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We report on recent progress concerning the theoretical description of
event-by-event fluctuations in heavy-ion collisions. Specifically, we discuss
a new Cooper–Frye particlization routine — the subensemble sampler —
which is designed to incorporate effects of global conservation laws, thermal
smearing and resonance decays on fluctuation measurements in various ra-
pidity acceptances. First applications of the method to heavy-ion collisions
at the LHC energies are presented, and further necessary steps to analyze
fluctuations from the RHIC beam energy scan are outlined.
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1. Introduction

Fluctuations of conserved charges represent one of the central observables
for probing the phase structure of QCD. The corresponding measurements
are in the focus of the experimental search for the QCD critical point at
RHIC beam energy scan [1, 2], being expected to exhibit strong critical
behavior in its vicinity [3, 4]. Fluctuations of conserved charges are also
studied in heavy-ion experiments at the highest RHIC and LHC energies
with the goal to identify experimentally the remnants of the chiral criticality
at vanishing chemical potentials [5, 6].

Theoretical calculations of fluctuations are typically performed in the
grand-canonical ensemble (GCE), where cumulants of the conserved charge
distribution correspond to the susceptibilities — the derivatives of the grand
potential with respect to the chemical potentials. At zero chemical poten-
tials, the QCD susceptibilities are accessible from first principles via lattice
QCD simulations [7, 8], whereas at finite densities they can be treated with
various effective QCD approaches [9, 10]. An important question is how to
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relate the theoretical calculations with experimental measurements. In the
GCE, the system can exchange charges with a reservoir, thus the charges are
conserved only on average. In heavy-ion experiments, on the other hand, the
charges are globally conserved. It is thus essential to establish how these sus-
ceptibilities are related to experimental measurements [11–15]. A subensem-
ble acceptance method (SAM) has been recently developed [16, 17], which
allows to correct the grand-canonical cumulants to account for global con-
servation of (multiple) conserved charges, and for any equation of state, such
as that of QCD.

Another important issue is the difference between coordinate space, where
the vast majority of theories operate, and the momentum space, where exper-
imental measurements are performed. Experimental cuts in the momentum
space may correspond to cuts in the coordinate space if there is a strong
correlation between the momenta and coordinates of the particles. This is
the situation, for instance, in the case of longitudinal Bjorken flow, approxi-
mately realized at the highest collision energies, where one can associate the
kinematic rapidity Y of a particle with its space-time rapidity ηs at freeze-
out. Even in this case, however, a smearing of the order of ∆Yth ∼ 1 [18]
due to random thermal motion is present. An additional smearing is gener-
ated by the decays of resonances after freeze-out. It is thus crucial to control
these effects well for any reliable physics interpretation of experimental mea-
surements.

Recently, a generalized Cooper–Frye particlization routine has been pro-
posed [19], which allows one to incorporate the aforementioned effects. The
routine, called subensemble sampler, samples the equation of state of an
interacting hadron resonance gas that can, for instance, be matched to re-
produce the lattice QCD susceptibilities at freeze-out. Here, we discuss the
main ideas behind this sampler, the first results obtained for event-by-event
fluctuations at the LHC, and the necessary steps for future applications to
the measurements in the RHIC beam energy scan programme.

2. Subensemble sampler

Let us consider the particlization stage of heavy-ion collisions at the end
of hydrodynamic evolution. This stage is characterized by a hypersurface
σ(x), where x is the space-time coordinate. The QCD fluid is transformed
into an expanding gas of hadrons and resonances. The momentum distribu-
tions of all the hadron species at particlization are determined by the famous
Cooper–Frye formula, which for hadron species i reads

ωp
dNi

d3p
=

∫
σ(x)

dσµ(x) pµ fi[u
µ(x)pµ;T (x), µi(x)] . (1)
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Here, T (x), µi(x), uµ(x), and dσµ(x) correspond to the space-time distribu-
tions of the temperature, chemical potential, flow velocity, and the hyper-
surface normal elements, respectively. fj is the distribution function in the
local rest frame. We take it in the following form:

fi[u
µpµ;T (x), µi(x)] =

di λi(x)

