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The remarkable recent progress in the precision of Lattice QCD com-
putations for several physical quantities relevant for flavour physics has
motivated the introduction of isospin-breaking effects, including in particu-
lar electromagnetic corrections, to the computations. The isospin-breaking
corrections are necessary to fully exploit this improved precision for the
determination of the fundamental parameters of the Standard Model, in-
cluding the CKM matrix elements, and to look for deviations from exper-
imental measurements which might signal the presence of New Physics.
Together with colleagues from Rome, we have developed and implemented
a framework for including isospin-breaking corrections in leptonic decays
P → `ν̄`(γ), where P is a pseudoscalar meson and ` a charged lepton,
and the theoretical framework and numerical results are reviewed below.
The status of our studies to extend this framework to semileptonic decays
P1 → P2`ν̄`(γ), where P1,2 are pseudoscalar mesons, is also presented.
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1. Introduction

Lattice QCD is proving to be a powerful and precise tool for quantitative
studies in a wide range of non-perturbative hadronic processes in general
and in flavour physics and the extraction of CKM matrix elements from
experimental measurements in particular. Until relatively recently, almost
all lattice simulations were performed in isosymmetric QCD, i.e. neglect-
ing electromagnetic interactions and with equal up and down quark masses
(mu = md ≡ mud). Over the past decade however, the precision of lattice
computations of hadronic quantities relevant for flavour physics phenomenol-
ogy has reached such an impressive level of precision that both electromag-
netic and strong isospin-breaking effects can no longer be neglected. For
a review of recent results and references to the original literature see the
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latest report from the Flavour Physics Lattice Averaging Group, FLAG [1].
The aim of this report is to discuss the theoretical issues which arise when
isospin-breaking effects, and electromagnetic corrections in particular, are
included and to review the development and implementation of the frame-
work which, together with colleagues from Rome, we have been developing
to handle these issues.

Isospin-breaking effects are given in terms of two small parameters
O(αem) and (md−mu)/ΛQCD, each of which as a first approximation we take
to be of O(1%) (unless there are particular reasons to expect an enhance-
ment or suppression of these effects). In this review, I will follow the RM123
approach of Refs. [2, 3], in which physical observables are evaluated at first
order in these two small parameters. Alternatively, one might add QED
directly to the action and perform QCD+QED simulations at a number of
values of the electric charge (see, for example, Refs. [4, 5]). An advantage
of the RM123 method is that the two small expansion parameters are fac-
torised out, so that one can get relatively large numerical signals for the
corrections, computed directly in isosymmetric QCD.

Formulating QED in a finite spatial box (V = L3) raises some significant
issues. For example, with the frequently used periodic boundary conditions
Gauss’ Law is not satisfied for a charged particle in the box. The electric flux
across the boundary is zero in this situation. There have been a number of
proposed approaches to circumvent or mitigate this. A pragmatic approach,
and one which we will follow in the following discussion, is to implement
the QEDL formulation, defined by omitting the three-momentum zero mode
from the sum over the photon’s momentum ~k [4, 6]∫

d3k

(2π)3
f
(
~k
)
→ 1

L3

∑
~k 6=~0

f
(
~k
)
, (1)

where f(~k ) is some function of ~k. On the left-hand side of Eq. (1) we have
the infinite-volume integral over the photon’s momentum, which corresponds
to the physical result we are attempting to derive. On the right-hand side,
with periodic boundary conditions the sum is over the discrete momenta
~k = (2π/L)~n, where ~n is a vector of integers, with the contribution from
~n = ~0 omitted. The key question is what is the difference between the lattice
results obtained using the QEDL regulator of the zero mode (right-hand side
of (1)) and the physical result (left-hand side of (1)). We will address this
question in the following, but in general the difference decreases only as
inverse powers of the volume, and not exponentially.
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We note that other interesting approaches to formulating QED in a finite
volume include the use of C∗ boundary conditions which allow for a non-
zero electric flux across the boundary of the volume [7–10] and the infinite-
volume reconstruction method in which correlation functions at large time
separations are obtained from computations at moderate separations with
only exponentially small finite-volume corrections [11, 12].

Accurate lattice results including electromagnetic and strong isospin-
breaking effects have been obtained for the hadron spectrum, for example
for the mass splitting between charged and neutral pseudoscalar mesons and
baryons (see, e.g., Refs. [2, 4]). The calculation of electromagnetic effects
in the hadron spectrum does not suffer from the presence of infrared diver-
gences. The same is not true however, in the case of hadronic amplitudes,
where electromagnetic infrared divergences are present and cancel for well
defined, measurable physical quantities only after including diagrams con-
taining both real and virtual photons [13]. This is the case, for example, for
the leptonic decays π`2 (i.e. π → `ν̄`, where ` is a charged lepton, e or µ) and
K`2 as well as the semileptonic K`3 decays (i.e. K → π`ν̄`). These decays
play a central role in the accurate determination of the Cabibbo–Kobayashi–
Maskawa (CKM) entries |Vus/Vud| and |Vus| [14].

In a recent series of papers, we have developed a framework for the
evaluation of first-order isospin-breaking corrections to leptonic decays of
pseudoscalar mesons [15], calculated the corresponding finite-volume correc-
tions up to and including O(1/(mPL)) (where mP is the mass of the meson
and the spatial volume of the lattice is V = L3) using the QEDL regulator of
the zero mode in the photon propagator [16] and successfully implemented
the framework in the study of the leptonic decays K,π → µνµ(γ) [17, 18].
The theoretical framework will be summarised in the sections below together
with a sketch of the numerical results.

The plan for the remainder of this paper is as follows. In the following
section, we look at the question of what is meant by isospin-breaking correc-
tions and how one might calculate them in principle. This may seem to be a
surprising question but at the level of the O(1%) effects we are considering
it is necessary to define what we mean by QCD and in particular what the
quark and hadron masses are in QCD without QED. In Section 3, we discuss
infrared divergences which are present in the leptonic and semileptonic pro-
cesses discussed later and this is followed in Section 4 by a discussion of the
finite-volume corrections in the QEDL formulation. Sections 5 and 6 con-
tain the applications of the framework to leptonic and semileptonic decays
respectively. Section 7 contains a brief summary and conclusions.

The material presented below is intended to be an introduction for a gen-
eral theory audience to the problem of including isospin-breaking effects, and
electromagnetic corrections in particular, in a finite Euclidean volume. Al-
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though the motivation for these studies is to include isospin-breaking effects
in lattice computations, which are necessarily performed in a finite volume,
the focus will be on the long-distance aspects rather than on ultra-violet
issues associated with the finite lattice spacing. Moreover, although we do
discuss and include strong isospin-breaking effects in the computations, the
principal theoretical difficulties concern the inclusion of the propagator of a
zero-mass photon and so naturally most of the presentation is devoted to
this.

