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ENERGY AND RADIATION OF A HIGHLY
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The Mathisson–Papapetrou equations are used for investigations of in-
fluence of the spin-gravity coupling on a highly relativistic spinning particle
in Schwarzschild’s field. It is established that interaction of the particle spin
with the gravitomagnetic components of the field, estimated in the proper
frame of the particle, causes the large acceleration of the spinning particle
relative to geodesic free fall. As a result, the accelerated charged spinning
particle can generate intensive electromagnetic radiation when its velocity
is highly relativistic. The significant contribution of the highly relativistic
spin-gravity coupling to the energy of the spinning particle is analyzed.
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1. Introduction

Known important properties of gravitational interaction in General Rel-
ativity were discovered through investigations of motions of small test bod-
ies (particles) in the gravitational field of a massive body. For example,
the physics of black holes was studied by consideration of world lines and
trajectories of simple test particles which follow the geodesic lines in the
Schwarzschild and Kerr metrics [1, 2]. Here, “simple” means that the par-
ticle does not possess inner structure, with inner rotation or higher mul-
tipoles. In the classical picture of the gravitational collapse of a massive
object, quantum properties of the particles are not taken into account.

Electrons, protons and other particles with nonzero spin, which in some
classical approximation can be considered as particles with inner rotation,
do not follow geodesic trajectories exactly. However, as it is emphasized
in [1], in the usual situations, deviations of motions of the spinning test body
(particles) from the corresponding geodesic motions are very small: this

(323)
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conclusion follows from the Mathisson–Papapetrou (MP) equations [3, 4].
Just these equations, which are the generalization of the geodesic equations
for description of motions of a test rotating body in General Relativity,
were derived for the first time in [3]. (This paper is absent in Ref. [1], in
contrast to paper [4] which was published much later than [3].) An extensive
bibliography on various applications of the MP equations is presented in [5].
Many recent papers are devoted to study of the spin-gravity effects both for
small test spinning particles and rotating macroscopic bodies, for example,
black holes [6–15].

Unusual situations with spinning particles arise when their orbital veloc-
ity in the Schwarzschild or Kerr field becomes very high, close to the speed of
light. Then the influence of the spin-gravity coupling on the particles orbits
can be significant [16–30]. The physical reason for this situation is con-
nected with the fact that in a frame which moves relative to Schwarzschild’s
or Kerr’s source with the very high velocity, the values of components of
the gravitational field are much greater than in frames with low velocities.
For example, as a result of strong spin-gravity action on the particle, the
space regions of existence of the highly relativistic circular orbits for spin-
ning particles in the Schwarzschild and Kerr backgrounds are much wider
than for spinless particles [18, 21, 23, 24, 29, 30]. This fact is interesting for
the analysis of a possible mechanism of generation of synchrotron radiation
for charged spinning particles near compact astrophysical objects.

The purpose of this paper is to investigate the contribution of the spin-
gravity coupling to the energy of a spinning particle moving with high ve-
locity in Schwarzschild’s field, and to obtain some estimation for electro-
magnetic radiation of a highly relativistic charged spinning particle. These
investigations are based on the analysis of solutions of the exact MP equa-
tions.

The paper is organized in the following way. In Section 2, the MP equa-
tions and their physical meaning are discussed. Section 3 is devoted to the
analysis of the relations following from these equations in the comoving
tetrads representation for Schwarzschild’s metric. The dependence of the
spinning particle 3-acceleration relative to geodesic free fall as measured by
the comoving observer on the particle velocity in Schwarzschild’s field is eval-
uated. For a charged spinning particle, the expression for the intensity of
its electromagnetic radiation caused by the acceleration is evaluated in Sec-
tion 4. In Section 5, we investigate the difference in the values of energies of
the spinning and spinless particles at their high velocities in Schwarzschild’s
field. We conclude in Section 6.
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2. Mathisson–Papapetrou equations

The original formulation of the Mathisson–Papapetrou equations is [3]

D

ds

(
muλ + uµ

DSλµ

ds

)
= −1

2
uπSρσRλπρσ , (1)

DSµν

ds
+ uµuσ

DSνσ

ds
− uνuσ

DSµσ

ds
= 0 , (2)

Sλνuν = 0 , (3)

where uλ ≡ dxλ/ds is the particle’s 4-velocity, Sµν is the antisymmetric
tensor of spin, m and D/ds are the mass and the covariant derivative along
uλ, respectively. Here and in the following, greek indices run through 1, 2,
3, 4 and latin indices run through 1, 2, 3; the signature of the metric (−, −,
−, +) and the unites c = G = 1 are chosen.