(2π)3
exp

[
µi(x)− uµ(x)pµ

T (x)

]
. (2)

Here, we neglected the viscous corrections. The factor λj(x) (= 1 in the ideal
gas limit) incorporates possible deviations of the hadronic equation of state
from the ideal gas limit. The presence of this factor is one new element of our
procedure relative to the standard routine. In general, λj can be a function
of both the space-time coordinate x and the momentum p. Presently, we
restrict our considerations to the case where λj depends only on x.

The Cooper–Frye formula (1) defines the momentum distributions of all
the hadrons emerging from the hydrodynamic evolution. This equation,
however, carries no information regarding the fluctuations in the event-by-
event distribution of the various hadron numbers. Usually, the yields are
sampled in each fluid element from a Poisson distribution. Since the Pois-
son distribution is additive, this means that the yields of all hadron species in
the full space follow the Poisson distribution as well. Most hydro-simulations
use this type of sampling [20–23]. Such a multiplicity distribution, however,
is valid only for an ideal Maxwell–Boltzmann hadron resonance gas (HRG)
in the grand-canonical ensemble. The key new feature of our subensemble
sampler is the ability to simultaneously incorporate (i) exact global con-
servation of charges and (ii) interactions between hadrons in the sampling
procedure.

Let us consider for simplicity the case of a single conserved charge B.
For the more general case of multiple conserved charges see [19]. In the
subensemble sampler we partition the particlization hypersurface σ into
contiguous subvolumes. Let the index j enumerate the subvolumes. The
subvolume Vj then reads Vj =

∫
x∈σj dσµ(x)uµ(x). We further assume that

each subvolume is (i) characterized by constant values of the thermal pa-
rameters T and µB, and (ii) is sufficiently large compared to the correlation
length ξ, i.e. Vj � ξ3. The latter assumption implies that interactions
between particles from different subvolumes can be neglected. The total
partition function can then be written as

Zce
tot ∼

∏
j

∑
Bj

eµB,jBj Z iHRG(Tj , Vj , Bj) × δ

(
Btot −

∑
k

Bk

)
. (3)
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Here, Z iHRG(Tj , Vj , Bj) is the canonical partition function of an interacting
HRG (iHRG). Equation (3) represents a sum over all possible valuesBj of the
baryon number in each of the subvolumes. The Kronecker delta ensures that
the total baryon number is globally conserved. One can rewrite Eq. (3) in
terms of the sum over all possible hadron numbers in each of the subvolumes

P
({
N̂j

})
=
∏
j

P iHRG
(
N̂j ;Tj , Vj ,µj

)
× δ

(
Btot −

∑
k

Bk

)
, (4)

Bk =

f∑
i=1

biNk,i . (5)

Here, N̂j = {Nj,i}fi=1 are hadron numbers in subvolume j and bi is the
baryon charge of hadron species i. P iHRG is the probability distribution
function of hadron numbers in an interacting HRG. Each term in Eq. (4)
defines the joint probability distribution of all hadrons numbers in all the
subvolumes.

The subensemble sampler routine thus consists of the following steps:

1. The hadron multiplicities in all the subvolumes are sampled from
Eq. (4). This is achieved by first sampling the grand-canonical multi-
plicities independently for each subvolume and then applying a rejec-
tion sampling step to ensure the exact global conservation of baryon
number. It is assumed that the procedure to sample the grand-canon-
ical multiplicity distribution of an interacting HRG model under con-
sideration is known.

2. The momenta for each of the hadrons is sampled via the Cooper–Frye
formula (1) applied independently for each hadron from each of the
subvolumes.