2. What is meant by isospin-breaking corrections?

When performing lattice QCD computations, with or without QED cor-
rections, we need to choose a discretisation of the field theory and the nu-
merical values of the parameters of the Standard Model, the masses and
coupling constants. “Physical” values of the bare-quark masses are deter-
mined by requiring that the results for a chosen set of physical quantities
correctly reproduce their experimentally measured values.

It is important to note that once isospin-breaking effects, including elec-
tromagnetism, are introduced into QCD computations, it is only the full
QCD+QED theory which is unambiguous. Strong isospin breaking implies
that there is a difference in the masses of the up and down quarks, md 6= mu.
However, since the electric charges of the u and d quarks are different, elec-
tromagnetic corrections themselves induce a difference between mu and md,
so that asking the question of how much of the isospin breaking, not only
for the quark masses but in general, is attributed to different input masses
in QCD and how much to electromagnetism cannot be answered without
introducing a prescription. Physical results, of course, must be independent
of the prescription.

In this section, I describe how the quark masses and the lattice spacing, a,
are determined using lattice QCD, both in isosymmetric QCD (Section 2.1)
and in the full theory in which both electromagnetism and strong isospin
breaking is included (Section 2.2). In Section 2.3, I explain how QCD and
hence isospin-breaking corrections might be defined in the full theory. The
discussion in this section follows Sec. II of Ref. [18] where more details can
be found.

2.1. Calibrating the lattice in isosymmetric QCD

Imagine that we wish to compute some physical quantities in a lattice
QCD computation with Nf = 2+1+1 flavours of quarks, in the isosymmet-
ric limit, i.e. with mu = md ≡ mud and without including electromagnetic
effects. To perform the computations, it is necessary to choose a value for
the (dimensionless) strong coupling constant gs(a) and the corresponding
parameter is then the (dimensionful) lattice spacing a. The four parameters
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to be determined are the bare quark massesmud,ms,mc and the lattice spac-
ing a. This requires us to sacrifice the possibility of making predictions for
four physical quantities and instead imagine tuning the bare-quark masses in
the lattice QCD action to ensure that the lattice results for these quantities
reproduce their physical values. To illustrate the procedure imagine that we
have found values of mud, ms and mc such that the dimensionless ratios

amπ0

amΩ
,

amK0

amΩ
,

amD0

amΩ
(2)

reproduce the values in the Particle Data Group [19]. At this value of αs(a),
we will use these quark masses to determine all other physical quantities in
which we are interested. In the numerators and denominators of Eq. (2), the
hadron masses are written in the form amH to underline the point that they
are obtained in lattice units from the computations. In order to determine
the lattice spacing, we need to compare the lattice result for a dimensionful
quantity, for example the mass of the Ω baryon in lattice units (amΩ) with
its physical value in conventional units such as GeV:

a =
amΩ

mphys
Ω

=
amΩ

1.672 GeV
. (3)

(In Section 2.3, the lattice spacing obtained using this procedure will be de-
noted by aISO

0 where the subscript 0 denotes that it has been obtained in
QCD without QED and the superscript ISO indicates that mu = md.) Hav-
ing determined the bare-quark masses and the lattice spacing in this way,
other physical quantities can be computed. They will be subject to system-
atic uncertainties, including discretisation errors (“lattice artefacts”), which
are proportional to a2 in most currently used lattice formulations of QCD.

The choice of the ratios in Eq. (2) to determine the “physical” quark
masses and the use of mΩ to set the scale is convenient and introduced for
illustration. It is certainly not unique, four other physical quantities can be
used for this calibration instead.

The presentation in this subsection describes an idealised situation in
which we can afford to perform a scan of the results with different input
quark masses to determine the ones which reproduce the ratios in Eq. (2)
correctly. In practice, this is not possible and some level of interpolation
and extrapolation is necessary.

2.2. Calibration of the full theory

The main difference in the steps required to calibrate the full theory
(i.e. QCD+QED) compared to the procedure in isosymmetric QCD is the
presence of the photon as well as the fact that mu 6= md. The presence of
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the massless photon implies that the finite-volume (FV) corrections appear
as inverse powers of L. By contrast, in QCD for leptonic and semileptonic
decays, the FV corrections are exponentially small in the volume.

A possible strategy for the determination of the quark masses and lattice
spacing in principle is the following:

1. Using a four flavour theory for illustration, choose a value of the strong
coupling constant gs, the bare-quark masses m = {mu,md,ms,mc}
and the number of lattice points N , e.g. T = 2aN and L = aN . (The
specific choice T = 2L is convenient for illustration but not necessary
for the following argument.)

2. In order to eventually determine the four physical bare-quark masses
and the lattice spacing, we compute five quantities, e.g. the four di-
mensionless ratios

R1(aN ;m) =
amπ+

amΩ
(aN ;m) ,

R2(aN ;m) =
amK0

amΩ
(aN ;m) ,

R3(aN ;m) =
amDs

amΩ
(aN ;m) ,

R4(aN ;m) =
amK+ − aMK0

amΩ
(aN ;m) , (4)

as well as a dimensionful quantity, e.g. the mass of the Ω baryon,
computed in lattice units, from which the lattice spacing will be de-
termined after extrapolation to the infinite volume limit (see below),

R0(aN ;m) =
amΩ(aN ;m)

mphys
Ω

, (5)

where mphys
Ω = 1.672GeV is the physical value of the mass of the Ω

baryon. For illustration, we are considering the masses of QCD+QED
stable pseudoscalar mesons in the numerators of the dimensionless
ratios (4) and using mphys

Ω to determine the lattice spacing but, of
course, other quantities can be used instead. In Eqs. (4)–(5) we have
used aN instead of L to highlight that the infinite-volume limit should
be taken at fixed lattice spacing (see Eq. (6) below).

3. Up to this point, the procedure is the natural generalisation of that
used in isosymmetric QCD simulations, as described in Section 2.1.
The difference here is the presence of FV effects which behave as inverse
powers of L. We, therefore, envisage extrapolating the ratios Ri to the
infinite-volume limit

Ri(m) ≡ lim
N→∞

Ri(aN ;m) , i = 0, 1, 2, 3, 4 . (6)
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4. For a given discretisation and choice of the strong coupling constant
gs, the physical bare-quark masses, mphys, are defined by requiring
that the four ratios R1,2,3,4 take their physical values

Ri

(
mphys(gs)

)
= Rphys

i , i = 1, 2, 3, 4 . (7)

In practice, of course, this will require some extrapolations of results
obtained at different values of the bare-quark masses.