Note that equations (1), (2) and (3) have an important unusual feature as
compare to equations in classical (nonrelativistic) mechanics which describe
the propagation of the center of mass of a rotating body and possible changes
of its angular velocity. Namely, in classical mechanics, the motion of such
a body is fully determined by the given initial values of the coordinates
and velocity of the center of mass, and the value of the angular velocity.
The situation is different with equations (1), (2) and (3). Indeed, then the
left-hand side of equation (1) contains the terms

Duµ
ds

DSλµ

ds
+ uµ

D2Sλµ

ds2
. (4)

Note that the second term in (4) is proportional to the second derivative
of the angular velocity. As a result, according to the theory of differential
equations, the fixed initial values of the coordinates, linear velocity and
angular velocity without a given initial value of the angular acceleration, in
general, are insufficient for determination of a single solution of equations
(1), (2) and (3). There is a similar situation if after the differentiation of
(3), instead of (4) one deals with the expression

−SλµD
2uµ
ds2

− DSλµ

ds

Duµ
ds

. (5)

Indeed, (5) contains the second derivative of the linear velocity and then to
determine some unique solution, it is not sufficient to point out only initial
values of coordinates and linear velocity, without acceleration.
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There is a more simple case, without the second derivatives in the MP
equations, when one considers the deviation of the particle motions from
geodesics in the linear spin approximation. Then it is sufficient instead of
equations (1) and (2) to deal with equations

m
Duλ

ds
= −1

2
uπSρσRλπρσ , (6)

DSµν

ds
= 0 (7)

(at relation (3), it follows from (1) and (2) that m = const).
To avoid the terms with too high derivatives in the exact MP equations, it

was proposed to consider instead of (1), (2) and (3) some modified equations
[31, 32]

DP λ

ds
= −1

2
uπSρσRλπρσ , (8)

DSµν

ds
= 2P [µuν] , (9)

SλνPν = 0 , (10)

where

P ν = muν + uλ
DSνλ

ds
(11)

is the particle 4-momentum. An important difference in equations (1), (2),
(3) and (8), (9), (10) consists in the form of relations (3) and (10): due to
the second term in the right-hand side of expression (11), in general, vector
P ν is not parallel to uν , and relation (3) does not follow from (10). (By
the way, from equations (8), (9) and (10), some explicit expression for the
components of uλ through Pµ are obtained [33].)

Often relations (3) and (10) are treated as supplementary conditions for
the MP equations. Without any supplementary condition, these equations
describe some wide range of the representative points [4] which can be in dif-
ferent connection with a rotating body. To describe just the inner rotation
of the body, it is necessary to fix the concrete corresponding representative
point. In the Newtonian mechanics, the inner angular momentum of a ro-
tating body is defined relative to its center of mass and just the motion of
this center represents the propagation of the body in space. In relativity,
the position of the center of mass of a rotating body depends on the frame
[34, 35]. Then condition (3), which follows from the usual definition of the
center-of-mass position [36], is common for the so-called proper and non-
proper centers of mass. (We use the terminology when the proper frame for
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a spinning body is determined as the frame where the axis of the body rota-
tion is at rest; correspondingly, the proper center of mass is calculated in the
proper frame.) The usual solutions of the MP equations at condition (3) in
the Minkowski spacetime describe the motion of the proper center of mass
of a spinning body, whereas the helical solutions describe the motions of the
family of nonproper centers of mass [34, 35].

In contrast to condition (3), relation (10) picks out a unique world line
of a spinning particle in the gravitational field. However, from a physical
point of view, equation (10) has an explicit restriction for its applications in
the region of the highly relativistic motions of a spinning particle relative to
the source of the gravitational field [22, 37].

