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Muon abundance is required for the understanding of several funda-
mental questions regarding properties of the primordial Universe. In this
paper, we evaluate the production and decay rates of muons in the cosmic
plasma as a function of temperature. This allows us to determine when
exactly the muon abundance disappears. When the Universe cools below
the temperature kTdisappear ≈ 4.135 MeV, the muon decay rate overwhelms
production rates and muons vanish quasi-instantaneously from the Uni-
verse. Interestingly, we show that at Tdisappear, the muon number is nearly
equal to baryon abundance.
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1. Introduction

Our interest in strangeness flavor freeze-out in the early Universe re-
quires the understanding of the abundance of muons in the early Universe:
The specific question needing an answer is the temperature at which muons
remain in abundance (chemical) equilibrium established predominantly by
electromagnetic and weak interaction processes, allowing detailed-balance
back-reactions to influence strangeness abundance.

We recall that the strangeness decay often proceeds into muons, energy
thresholds permitting, as the charged kaons K± demonstrate with a 63%
branching into µ + ν̄µ. Should muons fall out of thermal abundance equi-
librium this would directly impact the detailed-balance back-reaction pro-
cesses. Another, indirect influence on strangeness in the early Universe arises
through the nearly exclusive decay of charged pions into µ + ν̄µ. Without
muon chemical abundance equilibrium, this back-reaction stops too, impact-
ing pions and thus all other hadronic particles in the Universe.
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Here it is important to remember that another relatively strong channel
for producing pions thermally in the Universe is the fusion process γ +
γ → π0 followed by a strong interaction charge exchange [1]. While pion
production via this chain of reactions assures thermal pion abundance down
to temperatures that could be numerically explored, the chemical abundance
equilibrium becomes ‘leaky’ when in some reactions the detailed balance is
broken. Detailed-balance reactions for pions and thus exact pion chemical
equilibrium require muons to remain in thermal abundance equilibrium.

Another reason to be interested in muon abundance is that these particles
could help in the model building of a Universe symmetric in baryon num-
ber, where baryons and antibaryons are separated into space-time domains.
Other exotic Universe models can be imagined in such situations including
strangelet formation. We do not discuss these possibilities here, focusing
instead exclusively on learning about muon abundance disappearance in the
early Universe. This is done here in preparation for the comprehensive report
on strangeness abundance [2].

To establish the relevance of the questions considered, we first explore
the different and relevant muon µ± production and disappearance rates in
the cosmic plasma, Section 2. In Section 3, we characterize the chemical
equilibrium abundance of muons in the early Universe, normalized by the
baryon abundance, considering the here relevant temperature domain 6 ≥
T ≥ 3 MeV. We employ in this consideration the conservation of baryon
number and entropy during the Universe evolution at temperatures below
kT < 10 MeV. After a summary of our results, we add in Appendix some
personal reminiscences about our long-standing connection to the Kraków
School of Theoretical Physics.

All natural constants and information about elementary particles and
the Universe used in this report were obtained from the «Particle Physics
Booklet» [3].

2. Production and decay of µ± in the early Universe

2.1. Elementary processes

In the early Universe in the cosmic plasma, muons of mass E = mµc
2 =

105.66 MeV can be produced by the interaction processes

γ + γ −→ µ+ + µ− , e+ + e− −→ µ+ + µ− , (1)
π− −→ µ− + ν̄µ , π+ −→ µ+ + νµ . (2)

The back-reaction for all the above processes is in detailed balance, provided
all particles shown on the right-hand side (RHS) exist in chemical abundance
equilibrium in the Universe.
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However, all produced muons can decay

µ− → νµ + e− + ν̄e , µ+ → ν̄µ + e+ + νe . (3)

We thus must establish the range of temperature in which production pro-
cesses exceed in speed the decay process: We recall the empty space (no
plasma) at rest life-time of pions τπ = 2.6033 × 10−8 s, and that of muons
τµ = 2.197× 10−6 s.