5. The lattice spacing a at this value of the coupling gs is now de-
fined to be

a = R0

(
mphys(gs)

)
. (8)

Note that with such a procedure the bare parameters and the lattice
spacing a do not depend on the lattice volume.

6. At first order in isospin breaking, i.e. O(αem,md−mu), the renormal-
isation of the lepton masses is performed perturbatively by requiring
that the on-shell masses correspond to the physical ones.

2.3. Defining observables in QCD

As mentioned above, once strong isospin-breaking effects and electro-
magnetism are included, then it is only the full QCD+QED theory which
is unambiguous. If in this context, we wish to define separately what we
mean by QCD and what we mean by electromagnetic corrections, then we
have to introduce a prescription. One possibility, an example of what we call
hadronic schemes, is to determine the masses in QCD by following the same
procedure as for the full theory described in Section 2.2, i.e. using the ratios
R0–R4 in Eqs. (4) and (5). This is one possible definition of QCD using a
hadronic scheme. (By hadronic schemes we mean ones which are defined in
terms of experimentally measurable hadronic quantities. This is in contrast
to possible schemes such as the GRS scheme which is defined in terms of
quark and gluon Green functions renormalised at a chosen scale in the MS
renormalisation scheme [20].) We denote the lattice spacing obtained in this
way by a0 to distinguish it from a = a0 + δa, the spacing in the full theory

a0 =
〈a0MΩ〉QCD

Mphys
Ω

and a =
〈aMΩ〉full

Mphys
Ω

≡ a0(1 + δa) . (9)

When we add electromagnetism to QCD as defined above, the hadron
masses used in the calibration, i.e. those in Eqs. (4) and (5), will change
away from their physical values (indeed the shift will be logarithmically
ultra-violet divergent). To cancel this shift, we introduce mass counterterms
for the quark masses, which then have to be included in all correlation
functions.



182 C.T. Sachrajda

To illustrate the procedure imagine that we wish to calculate an observ-
able O of mass dimension 1, for example the mass of a hadron which has not
been used in the calibration. The generalisation to other cases is straight-
forward and presented in Ref. [18]. At a fixed value of the strong coupling,
which we choose to be the same in QCD and in QCD+QED, we denote
the best estimate of the observable O, which is the one obtained in the full
theory, by Ophys, and that obtained in QCD as defined above by OQCD

Ophys ≡ 〈aO〉
full

a
and OQCD ≡ 〈a0O〉QCD

a0
. (10)

We define the difference of the two as being due to QED effects, δOQED ≡
Ophys −OQCD. There are 3 contributions to δOQED:

1. The first contribution comes from the diagrams which contain the ex-
plicit exchange of virtual photons.

2. The second contribution comes from the fact that the bare-quark
masses appearing in QCD and the full theory are different. The cor-
responding quark-mass counterterms must, therefore, be inserted into
the correlation functions used to determine Ophys. We stress that the
need to include quark-mass counterterms is generic and arises from
the requirement that the conditions being used to determine the quark
masses must be satisfied both in the full theory and in QCD (for the
hadronic scheme being used for illustration, we impose that the con-
ditions in Eq. (7) are satisfied in both theories).

3. Finally, we must account for the difference in the lattice spacings δa =
a− a0 in the full theory and QCD.

Combining these contributions we arrive at

Ophys = OQCD +
〈a0 δO〉QCD

a0
− δa

a2
0

〈a0O〉QCD , (11)

where we have combined the contributions to the correlation functions from
the exchange of virtual photons and from the insertion of the mass coun-
terterms into 〈a0δO〉QCD. The first term on the right-hand side is one that
can be calculated within QCD alone. It has a well-defined continuum limit
as does the sum of all the terms in Eq. (11). This term allows us to define
what is the difference between QCD (defined as above) and the full theory
in the hadronic scheme: δOQED = Ophys − OQCD. An important feature of
the RM123 approach is that the O(αem) terms are computed explicitly and
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so we do not have to take the difference between numerical calculations per-
formed in the full theory and in QCD. Each of the terms on the right-hand
side of Eq. (11) is calculated directly.

We have devoted a considerable discussion to the definition of the isospin-
breaking effects due to electromagnetism, δOQED. Having done this, the
subsequent definition of the strong isospin-breaking effects is straightfor-
ward. To do this, however, we need to define the isosymmetric theory by
imposing appropriate conditions to determine the bare-quark masses and the
lattice spacing. A convenient possibility is to use the procedure sketched in
Section 2.1. The strong isospin-breaking correction δOSIB to the observable
O can now be defined by

δOSIB = OQCD −OISO , (12)

where OISO =
〈aISO0 O〉ISO

aISO0
is the value of the observable obtained in isosym-

metric QCD. With these definitions, we have the natural relation Ophys =
OISO + δOQED + δOSIB. We underline, however, that δOSIB depends on the
quantities used for calibration, both in 4-flavour QCD and in isosymmetric
QCD.

3. Infrared divergences

In Section 1 I simply stated that infrared divergences are absent in the
evaluation of electromagnetic corrections to the spectrum, while they are
present in the decay amplitudes. To illustrate the absence of infrared di-
vergences in the spectrum consider the diagrams in Figs. 1 (a) and (b). In
the diagrams the solid line represents an elementary charged scalar meson
of mass m. These diagrams contribute to the electromagnetic mass shift.
The contribution from diagram (a) is proportional to the integral

Ia = i

∫
d4k

(2π)4

(2p− k)2

[k2 + iε][(p− k)2 −m2 + iε]
, (13)

evaluated at p2 = m2. At small k, the integrand behaves as 1/k3 and
so the four-dimensional integral is infrared convergent. The integrand of
diagram (b) is 1/k2 and is therefore also infrared convergent.

The diagram of Fig. 1 (c) is an example of a particle decaying into two
elementary charged scalar particles of masses m1 and m2. Now the corre-
sponding integral is

Ic = i

∫
d4k

(2π)4

(2p1 − k) · (2p2 + k)

[k2 + iε][(p1 − k)2 −m2
1 + iε][(p2 + k)2 −m2

2 + iε]
, (14)

so that at small k, the integrand behaves as 1/k4 and the four dimensional
integral is infrared divergent.
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p p− k p

k

(a)

p p

k

(b)

p1
p1−k

p2

k

p2+k

p

(c)

Fig. 1. Examples of diagrams contributing to electromagnetic corrections to the
mass ((a) and (b)) and to a decay amplitude ((c)).