Taking into account condition (3) or (10), one finds that the MP equa-
tions have the constant of motion

S2 =
1

2
SµνS

µν , (12)

where |S| is the absolute value of spin. When dealing with the MP equations,
the condition for a spinning test particle

|S|
mr
≡ ε� 1 (13)

must be taken into account [38], where r is the characteristic length scale
of the background space-time (in particular, for the Schwarzschild metric r
is the radial coordinate). For a macroscopic spinning test particle, relation
(13) is a direct consequence of the physical property that for this particle
|S| is of the order of mvrpart, where v is the linear velocity of a point at the
surface of the rotating particle and rpart is the radius of the particle, with
the clear conditions v < 1 and rpart/r � 1.

Equations (1) and (2) with condition (3) can be presented through the
3-component value Si [25], where by definition

Si =
1

2u4

√
−g εiklSkl , (14)

and εikl is the spatial Levi-Civitá symbol. Then Eq. (2) takes the form [25] of

u4Ṡi + 2
(
u̇[4ui] − uπuρΓ

ρ
π[4ui]

)
Sku

k + 2SnΓ
n
π[4ui]u

π = 0 , (15)

where a dot denotes differentiation with respect to the proper time s, and
square brackets denote antisymmetrization of indices; Γnπ4 are the Christoffel
symbols. The form of equation (1) in the terms of Si is presented in [25].
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3. Some relations following from the Mathisson–Papapetrou
equations for a highly relativistic spinning particle in

the Schwarzschild field

Let us consider equations (1), (2) and (3) in the linear spin approxima-
tion. Then according to (6) the deviation of the spinning particle world line
from the geodesic line, for which Duλ/ds = 0, is determined by the term

−1

2
uπ
Sρσ

m
Rλπρσ . (16)

Since the components Sρσ are proportional to S, according to (13), expres-
sion (16) is proportional to the small value ε. At the same time, in general,
the absolute values of the particle’s 4-velocity components |uπ| can be within
the wide region, from |uπ| � 1 to |uπ| � 1. (In this aspect, the situation is
similar to the known one in Special Relativity, where according to the dy-
namics of a moving particle, its 4-velocity components are proportional to
the relativistic Lorentz factor γ, and γ � 1 corresponds to the slow motions,
whereas for the particle’s velocities very close to the speed of light, the rela-
tion γ � 1 is satisfied.) It means that when the particle velocity is not very
high, i.e. when the relation |uπ| � 1 is not satisfied, it is possible to search
the solutions of the MP equations in the form of some small corrections to
the corresponding solutions of the geodesic equations (at the condition that
the values of the Riemann tensor components are not very high). Concern-
ing the case |uπ| � 1, more detailed analysis is necessary. Indeed, at first
glance, even when the relation |uπ| � 1 is satisfied and the absolute value
of expression (16) becomes much greater than at the low velocity, one can
suppose that this situation is a result of the kinematic effect only, when the
value of the proper time of the highly relativistic particle is much less than
for a slow particle. To verify this supposition, it is appropriate to consider
the value of expression (16) in the frame comoving with the particle.

For description of the comoving frame of reference, we use the set of
orthogonal tetrads λµ(ν), where λ

µ
(4) = uµ and the relations

λµ(ν)λ
π
(ρ)gµπ = η(ν)(ρ) , gµν = λ(π)µ λ(ρ)ν η(π)(ρ) (17)

take place (here, in contrast to the indices of the global coordinates, the local
indices are placed in the parenthesis; gµν and η(ν)(ρ) are the metric tensor of
the curved spacetime and the Minkowski tensor, respectively). Without loss
in generality, we direct the first space local vector (1) along the direction of
spin. Then from equation (6), we have [25]

a(i) =
S(1)

m
R(i)(4)(2)(3) , (18)
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where a(i) are the local components of the particle 3-acceleration relative to
geodesic free fall as measured by the comoving observer; S(1) is the single
nonzero component of the particle spin. Note that the right-hand side of
equation (18) is the direct consequence of expression (16).

