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I review the essential features of Quarkyonic Matter. I argue how such
features can be included in a field theoretical description. This field theory
has nucleons and quarks because close to the Fermi surface, the degrees of
freedom of Quarkyonic Matter are nucleons and inside the Fermi sea, they
are quarks. Ghost nucleon fields are needed to avoid over-counting degrees
of freedom, and to allow the physical nucleon degrees of freedom not to
extend within the quark Fermi sea.
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1. Introduction: Review of basic features of Quarkyonic Matter

Quarkyonic Matter [1] was proposed based on an interesting observation
about Quantum Chromodynamics in the large-Nc limit. [2, 3]. The effect
of fermion loops is reduced by 1/Nc in this limit. This observation has
a direct consequence concerning de-confinement in finite baryon number
density systems.

Suppose we have a Fermi gas at finite density corresponding to a quark
chemical potential µQ and temperature T . For a two-flavor system, µQ =
µu+µd, where µu,d are the up and down quark chemical potentials (or Fermi
energies). The baryon number chemical potential is µB = µp + µn = NcµQ,
where µp,n are the proton and neutron chemical potentials. This equation
follows because a baryon is made of Nc quarks. The large-Nc limit is taken
by fixing

g2’t Hooft = g2Nc (1)

as Nc →∞.
∗ Prepared for the 60th anniversary of the Cracow School of Theoretical Physics.
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Let us consider the long-range force between two heavy test quarks for a
finite temperature and finite density system. The quark loop contribution to
this potential is shown in Fig. 1. The gluon loops contribute with a factor
of g2Nc and remain in the large-Nc limit. On the other hand, the quark
loops are proportional to g2, one power of Nc less because there are only
Nc quarks compared to N2

c gluon degrees of freedom. Therefore, as far as
the potential is concerned, it is only controlled by gluon loops, and these
gluon loops do not at all feel the effect of finite density. Therefore, the
system remains confined independent of density, until the temperature is
raised to the deconfinement temperature. The deconfinement temperature
is density-independent!

Fig. 1. The quark loop contribution to the static potential between two heavy test
quarks.

This of course breaks down when the chemical potential in the quark
loop is sufficiently large. The quark loop is contributing to the Debye mass,
and so, when this mass is as large as ΛQCD, then screening effects occur and
there is deconfinement

m2
Debye ∼ g2’t Hooft

µ2Q
Nc
∼ Λ2

QCD . (2)

Only when the quark chemical potential becomes µQ �
√
NcΛQCD does

deconfinement occur. Due to the factor of
√
Nc, this takes place at densities

that are large compared to a typical QCD scale Λ3
QCD. Within the Fermi

sea, final states are Pauli blocked so that interactions are only allowed when
quarks change places in the Fermi sea. The interactions typically occur
when the momentum scale is large. As it is the case in jet physics, when the
momentum scale of interactions is much larger than ΛQCD, such interactions
may be described perturbatively, in spite of the fact that the media remains
confined. This means that the degrees of freedom deep inside the Fermi sea
are those of an almost free gas of quarks. The quarks form a Fermi sphere.
On the other hand, interactions are permitted for small angles and small
momentum transfer for particles near the Fermi surface. Such Fermi surface
states are not blocked from scattering by filled energy levels. Here, infrared
confining effects are important, and quarks are confined into nucleons and
mesons.



Lecture on Quarkyonic Effective Field Theory 231

It is important to observe that in the Quarkyonic picture, confinement
effects take place at the top of the Fermi sea, not the bottom. This is be-
cause long-range interactions, which are sensitive to the confinement scale,
take place near the Fermi surface. Another way to see this is to observe that
the nucleons themselves do not saturate all possible fermionic states, but a
filled quark Fermi sea does. The lowest energy states should be completely
filled, and this corresponds to the zero temperature Fermi sea of quarks.
Near the Fermi surface, one can make a continuous transition to low occu-
pation density, and this is what the confined degrees of freedom at the Fermi
surface do.