The treatment of infrared divergences in evaluating decay widths or
scattering cross sections was first understood by Bloch and Nordsieck in
1937 [13]. Diagrams with virtual photons must be combined with those
corresponding to the emission of real photons; in this way, the infrared di-
vergences cancel. In intermediate stages of perturbative calculations, an
infrared regulator, such as a small photon mass mγ , is introduced and the
divergences manifest themselves as factors of log(m2/m2

γ), where m is a
finite-mass scale. In lattice computations the volume is finite, V = L3, and
the volume itself acts as a regulator with factors of log(mL). In Section 5,
I present our framework for the evaluation of the widths for leptonic decays
of pseudoscalar mesons P , P → `ν̄`(γ), fully consistent, of course, with the
Bloch–Nordsieck mechanism for the cancelation of infrared divergences. Be-
fore that, however, we discuss the central issue of finite-volume corrections.

4. Finite-volume corrections

Lattice computations are necessarily performed in finite volumes, V =L3

say, which implies that the momenta of the photon and other particles are
discrete. Integrals, such as those in Eqs. (13) and (14) are replaced by
momentum sums. With periodic boundary conditions for the photon, we
repeat Eq. (1) writing ∫

d3k

(2π)3
f
(
~k
)
→
∑
~k 6=~0

f
(
~k
)
, (15)

where the sum is over ~k = (2π/L)~n and ~n is a vector of integers. The
powerful tool for evaluating the relationship between finite-volume sums
and infinite-volume integrals is the Poisson summation formula which can
be written in the form of∑

~k= 2π
L
~n

f
(
~k
)

=

∫
d3k

(2π)3
f
(
~k
)

+
∑
~m 6=~0

∫
d3k

(2π)3
f
(
~k
)

ei
~k·~mL . (16)
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If the function f has no singularities, then the oscillating exponential in the
second term on the right-hand side of Eq. (16) suppresses the integrals for
large L and the finite-volume sum is equal to the infinite-volume integral
up to terms which are exponentially suppressed in the volume. On the
other hand, if f contains singularities, which must be regulated, then the
oscillating behaviour of the exponential factors is overcome by the abrupt
behaviour at the singularity and the finite-volume effects may decrease only
as inverse powers of L.

For integrals such as those in Eqs. (13) and (14), the integrands are
singular at k = 0. In the absence of other singularities, a practical rule
summarising the relation between the power of the finite-volume corrections
and the leading singularity of the integrand at k = 0 is the scaling law
derived in [16]

ξ′ =
∫

dk0

2π

 1

L3

∑
~k 6=0

−
∫

d3k

(2π)3

 1

(k2)n/2
= O

(
1

L4−n

)
, (17)

where the 1/(k2)n/2 simply represents the leading behaviour as k → 0. Thus
for example, the integrand in Ia in Eq. (13) is proportional to 1/k3 at small k,
i.e. n = 3, so that the leading finite-volume correction is of O(1/(mL)). The
integrand in Ic in Eq. (14), on the other hand, behaves as 1/k4 at small k
corresponding to infrared divergent terms containing factors of log(mL).

Although the discussion above was presented for structureless elementary
particles, it contains a number of important points which are valid also for
composite particles. At small momenta, the photon couples to the charge of
the particle, independently of its internal structure. Thus, we would expect
that the leading finite-volume corrections are universal and this is indeed
the case. Studies of the possible higher-order couplings of the photon, such
as those to the electric dipole moment of the mesons, reveal that the next-to-
leading order finite-volume effects are also universal for the spectrum [4, 6]
(see Section 4.1) and leptonic decay amplitudes [16] (see Section 5).

The Minkowski-space integral Ic in Eq. (14) contains an imaginary part,
corresponding to a cut through the two internal propagators. This leads to
additional singularities from those at k = 0 which must be treated separately.
Such cuts are absent in the calculation of the spectrum and leptonic decay
rates, where there is a single particle in the final state to which the photon
can couple. They are present, however, in the study of semileptonic decays
and we comment on this in Section 6.

We postpone further discussion of the finite-volume corrections to lep-
tonic decay rates until Section 5, but now discuss the corrections to the
spectrum.
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4.1. Leading finite-volume corrections to hadron masses

When calculating the electromagnetic corrections to the mass of
hadron H, the finite-volume corrections decrease only as powers of 1/L,
starting at O(1/(mHL)), and not exponentially as is the case for many
physical quantities in QCD. As mentioned above, with QEDL the situa-
tion is made somewhat easier in that the leading two terms, i.e. those of
O(1/(mHL)) and O(1/(mHL)2) are independent of the structure of the
hadron. Thus, if the FV corrections of the order of O(e2/(mHL)3) can be
neglected then the extrapolation to the infinite-volume limit can be avoided
by making use of the formula [4, 6] (similar formulae also exist for other
finite-volume formulations of the theory [9])

amH(L)

amH
= 1− καem e

2
H

{
1

2LmH
+

1

L2m2
H

}
, (18)

where eH is the charge of the hadronH,mH(L) andmH are the masses of the
hadron in the finite and infinite volume respectively and κ = 2.837297 (1).
Equation (18) can be used to determine the infinite-volume mass of the
hadronH from the value measured on the finite volume L3, up to corrections
of the order of O(e2/(mHL)3). Even if one wishes to study the behaviour
with L by performing simulations at different volumes, the subtraction of
the universal O(e2/(mHL)) and O(e2/(mHL)2) terms using Eq. (18) is a
useful starting point; the residual leading behaviour of hadronic masses is
then of O(e2/(mHL)3). For reviews of isospin-breaking contributions to
the spectrum and discussions of the different approaches used to perform
QCD+QED computations of the spectrum see, for example, Refs. [21–23].

5. Leptonic decays

In this section, we briefly review the framework which we have developed
and implemented in the series of papers [15–18]. In the absence of electro-
magnetic corrections, the width for the decay of a pseudoscar meson P into
a charged lepton ` and its neutrino, P → `ν̄`, is given by

Γ (P → `ν̄`) =
G2

F|VCKM|2f2
P

8π
mPm

2
`

(
1−

m2
`

m2
P

)2

, (19)

where GF is the Fermi constant, VCKM is the CKM matrix element corre-
sponding to the flavours of the valence quarks of P , and fP is the decay
constant given by the matrix element of the corresponding axial current.
For example, for the decay of a kaon, VCKM = Vus and fK is given by

〈0|ūγµγ5s|K−(pK)〉 = ifKp
µ
K , (20)
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so that all hadronic effects are contained in the single number fK , or more
generally fP . There are a very large number of lattice computations of the
fP at the percent or sub-percent level [1].