We take into account the definition of the gravitomagnetic components
B

(i)
(k) of the gravitational field for a moving observer in General Relativity

according to [39]

B
(i)
(k) = −

1

2
R(i)(4)

(m)(n)ε
(m)(n)

(k) . (19)

Then equation (18) can be written in the form of

a(i) =
S(1)

m
B

(i)
(1) . (20)

Let us analyze equation (20) in the case when the spinning particle is
moving in the gravitational field of Schwarzschild’s mass. We use the stan-
dard Schwarzschild coordinates x1 = r, x2 = θ, x3 = ϕ, x4 = t when the
nonzero components of the metric tensor gµν are

g11 = −
(
1− 2M

r

)−1
, g22 = −r2 ,

g33 = −r2 sin2 θ , g44 = 1− 2M

r
, (21)

whereM is the mass of Schwarzschild’s source of the gravitational field. For
a particle which is moving with any velocity (less than the velocity of light)
in Schwarzschild’s field, it is appropriate to take into account the Lorentz
factor γ as estimated by an observer which is at rest relative to the source
of the gravitational field. Then, for γ we write

γ =
1√

1− v2
, (22)

where v2 is the second power of the particle’s 3-velocity relative to this ob-
server. According to the general procedure which is described in [40], in the
case of metric (21), we have the expression for the 3-velocity components vi

vi =
dxi
√
g44 dt

. (23)

Then for v2, we write
v2 = viv

i = γikv
ivk , (24)
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where γik is the 3-space metric tensor, with the following relationship be-
tween γik and gµν for the diagonal metric: γik = −gik. It follows from
(22)–(24) with uµuµ = 1 that

γ =
√
u4u4 . (25)

By (25) and general relation for the particle 4-velocity uµuµ = 1, we obtain

γ2 = 1 + u2⊥ +

(
1− 2M

r

)−1
u2‖ , (26)

where u⊥ = rdϕ/ds and u‖ = dr/ds are the tangential and radial compo-
nents of the particle’s 4-velocity, respectively.

In the following, we will consider the case of the particle motion in the
plane θ = π/2 when its spin is orthogonal to this plane. It is convenient to
orient the first space local axis (1) along the spin and the second axis (2)
along the direction of the particle’s motion. By the definition of the or-
thonormal tetrads, the third space local axis (3) is orthogonal to axis (1)
and (2). Then, by direct calculation according to (17), (19) and (21), we
obtain

B
(1)
(2) = B

(2)
(1) =

3M

r3
u‖u⊥√
γ2 − 1

(
1− 2M

r

)−1/2
, (27)

B
(1)
(3) = B

(3)
(1) =

3M

r3
u2⊥γ√
γ2 − 1

. (28)

Let us compare the values from (27) and (28) at low and high velocities.
When the velocity is low with u‖ = δ1, u⊥ = δ2, |δ1| � 1, |δ2| � 1, and
γ2 − 1 = ∆2 � 1, where

∆2 =

(
1− 2M

r

)−1
δ21 + δ22 , (29)

it follows from (27) and (28) that

B
(1)
(2) = B

(2)
(1) ≈

3M

r3
δ1δ2
∆

(
1− 2M

r

)−1/2
, (30)

B
(1)
(3) = B

(3)
(1) ≈

3M

r3
δ22
∆
. (31)

That is, at low velocity, the common term 3M/r3 in the expressions for the
gravitomagnetic components (30) and (31) is multiplied by corresponding
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small factors ∣∣∣∣δ1δ2∆
∣∣∣∣� 1 ,

∣∣∣∣δ22∆
∣∣∣∣� 1 .