In the large-Nc limit, the probability to see a nucleon is of the order of
e−β(M−µB) which is of the order of e−Nc in the large-Nc limit since both the
baryon mass and the baryon chemical potential are of the order of NcΛQCD,
so long as the temperature is not too large, T ≤ ΛQCD, and the baryon
chemical potentials are less than the nucleon mass M . There are three
separate possible phases of matter. When the temperature and density are
low, matter is confined and there are no baryons. When the baryon chemical
potential exceeds the nucleon mass, but the temperature remains low, matter
is confined and there are nucleons present. This matter is Quarkyonic. Of
course at high temperatures, or at super high density and low temperature,
matter may become deconfined. A cartoon of such possible phases is shown
in Fig. 2.
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Fig. 2. (Color online) A cartoon for the various phases of high density matter. The
gray/red dashed line is the deconfinement temperature at zero density. The three
phases shown are deconfined matter, hadronic matter and Quarkyonic Matter.

Quarkyonic Matter may be envisioned as a Fermi sea of quarks sur-
rounded by a Fermi shell of nucleons. This is illustrated in Fig. 3. This
picture is reinforced by recent computations that demonstrate how this shell
structure may dynamically emerge [4, 5]. Below, we describe the origin of
this picture.
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µquark >> ⇤QCD

⇠ ⇤QCD

Fig. 3. The quark Fermi sea surrounded by a shell of nucleonic matter.

We will first argue that at low densities, it is preferable to have a free gas
of nucleons compared to a free gas of quarks. We will work in the additive
quark parton model where quark masses mQ = mN/Nc. This means that
quark Fermi momenta and nucleon Fermi momenta are related since

kFQ =
√
µ2Q −M2

Q =

√
N2

c µ
2
Q −N2

cM
2
Q

Nc
=

√
µ2B −M2

N

Nc
=
kFN
Nc

. (3)

For a free Fermi gas, the baryon density of a gas of an isospin degenerate
nucleons and a gas of quarks is

ρN =
2

3π2
(
kFN
)3
,

ρQ =
2

3π2
(
kFQ
)3
. (4)

We see that if there was equilibrium between quarks, and that quarks and
nucleons were free gases, then the quark contribution would be suppressed
by 1/N3

c , so the pressure for a gas at fixed baryon number chemical potential
would be enormously higher than that for the corresponding gas of quarks.

We can ask the question a different way. Suppose we compare the energy
per nucleon of a free gas of quarks to that for a free gas of nucleons at equal
baryon number density. In this case, the chemical potentials of the quark and
nucleon gases that we compare would be different. Equality ρN = ρQ would
require that the Fermi momenta of nucleons in the gas of nucleons would be
equal to the Fermi momenta in the gas of quarks. On the other hand, the
energy of a baryon per unit baryon number of nuclear matter at low densities
is very close to MN , but for quarks, for equal baryon number density it is of
the order of Nc

√
(kFQ)2+M2

Q ∼Nc

√
(kFN )2+M2

Q ∼
√

(NckFN )2+M2
N >MN .

At nuclear matter densities, where kFN ∼ ΛQCD, at equal densities, the



Lecture on Quarkyonic Effective Field Theory 233

quark would be relativistic and the energy per particle very large. Therefore,
the nucleon gas is preferred. In such a description, the effect of confining
interactions would make a gas of free quarks have even higher energy per
baryon, so this conclusion is quite robust.