If one wishes to include the electromagnetic corrections to the width and
hence to access the CKM matrix element with greater precision, one needs
to include contributions from the amplitude with a real photon in the final
state

Γ (∆Eγ) = Γ0 + Γ1 (∆Eγ) , (21)

where the subscripts 0 and 1 indicate the number of photons in the final state
and ∆Eγ is the maximum detected energy of the emitted real photon (in
the meson rest-frame). The calculations are performed up to O(αem). Both
Γ0 and Γ1 are individually infrared divergent, but the divergences cancel in
the sum. In Section 5.2, we describe how one might handle the infrared
divergences and their cancelation in lattice computations. Before this, we
introduce the effective Hamiltonian for leptonic and semileptonic decays.

5.1. The effective Hamiltonian

For illustration, consider the Fermi Hamiltonian for the leptonic decay
K− → µ−ν̄µ; this is given by HF = GF√

2
Vus

[
ūγρ(1− γ5)s

] [
µ̄γρ(1− γ5)νµ

]
,

whereGF is the Fermi constant and is generally obtained from muon β-decay.
Since we aim to calculate the O(αem) corrections to leptonic decay rates, we
need to ensure that the definition and determination of GF is consistent with
our procedure at this order. We use the formula for the muon lifetime τµ
[24, 25]

1

τµ
=
G2

Fm
5
µ

192π3

(
1− 8m2

e

m2
µ

) [
1 +

αem

2π

(
25

4
− π2

)
+O

(
α2

em

)]
(22)

from which, together with the measured value of τµ, one deduces the value
GF = 1.16632(2)×10−5. Many EW corrections are absorbed into the defini-
tion of GF; the explicit O(αem) corrections on the right-hand side of Eq. (22)
come from the diagrams in Fig. 2. These diagrams are evaluated in the W -
regularisation in which the photon propagator is modified by [26]

1

k2
→ 1

k2
− 1

k2 −M2
W

=
M2
W

M2
W − k2

1

k2
. (23)

Many of the EW corrections which are absorbed in GF are common to
leptonic and semileptonic decays which leads to a factor in the amplitude of
(1 + (αem/π) log(MZ/MW )) [27, 28] and the effective Hamiltonian for the
leptonic or semi-leptonic decay of a K− meson is
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Heff =
GF√

2
Vus

(
1 +

α

π
log

MZ

MW

)
OW1 (24)

where OW1 = (ūγµ(1− γ5)s)(¯̀γµ (1− γ5)ν`) renormalised in the W -regular-
isation scheme. Its matrix elements are finite, but depend on MW .

µ e

ν̄e

νµ

µ e

ν̄e

νµ

µ e

ν̄e

νµ

Fig. 2. Diagrams contributing at O(αem) to the right-hand side of Eq. (22).

In lattice computations, we evaluate the matrix elements of operators
in the bare theory defined by a chosen lattice discretisation of QCD with
the lattice spacing a as the ultraviolet cut-off. In order to obtain matrix
elements of OW1 we, therefore, have to perform the renormalisation into the
W -regularisation scheme. If the lattice theory breaks chiral symmetry, then
OW1 is a linear combination of the lattice operator OL

1 and four other lattice
four-fermion operators which transform under different chiral representa-
tions

OW1 =

5∑
i=1

Z1iO
L
i ,

where at one-loop order, only Z11 is divergent (proportional to log[amW ]).
Since in current simulations a−1 � MW , it is not feasible to perform the
renormalisation fully non-perturbatively (even with step-scaling) and we em-
ploy a combination of non-perturbative renormalisation and perturbative
running and matching. For a recent report on the current status of the
renormalisation of lattice operators into the W -regularisation scheme, see
Ref. [29].

5.2. Infrared divergences in lattice computations
of radiative corrections to leptonic decays

In practice, it is convenient to rewrite Eq. (21) in the form of

Γ (∆Eγ) = lim
L→∞

[
Γ0(L)− Γ pt

0 (L)
]

+ lim
mγ→0

[
Γ pt

0 (mγ) + Γ pt
1 (mγ ,∆Eγ)

]
+Γ SD

1 (∆Eγ) + Γ INT
1 (∆Eγ) . (25)

The superscript pt indicates that Γ pt
0,1 are calculated perturbatively in the

point-like approximation. We have written Γ1 = Γ pt
1 + Γ SD

1 + Γ INT
1 , where
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the superscripts SD and INT refer, respectively, to the Structure Depen-
dent contribution and to that from the Interference between the structure-
dependent and point-like contributions to the amplitude. These terms are
given in terms of the vector and axial-vector form factors in the decomposi-
tion of the non-local matrix element

Hαr
W (k, ~p ) = εrµ(k)

∫
d4y eik·y T 〈0| jαW (0)jµem(y)|P (~p )〉

= εrµ(k)

{
H1

[
k2gµα − kµkα

]
+H2

[(
p · k − k2

)
kµ − k2(p− k)µ

]
(p− k)α]]

−i FV
mP

εµαγβkγpβ +
FA
mP

[(
p · k − k2

)
gµα − (p− k)µkα

]
+fP

[
gµα +

(2p− k)µ(p− k)α

2p · k − k2

]}
. (26)

In Eq. (26), εrµ is the polarisation vector of the photon with polarisation
state r, jµem is the electromagnetic current to which the photon couples and
jαW is the hadronic component of the weak operator. For decays into a real
photon, for which k2 = 0 and ε · k = 0, only the decay constant fP and the
structure-dependent vector and axial form factors FV(xγ) and FA(xγ) are
needed to specify the amplitude, where xγ = 2p · k/mP . The final term on
the right-hand side of Eq. (26) is the point-like (or inner bremsstrahlung)
contribution.

We now discuss each of the terms on the right-hand side of Eq. (25).

1. Γ0(L) is the contribution to the width which includes all the finite-
volume modes of the photon’s momentum except for ~k = 0 and, there-
fore, depends on the structure of the meson and must be computed
non-perturbatively. At small photon momenta, for which the photon
couples to the charge of the meson, Γ0(L)→ Γ pt

0 (L), and the infrared
divergences cancel in the difference Γ0(L)− Γ pt

0 (L). While in our cal-
culations we use the volume as the infrared regulator, Γ0(L)− Γ pt

0 (L)
is independent of the regulator.

2. The second term on the right-hand side of Eq. (25)

lim
mγ→0

[
Γ pt

0 (mγ) + Γ pt
1 (mγ ,∆Eγ)

]
is purely perturbative and can be calculated directly in infinite volume.
Each of the two terms are infrared divergent, so a regulator, such as a
photon mass mγ , has to be introduced. The divergences cancel in the
sum of the two terms and the result is independent of the regulator.
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3. The infrared divergence in Γ1 comes from the point-like coupling of the
photon and so the term on the second line of Eq. (25), Γ SD

1 (∆Eγ) +
Γ INT

1 (∆Eγ), is infrared convergent. It can be computed directly in in-
finite volume requiring knowledge of the structure-dependent form fac-
tors, FA(xγ) and FV(xγ), and of the meson decay constant fP [30, 31].

