in Ref. [4], to Eq. (12) in Ref. [5], and to Eq. (12)
in Ref. [2].
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We disagree with the statement made below Eq. (17) in Ref. [13]: if a
formula shall hold generally and if we find (with whatever method) even a
single example where it fails, we believe that this generally undermines the
validity of the formula. In this way, we interpret the deviations reported
above. Furthermore, let us stress that the examples used in this document
are not “random” but with sound physics motivation. We do realise that nu-
merical calculations come with limited accuracy — for that reason, multiple
checks and validations are presented throughout this article.

4. Technical details

The numerical integration in Eqs. (2), (4) and (7) is performed with the
help of the GSL library [17], in particular using adaptive integration based
on 61-point Gauss–Kronrod rules.

For the numerical integration, one needs to set reasonable boundaries.
In the case of Eq. (7), a reasonable upper limit, bmax, can be deduced by
analysing the expression in the parentheses, in the lowest order being 2iδC+N.
Since the nuclear interaction is expected to be short-ranged, δN shall vanish
at large b and thus δC+N ≈ δC. Furthermore, the effect of Coulomb form
factors is expected to be concentrated at low b, therefore, at large b one may
safely approximate δC+N ≈ δCasym. These assumptions have been explicitly
tested for the choices of nuclear amplitudes and Coulomb form factors used
in this article. Since δCasym ∝ K0(λb) and since K0 is a monotonously falling
function, one may truncate the integration once theK0(λb) function becomes
sufficiently small, i.e. when λb exceeds a certain threshold. Consequently,
we adopted bmax = c/λ, where c = 10 was found appropriate by numerical
tests — a variation of c between 5 and 50 leads to negligible changes in
the results. Finally, we would like to stress that this paragraph is about
setting numerical integration bounds for Eq. (7). For different integrations,
different rules should be used — in that sense, we do not think that the
criticism below Eq. (18) in Ref. [13] is applicable here.

In the case of Eq. (2), the upper limit was set to qmax =
10max(3,3−log10(b)) GeV. This rule was found with numerical tests, there is
a negligible variation of the results when the parameters and varied around
the quoted values. The rule works both with and without including form
factors. The reduction of qmax with b can be justified by the fact that the
amplitude of J0(bq) oscillations decreases with increasing bq.

The implementation of the analytic interference formulae (Cahn, KL,
Petrov and SWY) is based on the Elegent software package [18].

Several optimisations are used in the numerical evaluation. First, the
asymptotic expression δCasym is used instead of the integral in Eq. (2) for b >
20 GeV−1. It has been checked that the relative error of this simplification
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is smaller than 10−4. Then, Eq. (7) is recast such that the expression in the
parentheses is reduced by 2iδC which is compensated by adding the Coulomb
Born amplitude, Eq. (1), outside the integral. This algebraic transformation
improves the convergence of the numerical integration.

The full calculation code in C++ is available in a public GitHub reposi-
tory [19].

5. Summary and conclusions

It has been verified with a realistic proton form factor that Cahn’s ap-
proximation of the complete Coulomb amplitude, Eq. (9), is inexact as ar-
gued by Petrov [2]. However, the deviation is rather small: O(10−3) for
phase and O(10−4) for the relative deviation in modulus. Such deviations
are likely to be undetectable with the current experimental possibilities.

A numerical eikonal calculation of CNI effects, based directly on the
eikonal additivity and carried out to all orders of α has been presented,
likely for the first time.

The new CNI formula proposed by Petrov [2] (with one term missing
w.r.t. the formula by Cahn/KL) has been compared with the numerical
calculation and found to deviate up to almost 5%.

A plain sum of the Coulomb and nuclear amplitudes, compared to the
eikonal numerical calculation, leads to deviations up to 3.5%. We consider
this observation as an indication that the proposal is oversimplified.

The SWY formula reproduces the numerical eikonal calculation well for
the “central” nuclear amplitude. In the “peripheral” case, the deviations are
up to 1%.

The best reproduction of the numerical eikonal calculation has been
found by the Cahn/KL formulae where the relative deviations are O(10−4).
This indicates that Cahn’s inexact approximation of the complete Coulomb
amplitude and the early truncation of the series in powers of α (as pointed
out by Petrov [6, 7]) do not have any detrimental effect that could be cur-
rently experimentally observed. This leads us to the conclusion that the
formulae by Cahn/KL are currently the “best on the market”.

Since the numerical calculation presented in this article and the inter-
ference formulae by Cahn, Kundrát–Lokajíček and Petrov are all based on
the same premises, one should expect identical results (within the uncer-
tainty due to the analytic/numerical approximations applied). We find that
the numerical calculation agrees well with the Cahn/KL formulae, but all
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of them differ significantly from the one by Petrov. Although this is shown
with only two concrete examples (still physically very relevant), we interpret
this as a general failure of the formula proposed by Petrov.

One may argue that taking the eikonal calculation as a reference is a
biased choice, since the eikonal framework is an approximation on its own,
and it cannot naturally include some of the known effects (further discussion
can be found e.g. in Refs. [2, 10, 11]). Possibly one of the effects most
difficult to evaluate — the influence of the inelastic intermediate states —
has recently been estimated by Khoze et al. [10], finding that the effect would
not be observable with the current experimental accuracy.

Overall, we find that TOTEM has chosen a reasonable model of CNI
effects to extract the ρ parameter [1].

The author is grateful for stimulating discussions with A. Godizov,
V. Khoze and collaborators, V. Kundrát and V. Petrov. The author also
wishes to thank several of them for valuable suggestions how to improve this
manuscript.
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