What happens as the density is increased? At larger baryon density,
the hard core nucleon interactions become important. These will temper
the increase in baryon density by increasing the number of nucleons. The
baryon density cannot exceed the density in hard nucleon cores. Of course,
the interaction strength is of the order of Nc for the cores, not infinite
strength for finite Nc. This strength is sufficient to shift the nucleon energy
by a value of the order of the nucleon mass. If the nucleon Fermi energy is
shifted by this amount, this would naively correspond to a very large shift
in the baryon density, because ρN ∼ (kFN )3 ∼M3

N ∼ N3
cΛ

3
QCD.

How can this be avoided? If the nucleons sit on a shell of decreasing
thickness when the nucleon Fermi energy of the nucleons increases, then the
density, which is the integral over the momenta of particles in the shell,
need not increase. A finite value of baryon density may be maintained
for the contribution from nucleons. The density of the nucleons should be
expected to saturate at the density of matter corresponding to the hard cores
of nucleons, which is of the order of ρhard cores ∼ Λ3

QCD. The increase in the
baryon number density comes from increasing the quark density. For quark
Fermi momentum kFq � ΛQCD, this increase associated with the quarks is
quite small. As the baryon density associated with quarks slowly increases,
the quark and nucleon Fermi energies rapidly rise until there is a quark
Fermi sea with a Fermi energy of the order of EF

Q ∼ ΛQCD, and the nucleons
become relativistic in the Fermi shell with EF

N ∼ NcΛQCD ∼ MN . This
rapid increase in the Fermi energies at a slowly varying density leads to a
hard equation of state with sound velocities of the order of one [4].

We will construct a description of Quarkyonic Matter that combines
both nucleonic and quark degrees of freedom using a field theory. Such a
field theoretical description of nucleons will be limited to those nucleons
with momentum close to the Fermi surface. Inside the Fermi sea of quarks,
nucleonic degrees of freedom will be Pauli blocked, because the nucleons and
states with nucleons are Pauli blocked. A nucleon cannot propagate when its
momentum is kN < Nckq, since the state of the nucleon is already occupied.

Of course, this argument of total blocking of the nucleon states only holds
when the system is at zero temperature. We also want a theory of Quarky-
onic Matter that is useful at finite temperature [6]. Such a description
must have pion degrees of freedom, and be capable of phenomenologically
including the effects of meson–nucleon exchanges. Massive vector mesons
are ultimately responsible for generating hard core repulsive nucleon inter-
actions. A good theory should be a theory of nucleons and mesons at low
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densities, and also be capable of describing quarks and gluons at high den-
sity and temperature. Quarkyonic Matter should be a possibility, although
one needs to verify dynamically that Quarkyonic Matter is the energetically
preferred form of matter.

The central purpose of this paper is to present a construction of such a
model, and is an expanded tutorial exposition of that presented in Ref. [7].
Our model properly resolves the duality between nucleonic and quark de-
scriptions. The nucleon can be thought of as a nucleonic state or as an
ensemble of quarks. This means that if quarks occupy states, the quarks
composing a nucleon cannot occupy the same states. In a field theoretical
model, we can have a field that corresponds to a nucleon, and a field that
corresponds to quarks, so long as it is constrained so that the quark fields
associated with these states do not overlap the same states in the nucleon
as are occupied by the quarks. This can be accomplished by an uncon-
strained nucleon field, an unconstrained quark field, and a negative metric
nucleon ghost field that fills the same states occupied by the quarks. The
only purpose of such ghost fields is to cancel away the degrees of freedom of
the unconstrained nucleon field composed of quark states that might occupy
states already occupied by quarks.

The presentation consists of a slightly expanded version of the results of
Ref. [7].

2. Ghost and removing un-physical states

We consider a theory at finite quark density so that there is a quark
chemical potential, µQ. As discussed in the previous section, we want to
ensure that nucleon states that have quarks as constituents do not overlap
filled states associated with quarks. Such quarks can block nucleons with
chemical potential less than µG ∼ NcµQ. The density of such states is

ρG =
1

1 + eβ(NCEQ−µG)
. (5)

When we consider the constituent quark model, then EN = NcEQ. A color
singlet state in the quark Fermi sea may be considered to be a nucleon, so
that the energy of this Nc quark state is also a nucleon energy. Therefore,

ρG =
1

1 + eβ(EN−µG)
. (6)

The density of states for an ideal gas of quarks is

ρQ =
1

1 + eβ(EQ−µQ)
. (7)
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The phase-space density of nucleons which are not overlapping with states
that are occupied is

ρNconst = ρn =
1

1 + eβ(EN−µN )
− 1

1 + eβ(EN−µG)
. (8)

This equation describes a shell of nucleons sitting above a Fermi sea of
quarks when the temperature is low. As the temperature increases, the shell
becomes more diffuse.