Originally, we had proposed to perform the calculations with a cut-off
∆Eγ which was sufficiently small for structure-dependent effects to be neg-
ligible, but with ∆Eγ large enough to allow for experimental measurements
of Γ (∆Eγ) to be possible (20MeV or so). While this is practicable for the
decays of pions and kaons, particularly into muons for which the rate for
large Eγ is suppressed [15], this is not the case for the decays of heavy
mesons. More recently, we have demonstrated that the structure-dependent
contributions to Γ1 can be calculated [30, 32], thus extending the framework
to the decays of heavy mesons.

5.3. Finite-volume corrections to leptonic decay rates

We reported in Section 4.1 that the leading and next-to-leading finite-
volume effects in the calculation of electromagnetic corrections to the spec-
trum are of O(1/(mHL)) and O(1/(mHL)2) with coefficients which are uni-
versal, i.e. independent of the structure of the hadron H, see Eq. (18). For
leptonic decays of a pseudoscalar meson P , P → `ν`, we organise the calcu-
lation as in Eq. (25) and have found that Γ pt

0 (L) takes the form of

Γ pt
0 (L) = C0(r`) + C̃0(r`) log (mPL) +

C1(r`)

mPL
+ . . . , (27)

where r` = m`/mP and m` is the mass of the final-state charged lepton [16].
The exhibited L-dependent terms are universal, i.e. independent of the
structure of the meson, and in Ref. [16] we have calculated the coefficients
C0, C̃0 and C1. The leading structure-dependent FV effects in Γ0(L) −
Γ pt

0 (L) are therefore of O(1/(mPL)2). If necessary, these can be determined
by extrapolating results obtained on different volumes (see, for example,
Fig. 3).

5.4. Numerical results

In order to demonstrate that the framework presented above is practi-
cable, we briefly present some numerical results for the Kµ2 and πµ2 decays
[17, 18] obtained using gauge ensembles generated by the European Twisted
Mass Collaboration (ETMC) with Nf = 2 + 1 + 1 dynamical quarks [33, 34]
in the quenched QED approximation in which the charges of the sea quarks
are set to 0. In Ref. [17] we started by calculating the electromagnetic and
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strong isospin-breaking corrections to the ratio of Kµ2 and πµ2 decay rates.
This ratio is less sensitive to various sources of uncertainty than the isospin-
breaking corrections to πµ2 and Kµ2 decay rates separately. In Ref. [18],
we provided a more complete description of the calculation and did evalu-
ate the electromagnetic and strong isospin-breaking corrections to the decay
processes πµ2 and Kµ2 separately. Since the corresponding experimental
rates are fully inclusive in the energy of the final-state photon, structure-
dependent contributions to the real photon emission should be included,
however, the Chiral Perturbation Theory (ChPT) predictions of Ref. [35]
indicate that these structure-dependent contributions are negligible for both
kaon and pion decays into muons, an expectation explicitly verified in a re-
cent lattice computation [32], where the structure dependent contributions
to Γ1 were shown to be negligible. The same is not true to the same extent
for decays into final-state electrons (see Ref. [15]) and so we focus here on
decays into muons.

For a detailed presentation of our study of isospin-breaking contributions
to Kµ2 and πµ2 decays, including many important technical issues, please
see Ref. [18]. Here, we focus on two general points: (i) a check that the
leading finite-volume corrections are of O(1/(mPL)2) (P = K or π) and
(ii) the phenomenological implications of our calculations and, in particular,
the determination of the CKM matrix element Vus.

For the leptonic decay P → `ν̄`(γ), we choose to define the isospin-
breaking correction to the rate, δRP , by

Γ (P → `ν̄`(γ)) =
G2

F

8π
|Vq1q2 |2m2

`mP

(
1−

m2
`

m2
P

)(
f

(0)
P

)2
[1 + δRP ] , (28)

where q1,2 are the valence quarks of the meson P , mP is its mass and f (0)
P

is its decay constant obtained within isosymmetric QCD using

〈0|q̄2γ0γ5q1|P
(
~0
)
〉 ≡ f (0)

P m
(0)
P , (29)

where the initial-state meson P is at rest. Here, m(0)
P is the mass of P in

QCD. As discussed above, f (0)
P is prescription-dependent. In order to be able

to exploit existing ETMC correlation functions (which, for example, do not
include correlation functions for the Ω− baryon), in the isosymmetric theory
we have adopted a “FLAG Scheme” [1] taking m(0)

π = 134.98 MeV, m(0)
K =

494.2(3) MeV, and f (0)
π = 130.41 MeV (as well as mD+

s
= 1969.0(1.4) MeV).

Having used f (0)
π as part of the calibration means that we sacrifice the pos-

sibility of determining Vud. Such a scheme turns out to be numerically
equivalent within the uncertainties (although theoretically different) to the
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GRS scheme [20] used in the chiral perturbation theory study [36]. The
GRS scheme is defined by imposing values for the renormalised strong cou-
pling and masses in the MS scheme at a scale of 2GeV. The numerical near
equivalence of the two schemes is convenient for comparison of the lattice
and ChPT results.

In Fig. 3, we show the results for δRK and δRπ obtained at four different
values of the volume at the same value of the lattice spacing. The data
correspond to meson masses mπ ' 320 MeV and mK ' 580 MeV. The
expectation is that after the subtraction of the universal terms, the results
should be largely linear in 1/L2, and the data is nicely consistent with this.
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Fig. 3. Volume dependence of δRπ and δRK for a pion of mass 320MeV and a kaon
of mass 580MeV. The data come from computations on 4 different volumes at the
same value of the lattice spacing a and are consistent with the expectation that
the leading behaviour should be linear in 1/L2 [18].

Extrapolating our lattice results to physical quark masses and to the
continuum and infinite-volume limits we found

δRphys
π = +0.0159(20) and δRphys

K = +0.0032(11) . (30)

Our results in Eq. (30) can be compared with the ChPT predictions δRphys
π =

0.0176(21) and δRphys
K = 0.0064(24) obtained in Ref. [36] and adopted by

the PDG [37, 38]. The difference is within one standard deviation for δRphys
π

and a little larger for δRphys
K .