In the highly relativistic region, when γ2 � 1 and both u2‖ and u2⊥ have
order γ2, it follows from (27) and (28) that

B
(1)
(2) = B

(2)
(1) ∼

3M

r3

(
1− 2M

r

)−1/2
γ , (32)

B
(1)
(3) = B

(3)
(1) ∼

3M

r3
γ2 . (33)

When only u2⊥ � 1, with u2‖ � u2⊥, the values from (27) are proportional
to u‖, and the values from (28) are proportional to γ2. In the case when
u2‖ � 1 and u2⊥ � u2‖, the values from (27) and (28) are proportional to
u⊥ and u2⊥, respectively. Thus, according to (20), (32), (33), the absolute
values of a(i) become much greater at the highly relativistic velocities of
the spinning particle. It means that the smallness of ε from (13) does not
lead to the conclusion about the small influence of the particle spin on its
acceleration as estimated by the comoving observer. (Note that in the above
considered partial case of the particle motion in Schwarzschild’s field, the
relation |S(1)| = |S| takes place.)

4. Acceleration and electromagnetic radiation
of a highly relativistic spinning particle

It follows from (20), (27), (28) that the absolute value of the spinning
particle acceleration

|~a| =
√
a2(1) + a2(2) + a2(3)

is determined by the expression

|~a| = 3M

r2
|S|
mr
|u⊥|

√
1 + u2⊥ . (34)

According to (34), |~a| does not depend on the radial component of the par-
ticle velocity and essentially depends on its tangential velocity. In the case
of the highly relativistic motion with u2⊥ � 1 by (34), we have

|~a| = 3M

r2
εγ2 , (35)

where γ is the Lorentz factor calculated by the tangential velocity u⊥, and
ε is determined in (13).
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We use expression (35) to estimate the electromagnetic radiation of a
spinning particle which posses the electric charge q. Indeed, according to
the known result of the classical electrodynamics, the intensity I of the
electromagnetic radiation in the frame where the velocity of the charged
particle is equal to 0 with nonzero acceleration w is given by expression [40]

I =
2q2w2

3c3
, (36)

where c is the speed of light. Inserting into (36) expression (35) as w in
units where c = 1, we get

I = 6q2
M2

r4
ε2γ4 . (37)

This equation shows that due to the term γ4, the value of I can be significant
for some high tangential velocities even for small values of ε and far from
Schwarzschild’s horizon (r � 2M).

Equation (37) is valid in the linear spin approximation for any particle
trajectory in the equatorial plane of Schwarzschild’s background. In the
important partial case of the circular orbits in this background, we can write
the generalization of Eq. (37) in the exact consideration by the particle spin.
For this purpose, we use the representation of the MP equations in the terms
of the comoving tetrads [25]. The exact form of these equations is

a(1) =
S(1)

m
R(1)(4)(2)(3) ,

a(2) =
S(1)

m

(
R(2)(4)(2)(3) − a(2)γ(2)(3)(4) − ȧ(3)

)
,

a(3) =
S(1)

m

(
R(3)(4)(2)(3) − a(3)γ(2)(3)(4) − ȧ(2)

)
, (38)

where γ(2)(3)(4) are the Ricci coefficients of rotation calculated by the comov-
ing tetrads. In the linear spin approximation, equations (38) coincide with
equation (18).

In the case of Schwarzschild’s metric, the standard coordinates x1 = r,
x2 = θ, x3 = ϕ, x4 = t, for the equatorial plane with θ = π/2, we have
R(1)(4)(2)(3) = 0. Then according to (38), a(1) = 0. In addition, for the
circular orbits in this plane when u1 = 0, u2 = 0, u3 = const 6= 0, u4 =
const 6= 0, a(2) = 0, and a(3) = const 6= 0, it follows from (38):

a(3) =
S(1)

m
R(3)(4)(2)(3)

(
1−

S(1)

m
γ(2)(3)(4)

)−1
. (39)
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After the direct calculation, we obtain

R(3)(4)(2)(3) = −3M

r

(
u3
)2
u4
(
1− 2M

r

)1/2 (
u4u

4 − 1
)−1/2

, (40)

γ(2)(3)(4) = −
(
1− 3M

r

)
u3u4 . (41)

(Note that for the circular orbit with r = 3M , we have γ(2)(3)(4) = 0, i.e.
in this partial case, the contribution of the nonlinear spin terms in (39) is
equal to 0.) The explicit expressions for the components of the particles
4-velocity u3 and u4 on the circular orbits in Schwarzschild’s background
follow directly from the exact MP equations (1)–(3) [23]. As a result, after
(41) for the circular orbits with r 6= 3M , we obtain