How can this shell distribution be implemented in a field theoretical
model? We have an unconstrained nucleon field with chemical potential µN
and mass MN , a ghost nucleon field with chemical potential µG ∼ NcµQ
and mass MN , and quark field with mass mQ = MN/Nc and chemical po-
tential µQ. The nucleon field will be denoted by N , the quark field will be Q
and the ghost field will be G. The ghost field will have the same Lorentz
structure as the nucleonic field. It will satisfy anti-periodic boundary condi-
tions in imaginary time, like the nucleons. It will however be a commuting
and not an anti-commuting field. In a path integral, it will be represented
by a c-number integration variable rather than a Grassman algebra variable.
The action for such a theory in Euclidean time is

SE =

β∫

0

dt

∫

V

d3x

{
N̄

(
1

i
γ · ∂ − iµNγ0 +MN

)
N

+Ḡ

(
1

i
γ · ∂ − iµGγ0 +MN

)
G

+Q̄

(
1

i
γ · ∂ − iγ0µQ +MQ

)
Q

}
. (9)

It is useful to define the propagator

S(µN ,M) =
1

1
i γ · ∂ − iµNγ0 +MN

. (10)

Now, if we integrate over a Grassman variable, the path integral for the
partition function will give

ZN = det−1S(µN ,MN ) , (11)

where the integration over the ghost c-number field yields

ZG = det S(µG,MN ) . (12)
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The formula for the grand potential is obtained from

Ω = g
1

βV
Tr {ln(S(µN ,MN )) +Nc ln(S(µQ,MQ))− ln(S(µG,MN ))} .

(13)
The factor of Nc for the quarks comes from the fact that there are Nc quark
fields. If our quarks and nucleons are isodoublets, the degeneracy factor is
g = 2. As expected, the ghost contribution to the action has the opposite
sign from that of the nucleons, and is present to precisely to cancel out the
contribution of modes of the nucleon where the quark states of the nucleon
are already occupied by the quark states. Since we have chosen the boundary
condition in Euclidean time to be precisely the same between the ghost fields
and the quark and nucleon fields, except for mass and chemical potential, the
determinant is the same. It is straightforward to evaluate these determinants
by standard methods of diagonalizing in momentum space, and performing
a contour integral representation for the Matsubara frequency sum. The
result is that the grand potential is

Ω = −gT
∫

d3p

(2π)3

{
ln
(

1 + e−β(EN (~p )−µ)
)
− ln

(
1 + e−β(EN (~p )−µG)

)

+Nc ln
(

1 + e−β(EQ(~p )−µQ)
)}

. (14)

Let us notice that the ghosts are present to subtract the contribution of the
pressure of the nucleons due to the Pauli blocking. Since the entropy and
number density follow by the ordinary thermodynamic relations term by
term in the expression above, except for an overall minus sign for the ghost
contribution, all of the expression for the pressure, energy density, entropy,
and number density are simply the nucleon and quark contributions minus
that of the ghost nucleons.

When interactions are included, one can explore various theories to see if
one can obtain a reasonable shell structure for Quarkyonic Matter. One can
compute the pressure and energy density as a function of quark, ghost, and
nucleon chemical potentials. The ghost chemical potential is determined in
terms of the quark number density. Extremizing the energy density with
respect to quark number density at fixed total baryon number density will
determine the chemical potentials. This gives an expression for the pressure
in terms of the net nucleon density and quark density, and the temperature.