Since, as mentioned above, we have used f (0)
π in the determination of the

lattice spacing, we cannot use our calculation to obtain Vud. For the kaon,
on the other hand, adopting the best lattice determination of the QCD
kaon decay constant, f (0)

K = 156.11(21) MeV [1, 39–41] (after subtracting
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the strong isospin-breaking effects) and combining it with the experimental
result Γ (K− → µ−ν̄µ[γ]) = 5.134(11) × 107 s−1 from the PDG [37], we
obtain the very precise result

|Vus| = 0.22561(26)exp (33)th = 0.22561(42) . (31)

Following Ref. [17], we can also determine |Vus| from the ratio of the
pion and kaon experimental decay rates which yields

|Vus|
|Vud|

f
(0)
K

f
(0)
π

= 0.27677 (29)exp (20)th = 0.27677 (35) . (32)

Using the best Nf = 2 + 1 + 1 lattice determination of the ratio of the QCD
kaon and pion decay constants, f (0)

K /f
(0)
π = 1.1966 (13) [1, 39–41], we find

|Vus|
|Vud|

= 0.23130 (24)exp (30)th = 0.23130 (38) . (33)

Taking the updated value |Vud| = 0.97420 (21) from super-allowed nuclear
beta decays [42], Eq. (33) yields the following value for the CKM element
|Vus|:

|Vus| = 0.22533 (24)exp (30)th = 0.22533(38) , (34)
which agrees with our result (31) within the errors. Note that our result
(34) agrees with the latest estimate |Vus| = 0.2252(5), recently updated by
the PDG [19].

Taking the values |Vub| = 0.00413(49) [37] and |Vud| = 0.97420(21) [42],
our result in Eq. (34) implies that the unitarity of the first-row of the CKM
matrix is confirmed to better than the per-mille level

|Vud|2 + |Vus|2 + |Vub|2 = 0.99986 (44) . (35)

6. Semileptonic decays

In this section, we discuss our ongoing work to develop a framework for
the evaluation in a finite Euclidean volume of electromagnetic contributions
to amplitudes for semileptonic decay amplitudes P1 → P2`ν̄`(γ), where P1

and P2 are pseudoscalar mesons and ` is a charged lepton. A discussion of the
issues has previously been presented in Ref. [43]. Throughout this section,
we illustrate the issues by considering K`3 decays, e.g. K0 → π−`+ν` decays
where ` = µ or e, but the discussion is general to all semileptonic decays. In
QCD without electromagnetic corrections, the amplitudes are given by two
invariant form factors, which for K`3 decays, for example, can be defined by

〈π−(pπ) |s̄γµu |K0(pK) 〉 = f+

(
q2
)

(pK + pπ)µ+f−
(
q2
)

(pK − pπ)µ , (36)

where the momentum transfer q = pK − pπ.
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When computing electromagnetic corrections, for which contributions to
the rate with a photon in the final state must be included, an appropriate
measurable quantity to consider is

d2Γ

dq2 dsπ`
,

where q2 = (pK − pπ)2 and sπ` = (pπ + p`)
2. Much of the discussion in

Section 5 applies also to semileptonic decays, however, there is an additional
significant complication which arises due to the presence of two particles in
the final state to which the photon can couple. This leads to additional
non-exponential finite-volume effects, analogous to those due to QCD re-
scattering effects in non-leptonic K → ππ decays which are corrected by the
Lellouch–Lüscher factor [44, 45]. Consider, for example, the contribution
to the K`3 decay amplitude illustrated in the diagram of Fig. 4 (a). In
Minkowski space, this diagram contains an imaginary part corresponding to
the cut over the internal pion and lepton propagators. In order to relate the
physical amplitude to the results from a computation on a finite Euclidean
lattice, we imagine first performing the k0 integration. The imaginary part
arises because the internal energy with on-shell particles can be smaller than
the external energy, i.e. ∆E > 0 where

∆E ≡ ωπ + ω` −
(
ω′π + ω′`

)
, (37)

ωπ =
√
~p 2
π +m2

π, ω` =
√
~p 2
` +m2

` , ω
′
π =

√
~p ′ 2π +m2

π and ω′` =
√
~p ′ 2` +m2

` .
The presence of the imaginary part manifests itself by a term with a factor of

1
∆E+iε in the integrand of the integration over ~k. The singularity at ∆E = 0
is present in the region of integration and the corresponding δ-function leads
to an imaginary contribution.

pℓ ℓ+

pπ π−

p′ℓ

p′π

pνℓ

νℓ

K0
pK

k

(a)

k

K−

ℓ−

ν̄ℓ

(b)

Fig. 4. (a) Diagram at O(αem) contributing to the semileptonic decay K → π`ν`;
(b) diagram contributing to the leptonic decay of a kaon.

The presence of points with ∆E ≥ 0 in the integration region in Mink-
owski space presents a number of significant difficulties in the evaluation of
finite-volume Euclidean correlation functions.
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1. In lattice computations of the diagram in Fig. 4 (a), the weak Hamilto-
nian and interpolating operators which create the kaon and annihilate
the pion and lepton are inserted at fixed times. The correlation func-
tions contain terms which are proportional to e−(ω′π+ω′`) t, where t is the
time interval between the insertions of the weak Hamiltonian and the
interpolating operators which annihilate the pion and lepton. Energy
is therefore not conserved and the correlation functions are, as usual,
dominated by the intermediate states of lowest energy. If ∆E > 0, the
dominant component will provide matrix elements different from those
contributing to the physical decay amplitude which we wish to eval-
uate. These exponentially dominant, but unphysical, contributions
have, therefore, to be subtracted in order to obtain the physical result.
This is the issue raised in 1990 by Maiani and Testa in the context of
QCD final-state interactions [46].

2. Assuming that after the subtraction the matrix element with the cor-
rect energy can be extracted, the most significant theoretical issue is to
determine the non-exponential finite-volume corrections. The finite-
volume matrix element contains terms which take the schematic form

1

L3

∑
~k

′ f
(
~k
)

∆E
, (38)

where the prime on the summation indicates that in QEDL , the term
with ~k = 0 is omitted and that possible other terms corresponding to
∆E = 0 are also not included. The theoretical challenge is to relate the
sum in Eq. (38) to the real part of the corresponding infinite-volume
integral

Re

∫
d3k

(2π)3

f
(
~k
)

∆E + iε
(39)

with controlled finite-volume corrections. We are currently working
towards this goal; here, we simply note that the necessary subtractions
require knowledge of the pion’s electromagnetic form factor and the
K → π transition form factors in QCD, both for a range of momentum
transfers.