3. Fluctuations at the LHC energies

The subensemble sampler has first been applied to event-by-event fluc-
tuations in heavy-ion collisions at the LHC energies in Ref. [19]. Here, we
review the main results that were obtained.

Specifically, we discuss 0–5% central Pb–Pb collisions at
√
sNN =2.76TeV.

As discussed in Ref. [19], the particlization hypersurface in these collisions
can be approximated by a longitudinally boost-invariant blast-wave surface
covering 9.6 units of space-time rapidity ηs. The thermal parameters are
uniform and correspond to the freeze-out temperature of T = 160 MeV and
vanishing chemical potentials. With this choice, the model accurately repro-
duces the bulk observables in a range |Y | . 2 around midrapidity as well as
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the total charged multiplicity in full space. The latter feature is important
to properly account for the effects of global conservation. The blast-wave
model parameters are taken from Ref. [24] ensuring that the pT distribution
of protons at midrapidity is reproduced accurately. As we are mainly inter-
ested in the rapidity dependence of various cumulants, the partition of the
particlization hypersurface is performed along the longitudinal space-time
rapidity axis. The axis is split into 96 slices (subvolumes), each covering 0.1
units of rapidity.

The choice of interacting HRG model is constrained by requiring it to
agree with lattice QCD data on cumulants of conserved charges that are
being studied. For that purpose, we take an HRG model with repulsive
excluded volume interactions in the baryonic sector, first formulated in
Ref. [25]. As shown in [26], with the excluded volume parameter value of
b = 1 fm3, this model describes quantitatively both the net-baryon suscepti-
bilities as well as the Fourier coefficients of net-baryon density at imaginary
µB. The details of the grand-canonical multiplicity sampling within this
model are described in Refs. [19, 27]. The entire sampling procedure is im-
plemented within an extended version of the open-source package Thermal-
FIST [28].

First we focus on the rapidity dependence of net-baryon cumulants. We
analyze the following three ratios:

κ2
[
B − B̄

]〈
B + B̄

〉 ,
κ4
[
B − B̄

]
κ2
[
B − B̄

] , κ6
[
B − B̄

]
κ2
[
B − B̄

] .
These ratios are calculated as a function of rapidity by sampling 1010

events. The Monte Carlo results naturally incorporate the effect of baryon
number conservation on these ratios. These effects can be corrected analyt-
ically in the framework of the sub-ensemble acceptance method (SAM) of
Ref. [16]. The SAM expresses these cumulant ratios in terms of the corre-
sponding ratios without baryon number conservation effect as follows:

κ2
[
B − B̄

]〈
B + B̄

〉 = (1− α)
κ̃2
[
B − B̄

]〈
B + B̄

〉 , (6)

κ4
[
B − B̄

]
κ2
[
B − B̄

] = (1− 3αβ)
κ̃4
[
B − B̄

]
κ̃2
[
B − B̄

] − 3αβ

(
κ̃3
[
B − B̄

]
κ̃2
[
B − B̄

])2

, (7)

κ6
[
B − B̄

]
κ2
[
B − B̄

] = [1− 5αβ(1− αβ)]
κ̃6
[
B − B̄

]
κ̃2
[
B − B̄

]
− 10α(1− 2α)2β

(
κ̃4
[
B − B̄

]
κ̃2
[
B − B̄

])2

. (8)
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Here, β≡1−α and the tilde corresponds to net-baryon cumulants without the
effect of baryon number conservation. The parameter α corresponds to the
fraction of the total volume covered by the acceptance. For a pT-integrated
acceptance in a range ∆Yacc around midrapidity in 2.76 TeV Pb–Pb colli-
sions, one can approximate this parameter as α = ∆Yacc/9.6 [19]. Note that
expression (6) is valid at LHC energies only, where all odd order cumulants
of the net baryon number vanish.