3. Various effective theories of Quarkyonic Matter

We can now use our effective field theory to solve many different prob-
lems.
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3.1. Constructing an excluded-volume model at T → 0 limit

The excluded-volume model [5] can be derived from action (9). First,
one can check the shell-like distribution of nucleons in the ideal gas limit by
assuming µG = NcµQ. The grand potential (14) of the symmetric two-flavor
system can be written as follows:

Ω = −p = εn − µnnn − (µn − µG)nG + εQ − µQ̃nQ̃ , (15)

where Q̃ represents the quantity counted in a baryon number unit and the
relations µG = µQ̃ = NcµQ (nG = N3

c nQ̃), µn = µN , and nn = nN − nG are
understood. The energy densities are obtained as

εn = εN − εG

=
2

π2

(µ2N−m2
N)

1
2∫

(µ2G−m2
N)

1
2

dpp2
(
~p 2 +M2

N

) 1
2 , (16)

εQ =
2Nc

π2

(µ2Q−m2
Q)

1
2∫

0

dpp2
(
~p 2 +M2

Q

) 1
2 . (17)

To include the excluded-volume effect (n0 6= ∞), one should apply the en-
hanced chemical potential of the nucleon (µex

N ) and ghost (µex
G ) which satisfy

the following relations:

nex
n =

nn
1− nn

n0

=
nN − nG

1− nN−nG
n0

=
2

π2

√
(µex

N )
2−m2

N∫

√
(µex

G )
2−m2

N

dpp2 , (18)

nex
N =

nN
1− nn

n0

=
2

π2

√
(µex

N )
2−m2

N∫

0

dpp2 , (19)

nex
G =

nG
1− nn

n0

=
2

π2

√
(µex

G )
2−m2

N∫

0

dpp2 . (20)
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Then, the pressure can be written in terms of the quantities obtained in the
reduced system volume

p = −εn + µnnn + (µn − µG)nG − εQ + µQ̃nQ̃

= −εexn + µex
n n

ex
n + (µex

n − µex
G )nex

G − εQ + µQ̃nQ̃ , (21)

which is equivalent to the Fermi–Dirac statistics of van der Waals gas without
attractive contribution [8, 9]. Here the modified version of the constraint
µG = NcµQ is applied

kGF
ex

=
(

(µex
G )2 −m2

N

) 1
2

= Nck
Q
F = Nc

(
µ2Q −m2

Q

) 1
2 , (22)

which leads to nex
G = N3

c nQ̃. The energy densities are given by

εexn =
2

π2

√
(µex

N )
2−m2

N∫

√
(µex

G )
2−m2

N

dpp2
(
~p 2 +M2

N

) 1
2 , (23)

εQ =
2Nc

π2

√
µ2Q−m2

Q∫

0

dpp2
(
~p 2 +M2

Q

) 1
2 . (24)

From the trivial relations

∂εex

∂nex = µex =

(
1− n

n0

)
µ+

ε

n0
, (25)

εex =
ε

1− n
n0

, (26)

all the quantities for the total system (denoted without the superscript ‘ex’)
can be obtained from potential (14) expressed in terms of the quantities
calculated in the reduced system volume (denoted by the superscript ‘ex’)

µn =
∂ε

∂nn
=

µex
n(

1− nn
n0

) − εexn
n0

, (27)

µQ =
∂ε

∂nQ̃
= µQ̃ +N3

c

(
1− nn

n0

)(
µex
n − µQ̃

)
, (28)

where ε= εn + εQ. In a practical calculation, the quark chemical potential

(28) needs an additional cut-off factor N3
c → N3

c (3π
2

2 nQ̃)
1
3 /
√

(3π
2

2 nQ̃)
2
3 + Λ2
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to satisfy the physical baryon number conservation (nB = nn + nQ̃ with
nn, nQ̃ ≥ 0) [5]. Although action (9) leads to the grand potential Ω(T →
0, V, µ) = −pV , it is easier to work within the free energy F (T →
0, V, N) = ε = −p + µn since the equilibrium will be determined by an
additional constraint which requires the extremum of F (T → 0, V, N) = ε
at the fixed total baryon number density (nB = nn + nQ̃)