2.2. Reaction rates
2.2.1. In plasma decay rate

The temperature range of interest to this investigation is in the time era
of the Universe when mµc

2 � T . Thus, it is appropriate to study massive
particles, here muons (and pions), considering the Boltzmann limit of their
Fermi (and Bose) quantum distributions. The thermal decay rate per volume
and time in the Boltzmann limit is [4]

Rdecay =
g

2π2

(
T 3

τ

)(m
T

)2
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)
, (4)

where the particle degeneracy g, mass m, and lifespan τ are given.
This thermal decay rate accounts for the thermal Boltzmann limit den-

sity of particles in chemical abundance equilibrium and the effect of time
dilation present when particles are in thermal motion with respect to an ob-
server at rest in the local reference frame. The effects of Fermi-blocking or
Boson-stimulated emission have been neglected when taking the Boltzmann
limit.

2.2.2. In plasma production rate

The scattering angle averaged thermal reaction rate per volume for the
reaction aā→ bb̄ in the Boltzmann approximation is given by [5]
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where sth is the threshold energy for the reaction, σaā→bb̄ is the cross section
for the given reaction, and we introduce the factor 1/(1 + I) to avoid the
double counting of indistinguishable pairs of particles. We have I = 1 for
an identical pair and I = 0 for a distinguishable pair.
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The invariant matrix element (squared) for the reactions e+ + e− →
µ+ + µ− and γ + γ → µ+ + µ− are, respectively [4],

|Meē→µµ̄|2 = 32π2α2
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)2
+
(
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)2
+ 2m2

µs

s2
, mµ � me , (6)
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where s, t, u are the Mandelstam variables

s = (p1 + p2)2 = (p3 + p4)2 , t = (p3 − p1)2 = (p2 − p4)2 ,

u = (p3 − p2)2 = (p1 − p4)2 , s+ t+ u = 2m2 . (8)

The cross section required in Eq. (5) can be obtained by integrating the
matrix elements Eq. (6) and Eq. (7) over the Mandelstam variable t
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σγγ→µµ̄ =
π
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β =
√

1− 4m2
µ/s .

Inserting these previously known cross sections (for γγ, see Ref. [7], eē is in
textbooks) into Eq. (5), we obtain the two thermal production rates.

2.3. Muon disappearance temperature

In Fig. 1, we show relevant invariant thermal reaction rates per volume
and time as a function of temperature T . The gray/red and black/blue solid
lines represent the muon production eē → µµ̄ and γγ → µµ̄ respectively.
The light gray/purple solid line represents the summed total production
rate. The gray/green and black dashed lines are for the decay of µ± and
π±, respectively.



The Muon Abundance in the Primordial Universe 281

Fig. 1. (Color online) Thermal invariant reaction rates R per volume and time for
different reactions (see the box) as a function of temperature T ∈ {6, 3} MeV. The
photon and electron muon production rates are nearly equal.

As the temperature decreases in the expanding Universe, the initially
dominant production rates become smaller, faster, and cross the decay rates.
Muon abundance disappears as soon as the muon decay rate is faster than
the total production rate — we include the decay of the pion which produces
a muon to show that this channel of muon production does not contribute
significantly ever as it is always overwhelmed by the muon decay rate. The
difference in mass between these two particles in this temperature range
overwhelms the greater speed of pion decay.

Considering the slow speed of the Universe expansion, the muon disap-
pearance is sudden; the muon abundance thus disappears as soon as a decay
rate crosses the dominant production rate. Specifically, the muon decay rate
(dashed gray/green line) dominates the total muon production rate (light
gray/purple solid line) below Tdisappear ≈ 4.135 MeV.

3. The number density of µ±

We now aim to relate the muon abundance to baryon abundance. We
know in the present epoch (subscript t0) the baryon B to photon Nγ ratio

B

Nγ
=
nB
nγ

∣∣∣∣
t0

' 0.61× 10−9 ,
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where baryon density nB and photon density nγ is introduced — we use
the central value from Table in Ref. [3] noting ±5% error. We convert this
measured value to a ratio of baryon number per entropy of photons in the
present epoch by using the universal entropy per particle for a massless
boson relation (s/n)boson ≈ 3.6 [5] to obtain

nB
sγ

∣∣∣∣
t0

=
nB
nγ

∣∣∣∣
t0

1

sγ/nγ
' 1.7× 10−10 . (11)

The entropy density s can be characterized using the analytic form for
massless bosons introducing gs∗, the number of ‘entropic’ degrees of freedom

s =
2π2

45
gs∗T

3 . (12)

For the temperature 10 > T > 3 MeV, the massless photons, nearly rela-
tivistic electron/positrons, and practically massless neutrinos contribute to
the degrees of freedom gs∗. Therefore, allowing for factor 7/8 for fermions as
compared to bosons, we have gs∗ = 2 + 7/8(4 + 3× 2) = 10.75, showing each
contribution mentioned in turn.