3. We note that the 1/∆E singularity and related difficulties are also
present in the semileptonic decays of charged mesons, e.g. K+ →
π0`+ν` decays in which the final-state pion is neutral. The photon
still couples to the neutral pion, e.g. to its dipole moment, so that
diagrams such as that in Fig. 4 (a) are also present in this case and it
remains to be seen whether the numerical effects are less severe.
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4. Finite-volume effects which decrease only as inverse powers of L, do not
only arise because of the presence of the 1/∆E factor discussed above.
Indeed, we have seen in Section 5 that such effects are also present
in the computation of electromagnetic corrections to the spectrum
[4, 47] and to leptonic decay amplitudes (see, for example, the dia-
gram in Fig. 4 (b)), where they arise due to terms in the summand
which diverge sufficiently as |~k| → 0 (see the scaling law in Eq. (17)).
However, the denominator of each such term in the summand only van-
ishes at the single point |~k| = 0 and we have developed the techniques
necessary to calculate the corresponding power-law finite-volume cor-
rections [16].

5. From the above discussion it follows that the computation of semilep-
tonic decay rates is considerably simpler at the edge of phase space,
(pπ + p`)

2 = (mπ + m`)
2, where the cuts leading to the imaginary

part of the amplitude are absent. In this case, the finite-volume ef-
fects which decrease only as inverse powers of L still occur because the
denominators of terms in the summand vanish, but now only at the
single point k ≡ |~k| = 0. This is a similar situation to the computation
of electromagnetic corrections to the spectrum [4, 47] and to leptonic
decay amplitudes (see, for example, the diagram in Fig. 4 (b)), and
we have the techniques to compute the universal finite-volume correc-
tions. In Section 5, we explained that the two leading FV corrections
to the spectrum and to leptonic decay amplitudes are universal, inde-
pendent of the structure of the mesons. In the case of leptonic decays,
they only require the knowledge of the decay constant fP computed
in QCD. For semileptonic decays, there is also a universality in the
leading two terms, but the coefficient of the 1/(mPL) corrections re-
quires knowledge of the derivative of the form factors, ∂f±(q2)/∂q2.
The reason for this can be understood as follows. The most singular
summand in the sum over ~k is proportional to 1/k3 and leads to the
infrared divergent terms proportional to log[mPL]. The terms pro-
portional to 1/k2, which lead to corrections of O(1/(mPL)), require
therefore the leading ~k-dependent term in the form-factors which is
proportional to the derivative.

In summary, the techniques developed to include electromagnetic cor-
rections to leptonic decays of pseudoscalar mesons can also be applied to
semileptonic decays. At the edge of phase-space, for example for K`3 decays
for sπ` ≡ (pπ + p`)

2 = (mπ + m`)
2, so that the only singular term in the

summand is at |~k| = 0, these techniques can be applied directly. The cance-
lation of infrared divergences occurs as for leptonic decays, the O(1/(mKL))
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finite-volume corrections are also “universal” but the coefficients depend on
the derivatives of the form-factors, ∂f±/∂q2, which are physical quantities,
computed in QCD. For sπ` > (mπ +m`)

2, the physical (Minkowski) ampli-
tude has an imaginary part which corresponds to a 1/∆E singularity and
poles away from |~k| = 0, requiring knowledge of the electromagnetic form-
factor of the pion and f± for a range of values of momentum transfer. We
are currently investigating the optimal way to implement the necessary sub-
tractions. For illustration, in Fig. 5, we exhibit the physical phase-space for
K0 → π−µ+ν̄µ decays and the point with sπ` = (mπ− +m`+)2.
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Fig. 5. The physical region for Kµ3 decays. The quantities sπµ and q2 are given in
GeV2. The black circle represents the point at the minimum value of sπµ .

7. Summary and conclusions

The remarkable recent improvement in the precision of lattice QCD re-
sults for many quantities relevant for flavour physics has necessitated the
inclusion of isospin-breaking effects, and electromagnetic corrections in par-
ticular, into the computations. The presence of a zero-mass photon leads
to significant long-distance issues, including infrared divergences and finite-
volume effects which decrease only as inverse powers of L and not expo-
nentially. In this paper, I have reviewed the issues and the status of the
framework which, together with colleagues from Rome, we have been devel-
oping and implementing in leptonic and semileptonic decays of pseudoscalar
mesons.

As explained in Section 5, for leptonic decays P → `ν̄`(γ), the framework
is complete and has been successfully implemented for πµ2 and Kµ2 decays.
We are able to handle the cancelation of infrared divergences and the sub-
traction of the universal finite-volume corrections which are of O(1/(mPL)).
We have demonstrated that after this subtraction, the expectation that
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the leading residual (structure-dependent) finite-volume corrections are of
O(1/(mPL)2) is satisfied numerically. We have been able to determine Vus
with excellent precision (see Eqs. (31) and (34)) and to verify the unitar-
ity of the first row of the CKM matrix to better than per-mille accuracy
(see Eq. (35)). The most recent development has been the calculation of
the radiative decays P → `ν̄`γ for light and charmed mesons, and a phe-
nomenological comparison of our results with those from experimental mea-
surements [30, 32].

For semileptonic decays P1 → P2`ν̄`(γ), where P1 and P2 are pseu-
doscalar mesons, there are additional non-exponential finite-volume effects
associated with diagrams such as that in Fig. 4 (a) which in Minkowski space
contain an imaginary part. As explained in Section 6, the subtraction of
these additional finite-volume effects requires knowledge of the electromag-
netic form factor of the P2-meson and the weak P1 → P2 transition form
factors, both for a range of momentum transfer and studies of how to best
perform this subtraction are currently in progress. This difficulty is generic
and relevant for most decay processes; leptonic decays are a rare exception.
The techniques developed for leptonic decays can however, be directly ap-
plied to semileptonic decays at the edge of phase space where the invariant
mass of the P2 - ` pair is mP2 +m`.

Personal Note

It has been an honour and pleasure to have been invited to make this
contribution to the volume celebrating 60 years of the Kraków School in The-
oretical Physics. I have very fond recollections, both scientific and personal,
of the four previous times I have lectured at the school: 1977 (Asymptotic
Freedom and Deep Inelastic Electroproduction), 1991 (Heavy Quark Physics
from Lattice QCD), 2006 (Lattice Flavour Dynamics) and 2014 (Flavour
Physics).

I warmly congratulate all the organisers, from Professor Andrzej Białas
who organised the first School through to Professor Michał Praszałowicz who
has organised this 60th one, for creating and maintaining such an important
and high-quality forum for the presentation and discussion of the latest
developments in theoretical physics. On this anniversary, I wish the School
the traditional Polish Sto Lat (a hundred years).

I warmly thank my collaborators from the Universities of Rome La
Sapienza, Tor Vergata and Roma Tre with whom the ideas discussed in this
paper were developed and implemented. I was partially supported by an
Emeritus Fellowship from the Leverhulme Trust and by STFC (UK) grants
ST/P000711/1 and ST/T000775/1.
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