Figure 1 depicts the ∆Yacc dependence of the three cumulant ratios where
the effect of global baryon conservation was accounted for in accordance with
Eqs. (6)–(8). The black symbols depict the Monte Carlo results without the
effect of momentum smearing, i.e. where the kinematic rapidity of each par-
ticle coincides with its space-time rapidity. In this case, the SAM-corrected
Monte Carlo results are independent of ∆Yacc and agree with the corre-
sponding ratios of the grand-canonical susceptibilities, shown in Fig. 1 by
dash-dotted horizontal lines.

Calculations that incorporate the effect of thermal smearing and reso-
nance decays are depicted by the full red circles and open red triangles. The
effect of resonance decays is found to be largely negligible. The thermal
smearing “poissonizes” the cumulants in small acceptances, where the cumu-
lant ratios approach unity in the limit ∆Yacc → 0. The deviations of the
cumulant ratios from the grand-canonical limit are significant for ∆Yacc . 1,
whereas at larger acceptances they are subleading. The magnitude of the
effect is similar for all three cumulant ratios considered. We find that the
Monte Carlo results can be accurately described analytically by assuming
that the rapidity y of each particle smeared around its space-time rapidity ηs
by a Gaussian with a width σy = 0.3, the corresponding results are depicted
by the solid red lines in Fig. 1.

The presented results illustrate that a reliable interpretation of the ex-
perimental data will require control over the effects of baryon conservation
and thermal smearing. In particular, as follows from Fig. 1, a measurement
of a negative hyperkurtosis κ6[B−B̄]/κ2[B−B̄], corrected for global baryon
conservation via the SAM, would indicate a negative grand-canonical hyper-
kurtosis χB6 /χB2 , which could be interpreted as an experimental signature of
the chiral QCD crossover transition. It should also be noted that the ob-
tained results do not incorporate the effect of volume fluctuations [29]. This
effect should be minimized via an appropriate centrality selection and/or
corrected for e.g. using the formalism of Ref. [30].

The experiments do not measure baryons directly but instead use pro-
tons as a proxy. It is natural to expect net protons to carry at least some
information about net-baryon fluctuations. In fact, as shown by Kitazawa
and Asakawa [31, 32], under the assumption of isospin randomization at
the late stages of heavy-ion collisions, one can reconstruct the cumulants of
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net-baryon distribution from the measured factorial moments of proton and
antiproton distributions. The subensemble sampler can be used to elaborate
on the similarities and differences between net-proton and baryon number
cumulants.
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Fig. 1. (Color online) Rapidity acceptance dependence of cumulant ratios
κ̃B2 /κ̃

B,Skellam
2 (top), κ̃B4 /κ̃B2 (middle), and κ̃B6 /κ̃

B
2 (bottom) of net-baryon distri-

bution in 0–5% central Pb–Pb collisions at the LHC in the EV-HRG model and
corrected for global baryon conservation via the SAM. The symbols depict the
results of the Monte Carlo event generator, the full black squares correspond to
neglecting the momentum smearing, the open red triangles include the thermal
smearing at particlization, and the full red circles incorporate the smearing due to
both the thermal motion and resonance decays. The solid red lines correspond to
a Gaussian rapidity smearing model.
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Figure 2 depicts the rapidity acceptance dependence of net-baryon
(squares) and net-proton (circles and diamonds) kurtosis κ4/κ2 resulting
from Monte Carlo sampling. The results shown include the effect of global
baryon conservation and reveal large differences between net-proton and net-
baryon cumulant ratios. Net-proton cumulant ratios are considerably closer
to the Skellam baseline of unity. This can be understood in the following
way. By taking only a subset of baryons — the protons — one dilutes the
total signal due to baryon correlations. This leads to a smaller deviation of
cumulants from Poisson statistics — the limiting case of vanishing correla-
tions.
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Fig. 2. (Color online) Rapidity acceptance dependence of net-baryon (red squares)
and net-proton (blue circles) kurtosis κ4/κ2 in 0–5% central Pb–Pb collisions at
the LHC. The open blue diamonds correspond to net-proton cumulants evalu-
ated from net-baryon cumulants using a binomial folding method of Kitazawa and
Asakawa [31, 32]. The analytical predictions of the SAM framework with and with-
out Gaussian rapidity smearing are depicted by solid red and dashed black lines,
respectively. The thin gray line corresponds to the value in the grand-canonical
ensemble consistent with lattice QCD.