Below T = 3 MeV neutrinos decouple, and free stream while electrons
and positrons annihilate into photons. This process reheats the photon gas,
transferring practically all eē entropy there. This means that the fraction of
entropy neutrinos carry sν/s = 21/43 = 0.49 stands forever apart from the
entropy fraction photons and electrons carry: sγe/s = 22/43 = 0.51. This
also implies sν/sγe = 21/22 = 0.95, a ratio which will be very handy soon.

Due to very small reheating to neutrinos by annihilating electrons, this
ratio is about 0.97 according to current theoretical models [6]. We note that
the photon entropy sγ in the current epoch we used in Eq. (11) is actually
identical to the entropy sγe of the combined photons and annihilated eē pairs
applicable to the entire Universe evolution history of relevance here.

We now exploit that the ratio of baryon number to entropy remains un-
changed in the Universe evolution, at least since the muon freeze-out epoch
we are considering here. This is so since the baryon number is conserved,
and the Universe is expanding adiabatically. We will now take advantage
of this feature, apportioning the entropy among γe and neutrino ν gases
to evaluate the muon µ± to baryon density nB ratio. To achieve this, we
consider

nµ±

nB
=
nµ±

s

s

nB
=
nµ±

s

(
sγe(1 + sν/sγe)

nB

)
t0

'
nµ±

s

1.97

1.7× 10−10
, (13)

where we used the standard cosmology assumption that s/nB remains con-
stant, and that the entropy in the Universe is (vastly) dominated by the two
fractions, γe and neutrino ν.
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We have for the entropy density s our expression Eq. (12). The number
density for nonrelativistic µ± is

nµ± =
gµ±

2π2
T 3
(mµ

T

)2
K2

(mµ

T

)
= gµ±

(
mµT

2π

)3/2

e−mµ/T . (14)

In the temperature interval we consider, 6 < T < 3 MeV, we insert into
Eq. (13) the particle density Eq. (14), and entropy density Eq. (12) and
obtain

nµ±

nB
=

45 gµ±

2π2gs∗

( mµ

2πT

)3/2
e−mµ/T 1.16× 1010 . (15)

In Fig. 2, we show the muon-to-baryon density ratio Eq. (15) as a func-
tion of T , and considering the accidental near equality of the equal abun-
dance of baryons and muon pairs we show the detail in the inset: The
number density nµ± and nB abundances are equal at the temperature T ≈
4.212 MeV ' Tdisappear = 4.135 MeV, where nµ±/nB(Tdisappear) ≈ 0.644.
We see that the muon pair abundance T = 6 MeV exceeds that of baryons
by a factor 1000.

Fig. 2. The density ratio between µ± and baryons as a function of tempera-
ture, inset resolves the coincidence of the freeze-out condition of muons (vertical
line) occurring near to the cosmic baryon abundance just where the density ratio
nµ±/nB ≈ 1 (horizontal line).
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4. Conclusion

We compared µ± production, and decay rates as a function of temper-
ature. The temperature at which µ± disappear from the Universe is about
Tdisappear ≈ 4.135 MeV. Below this temperature, the µ± decay rate is faster
than the production rate. To characterize the physics situation more pre-
cisely, we also evaluated the density ratio between µ± and baryons in the
Universe as a function of temperature.

We presented the thermal production and the natural decay rate of
muons µ± in the primordial Universe as a function of temperature. We
concluded that µ± disappear from the Universe at about T = Tdisappear ≈
4.135 MeV, the temperature at which the natural µ± decay rate overwhelms
production rate. The characteristic expansion rate 1/H(Tdisappear) = 0.084 s
in that epoch is 3.8× 104 longer compared to the muon lifespan τµ = 2.2µs,
therefore, muons vanish quasi-instantaneously on the scale of the Universe
expansion time.