1−
S(1)

m
γ(2)(3)(4) = 2 +O(ε) , (42)

where the small value ε is determined in (13). Then, according to (39)

a(3) =
S(1)

2m
R(3)(4)(2)(3) . (43)

Taking into account (40) and (43), we write

|~a| = 3M

2r2
|S(1)
mr
|u⊥|

√
1 + u2⊥ . (44)

Since S(2) = 0 and S(3) = 0, we note that |S(1)| = |S|. That is, the right-
hand side of (44) differs from the right-hand side of (34) only in the numerical
factor 1/2. As a result, according to (36) for the circular orbits of a spinning
particle, we have

I =
3

2
q2
M2

r4
ε2γ4 . (45)

It means that the intensity of the electromagnetic radiation of a spinning
particle on the circular orbits by the strict MP equations is proportional
to γ4.

The results presented in Sections 3 and 4 describe the properties of the
spin-gravity coupling in the proper frame of a spinning particle. In this
context the question arises: can the highly relativistic spin-gravity coupling
significantly deviate trajectories of the spinning particle from the geodesic
trajectories by their description in the terms of the global Schwarzschild
coordinates? Different cases of the essentially nongeodesic orbits of the
highly relativistic spinning particle in Schwarzschild’s field are investigated
in [18, 22, 23].
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5. Energy of a highly relativistic spinning particle
in Schwarzschild’s field

According to the geodesic equations, there is an expression for the energy
of a spinless particle with mass m in Schwarzschild’s field

E = mu4 = m

(
1− 2M

r

)1/2

γ , (46)

where γ =
√
u4u4 is the relativistic Lorentz factor calculated by the particle

velocity relative to the source of the Schwarzschild field, r is the standard
radial coordinate. That is, this energy is proportional to the γ factor, similar
as in the case of the free particle motion in Special Relativity. Other situ-
ations arise in the case of the spinning particle motions in Schwarzschild’s
field. Then by the MP equations, the expression for a spinning particle can
be written as [33]

E = mu4 + g44uλ
DS4λ

ds
+

1

2
g4µ,νS

νµ . (47)

In contrast to (46), the value of energy (47) depends not only on the initial
velocity of a spinning particle and r, but on the spin-gravity coupling as
well. In the specific case of the radial motion of the spinning particle in
Schwarzschild’s field, the value of its energy does not depend on the abso-
lute value and orientation of the spin and coincides exactly with the value
of energy of the spinless particle. As well as in this case, the world line of
the spinning particle coincides with the corresponding geodesic world line
(it is easy to obtain this result after writing equations (1)–(3) at condition
of θ = const, ϕ = const). However, any nonzero value of the particle tan-
gential velocity leads to some deviation of the value of the spinning particle
energy from the value of the energy of the spinless particle. Naturally, when
|u⊥| � 1, i.e. for low values of the tangential velocity, this deviation is small.
It is interesting to investigate the dependence of the spinning particle energy
on the tangential velocity in the highly relativistic region, when |u⊥| � 1.
For this purpose, it is convenient to deal with the exact MP equations in
the form of the first-order differential equations for the 11 dimensionless
quantities yi, where by definition

y1 =
r

M
, y2 = θ , y3 = ϕ , y4 =

t

M
,

y5 = u1 , y6 =Mu2 , y7 =Mu3 , y8 = u4 ,

y9 =
S1
mM

, y10 =
S2

mM2
, y11 =

S3
mM2

. (48)
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These equations are presented in the explicit form in [25] as

ẏ1 = y5 , ẏ2 = y6 , ẏ3 = y7 , ẏ4 = y8 ,

ẏ5 = A1 , ẏ6 = A2 , ẏ7 = A3 , ẏ8 = A4 ,

ẏ9 = A5 , ẏ10 = A6 , ẏ11 = A7 . (49)

Here, Ai are the corresponding functions of yi and contain the two constants
of motion: the energy and angular momentum (a dot denotes the usual
derivative with respect to the dimensionless value x = s/M). At the fixed
initial values of yi, different values of these constants correspond to motions
of different centers of mass of the spinning particle.