The results shown in Fig. 2 clearly indicate that direct comparisons be-
tween the grand-canonical cumulants and the measured cumulants of net-
baryon or net-proton distribution are unjustified. Let us for example take
fluctuations within one unit of rapidity. The predicted kurtosis of net-baryon
number in ∆Yacc = 1, affected by thermal smearing and global baryon con-
servation, results in a value of κB4 /κB2 ' 0.56. The value of net-proton kur-
tosis is κp4/κ

p
2 ' 0.83 6= κB4 /κ

B
2 , considerably different from the net-baryon

kurtosis. Both the net-proton and net-baryon kurtosis differ notably from
the grand-canonical net-baryon kurtosis of χB4 /χB2 ' 0.67.
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We do observe that the method of Kitazawa and Asakawa [31, 32] can
accurately relate net-baryon and proton cumulants between each other. This
confirms that cumulants of net-baryon distribution can be recovered from
factorial moments of net-proton distribution via a binomial unfolding with
probability q, where q is the ratio between the mean numbers of protons and
baryons. Only the experiment can perform this unfolding model indepen-
dently because the factorial moments of baryon (proton) distribution cannot
be computed in lattice QCD.

The results we have discussed so far correspond to fluctuations of baryons
and protons in acceptances integrated over all transverse momenta. This has
not yet been achieved experimentally. Instead, the ALICE Collaboration
has published measurements of the variance of the net-proton distribution
in Pb–Pb collisions at

√
sNN = 2.76 TeV in an acceptance in a 3-momentum

range 0.6 < p < 1.5 GeV/c and various longitudinal pseudorapidity ranges
up to |η| < 0.8 [33]. The left panel of Fig. 3 depicts the comparison between
the data (symbols) and the EV-HRG model with exact baryon number con-
servation (black line) for the ratio κ2/ 〈p+ p̄〉 of net protons in the ALICE
acceptance. In addition to the B-canonical calculation, we also depict the
grand-canonical (dashed blue line) and the full BQS-canonical (dash-dotted
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Fig. 3. (Color online) Pseudorapidity acceptance dependence of net proton
κ2/ 〈p+ p̄ 〉 (left panel) and the D-measure of net-charge fluctuations (right panel)
in 0–5% central Pb–Pb collisions at the LHC. In the left panel, the dashed blue line,
the solid black line, and the dash-dotted magenta line correspond to calculations
within the grand-canonical, B-canonical, and BQS-canonical ensembles, respec-
tively. In the right panel, the dashed blue line and the black lines correspond to
calculations within the grand-canonical, BQS-canonical ensembles, respectively.
The BQS-canonical calculations are corrected for charge conservation via addi-
tive (dash-dotted line) or multiplicative corrections (solid line) corrections. The
experimental data of the ALICE Collaboration [33, 34] are shown by the symbols
with error bars.
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magenta line) calculations. This allows to elaborate on the influence of vari-
ous effects on net-proton fluctuations. The results indicate that baryon num-
ber conservation has the strongest effect on net proton κ2/ 〈p+ p̄〉, followed
by an additional suppression due to excluded volume interactions and exact
conservation of electric charge. When baryon conservation is included, the
data are described within errors. The uncertainties in the presently available
measurements, as well as the limited momentum coverage, do not currently
allow to distinguish any additional effects that go beyond baryon number
conservation. Fluctuation measurements of other identified hadron yields,
such as Λs, kaons and pions, have also been performed by ALICE, and the
final results are being finalized (see e.g. [35] for the preliminary results). The
influence of the various conservation laws, as well as resonance decays, on
these observables have been discussed in Ref. [19].