We considered as a function of temperature the density ratio between µ±
and the baryon inventory in the Universe. We assumed that the ratio B/S,
baryon per entropy, measured today applies in this primordial epoch. Using
this understanding of the Universe entropy content, and of eē annihilation
neutrino reheating, we have shown that both abundances are equal within
the error margin of measured entropy and baryon content values: At the
temperature T ≈ 4.212 MeV, we have nµ±/nB = 1, while the density ratio
at the muon disappearance temperature nµ±/nB(Tdisappear) ≈ 0.644. Since
only about half of baryons are protons, as long as muons are present, we
have several charged nonrelativistic muons for each proton and then, rather
suddenly, muons disappear.

The primary insight of this work is that aside of protons and neu-
trons, other nonrelativistic charged particles, both positively and negatively
charged muons, µ±, are present in kinetic thermal equilibrium and in non-
negligible abundance T > Tdisappear ≈ 4.1 MeV, with a cosmic coincidence
of muon pair and baryon abundances coinciding at Tdisappear in regard to
baryon abundance in the Universe. The presence of muon pairs offers a new
and tantalizing model-building opportunity for anyone interested in baryon–
antibaryon separation in the primordial Universe, strangelet formation, and
perhaps other exotic primordial structure formation mechanisms. Moreover,
our result shows that muons remain in thermal equilibrium abundance in the
entire time period in which strangeness evolves down to Tdisappear ' 4.1 MeV.
We will return to this context in another report [2].
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Jan would like to thank Michał Praszałowicz for the kind invitation to
lecture at the jubilee 60th Kraków School of Theoretical Physics, originally
set in the splendid context of Kraków and the Tatry Mountains in Zakopane.

Appendix

Personal reminiscences related to the Jubilee

One of the authors (Jan Rafelski) has a long-standing personal and pro-
fessional connection with the Kraków Summer School of Theoretical Physics.
He was born in Kraków and through Andrzej Bialas at CERN more than 40
years ago Jan discovered his research interests of the period overlapped with
those of the research groups in his native city; he agreed, see Fig. 3 (left), to
lecture at a Summer Zakopane event 1987 — which was more than 20 years
after he had illegally left the communist Poland.

Fig. 3. On the left: the poster of the 1987 School; on the right: top image of
Andrzej Białas and Wiesław Czyż at a Zakopane school about 20 years ago (photo
by J. Rafelski); below, Jan’s apology of March 1987 regarding inability to attend
the School in 1987; bottom right: Jan’s journal entry addressing events at a year
later November 16, 1988 lecture in Kraków.

This first homecoming to Zakopane was set at a time when Jan was
a professor at the University of Cape Town (UCT) in South Africa, then
without consular relations with Poland. At that time, there was a proxy war
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in Angola between the Apartheid regime and a Cuban expedition army; it is
said that Polish support units were also present. As it happened, the plan for
Jan attending the School in 1987 collapsed in March 1987, see Fig. 3 (right)
— Jan had resigned his position at UCT. Breaking an invitation especially
given the personal importance required corrective action; fortunately, an
opportunity arose a little more than a year later.

It is normal not to remember a lecture event for very long. Yet to-
day many details surrounding my November 15–16, 1988 return to Kraków
remain sharp in my memory. Seen from the perspective of colleagues in
Kraków, into a gray winterly landscape of the state of war in Poland, filled
with anticipation of a coming change, a colleague from Arizona parachuted
in. Jan was received with proverbial Polish hospitality and honors, see Fig. 3
(bottom right). His lecture on Wednesday, November 16, 1988 at noon in
a traditional Białas circle was well attended. Many deep friendships with
Kraków colleagues followed.

Looking back one sees that over the last 25 years at least 22 manuscripts
were published in Acta Physica Polonica B (including proceedings series)
which Jan has coauthored. Of these, at least 12 with 300+ published
APPB pages address strangeness in high-energy nuclear collisions. Further-
more, a joint Tucson–Kraków NATO-funded project arose that we called
SHARE: Statistical Hadronization with Resonances. SHARE has its own
100’s printed pages in international research journals.
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