dε =
∂ε

∂nn
dnn +

∂ε

∂nQ̃
dnnQ̃

=

(
∂ε

∂nn
− ∂ε

∂nQ̃

)
dnn = 0 , (29)

where dnB = dnn + dnQ̃ = 0 is understood. In this step, the chemical
potentials are not free parameters but dependent on nn and nQ̃=nB−nn.
According to the shell-like distribution of the nucleons, µn does not de-
crease monotonically [5], which means that µnnn + µQ̃nQ̃ = µBnB (where
µn = µQ̃ = µB) does not correspond to the extremum of µnnn + µQ̃nQ̃
exactly whenever nQ̃ 6= 0. Therefore, once the low phase space is saturated
by the quasi-free quark sea (nQ̃ 6= 0), the Quarkyonic-like configuration de-
termined at the minimum of the free energy does not always correspond to
the extremum of pressure in variations of nQ̃.

3.2. Quarkyonic sigma model

The pion–nucleon or the quark–nucleon sigma models have played an
important role in QCD phenomenological studies of finite temperature and
density physics. Pion nucleon interactions provide a valid description when
the typical momentum exchange of pions is not too hard. We can have a
theory of ghost, quark, and pions interacting by introducing a scalar sigma
field and pion field as

MN = gN
(
φ+ iπγ5

)
,

MQ = gQ
(
φ+ iπγ5

)
. (30)

In the additive quark–nucleon model, gN = NcgQ. The ghost and nucleon
couplings to the pion field are identical, to guarantee the required cancella-
tions in the quark Fermi sea. It is also easy to generalize such considerations
for a Nambu–Jona-Lasinio model.

3.3. The nucleonic interactions

Nucleon interactions involve meson fields. The coupling of meson fields
to ghosts is the same as that to nucleons, since we want to preserve the
cancellation of ghost and nucleon states when there are filled quark states
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that exclude nucleons. The nucleons and ghosts will couple to N̄ΓiN+ḠΓiG,
where Γi represent the combination of Lorentz gamma and flavor matrices
coupling to the meson field denoted by i. One might replace massive meson
exchange interactions with contact terms when the density is not too high.

3.4. Quark interactions

Quark interactions may be introduced with varying degrees of sophis-
tication. One might simply introduce them through the QCD Lagrangian.
Perhaps one might introduce Wilson line interactions [10]. The interactions
with the nucleons are implemented in some phenomenological way since the
intrinsic interactions of quarks involve gluons, but the interactions among
nucleons involve meson exchange. Gluons are important at finite temper-
ature. Such a theory at low chemical potential interpolates to a theory
of quarks and gluons, where nucleon interactions no longer appear, and as
such can provide a proper interpolation to the high temperature quark–gluon
plasma.

4. Summary and conclusions

This theoretical framework, I believe, for Quarkyonic Matter is similar
to that of the Landau–Ginsburg theory for superconductivity. It provides
a rich base for extension to a variety of different types of models. Its main
virtue is that it provides a theoretically motivated interpolation between low
density nucleonic matter and high density quark–gluon matter.

Such a theory framework allows one to ask and provide insight about
many important issues. What is the nature of chiral symmetry restoration
for Quarkyonic Matter? Can one find a good matching to a theory of nu-
cleon interactions as the density is lowered? What is the phase diagram in
the µB, T plane and what role does Quarkyonic Matter play in this phase
diagram? What is the interplay between deconfinement and Quarkyonic
Matter? Can one match Quarkyonic Matter onto the lattice descriptions
of matter at low baryon density and finite temperature? How might one
include interactions of quarks with nucleons beyond the simple meson ex-
change picture?
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