Finally, we conclude the discussion of the experimental measurements at
the LHC with the variance of net-charge distribution. In Ref. [34], the AL-
ICE Collaboration has reported measurements of the so-called D-measure,
which at the LHC is defined as

D = 4

〈
δQ2

〉
〈Nch〉

. (9)

The measurements were performed in a broad transverse momentum range
0.2 < pT < 5.0 GeV/c and varied pseudorapidity ranges. As this quan-
tity is affected by net-charge conservation, the measurements were corrected
using either an additive correction (D′) of Ref. [36] or a multiplicative cor-
rection (D′′) advocated in [11], the difference between the two contributing
to the systematic uncertainty.

The right panel of Fig. 3 depicts the pseudorapidity acceptance depen-
dence of the D-measure resulting from Monte Carlo simulations using the
subensemble sampler. The grand-canonical calculation is depicted by the
dashed blue line. For the BQS-canonical calculation, the two charge con-
servation corrections have been performed in the same way as it was done
in the experiment, the results for D′ and D′′ are shown by the black lines.
It is seen that the BQS-canonical D′′-measure is closer to the true grand-
canonical D-measure than D′, indicating that the multiplicative correction
is more accurate. The model, however, fails to describe the experimental
data, which lies considerably below the model predictions. The measure-
ment, therefore, points to the suppression of net-charge fluctuations in cen-
tral heavy-ion collisions at the LHC relative to the hadronic scenario. One
tantalizing possibility here is the QGP formation, where a suppression of
the D-measure is expected [37]. We hope that future measurements and
analyses will shed more light on whether the observation of a suppressed
D-measure constitutes a QGP signature.
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4. Summary and outlook

In summary, we have presented the subensemble sampler which is a new
Cooper–Frye particlization routine appropriate for event-by-event fluctua-
tions in heavy-ion collisions. It is designed to sample the multiplicity distri-
bution of an arbitrary interacting hadron resonance gas, incorporating exact
global conservation of the QCD conserved charges. This allows to quantify
the effects of global conservation, thermal smearing, and resonance decays
on various cumulants measured in experiment, being an important step to-
ward direct comparison between lattice QCD susceptibilities and heavy-ion
measurements. The method has been applied to provide insight into the
behavior of various cumulants in heavy-ion collisions at the LHC. This has
been achieved by approximating the particlization stage by a boost-invariant
blast-wave model with a cut-off at large rapidities and using a hadron reso-
nance gas model with excluded volume interactions in the baryon sector to
reproduce the lattice QCD susceptibilities.

More data are available at lower collision energies, for instance from the
RHIC beam energy scan program. In particular, the higher-order cumulants
of net-proton distribution have attracted a lot of attention, being potentially
sensitive to the presence of the QCD critical point. The measurements by
the STAR Collaboration [2, 38] show significant deviations of the cumulants
from the uncorrelated proton production baseline. With the possible excep-
tion of the lowest energy,

√
sNN = 7.7 GeV, the results are qualitatively

consistent with expectations from baryon number conservation. However, it
should be pointed out that presently no quantitative analysis of net-proton
cumulants has been achieved in the hydrodynamic description of heavy-ion
collisions in that energy range. The particlization routine that we discussed
is one way to achieve such a description. Of course, at lower collision ener-
gies, one can no longer assume the longitudinally boost-invariant blast-wave
model to provide an appropriate quantitative description of the particlization
surface. On the other hand, recently three-dimensional hydro-simulations of
Au–Au collision at BES energies have become available, and they provide
a reasonable description of the available rapidity distributions of various
hadrons [39]. The subensemble sampler can be combined with the numer-
ical particlization hypersurfaces emerging from such hydro-simulations to
provide a quantitative analysis of net-proton cumulants at the RHIC BES.
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