Let us consider equations (49) in the partial case of the spinning particle
motion in the plane θ = π/2 with the spin orthogonal to this plane. It
means that in notation (48), we put y2 = π/2, y6 = 0, y9 = 0, y11 = 0.
Other nonzero functions yi(x) can be found by the numerical integration of
equations (49). The important point in this procedure is finding values of
the energy and angular momentum which correspond just to the solutions
for the proper center of mass of the particle at the fixed initial values of yi,
not to the helical solutions. There is a most simple case when y7 ≡ 0, i.e. for
the radial motion of a spinning particle: as we noted above, then the values
of the energy and angular momentum are equal exactly to the corresponding
values for the geodesic radial motion. Naturally, for the initial values of y7
which satisfy condition |y7| � 1, the corresponding values of the energy and
angular momentum can be calculated as some small corrections to the values
for the radial motion. For other values of y7, we used computer searching.
As a result, here we present a typical case for the spinning particle with

ε0 ≡
|S|
mM

= 10−2

(note that in contrast to ε from (13), the value of ε0 does not depend on r)
which begins motion from the position of r = 2.5M with the initial value of
the radial velocity u‖ = −10−2 with different initial values of the tangential
velocity u⊥.

Table I describes the situations when the sign of u⊥(0) is positive with
the orientation of the particle spin when S2 ≡ Sθ > 0. Table II corresponds
to the cases with u⊥(0) < 0 and the same value of the S2 as in Table I. Both
Tables I and II show the ratio of the energy of the spinning particle Espin to
the value of the energy of the spinless particle Egeod which moves along the
geodesic lines and starts with the same initial velocity as the spinning par-
ticle. For u⊥(0) = 0, we have Espin/Egeod = 1, exactly. When |u⊥(0)| � 1,
the value Espin is almost equal to Egeod with high accuracy. Other situa-
tions arise when |u⊥| is growing up to the highly relativistic motions with
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u2⊥ � 1. According to Tables I and II, at the highly relativistic regime,
the difference between Espin and Egeod is growing significantly with growing
|u⊥|. There are essential differences of the data in Tables I and II: in the first
case, Espin/Egeod > 1, whereas in the second case, Espin/Egeod < 1. This
property corresponds to the known result that at S2 > 0 and u⊥(0) > 0, the
spin-gravity coupling acts on the particle as some attractive force, whereas
at S2 > 0 and u⊥(0) < 0, this action is repulsive [23, 25].

TABLE I

Comparison of the energies of the spinning and spinless particles at different orbital
velocity for u⊥(0) > 0.

u⊥(0) Espin/Egeod

0 1
5.88 1.06
11.75 1.24
17.67 1.63
23.50 2.00

TABLE II

Comparison of the energies of the spinning and spinless particles at different orbital
velocity for u⊥(0) < 0.

u⊥(0) Espin/Egeod

−2.35 0.99
−4.70 0.96
−11.75 0.76
−17.62 0.44
−21.15 0.20

Thus, the contribution of the spin-gravity coupling to the energy of a
spinning particle in Schwarzschild’s field becomes large when its velocity is
highly relativistic.

6. Conclusions

In addition to the known results concerning the influence of the spin-
gravity coupling on world lines and trajectories of the highly relativistic
spinning particle in the Schwarzschild field [23, 25], in this paper, we present
the results about the effect of the highly relativistic spin-gravity coupling on
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the particle’s energy. Depending on the correlation of the spin orientation
and the particle orbital velocity, the values of the spinning particle energy
can be much larger or smaller than the corresponding values for the spinless
particle.

In the case of highly relativistic motions of the charged spinning particle
in Schwarzschild’s field, in Section 4, we considered the intensity of the
energy of its electromagnetic radiation as estimated in the proper frame of
the particle. It is important that this value is proportional to the γ4, i.e.
becomes very large for highly relativistic orbital velocities of the particle.

In further investigations, it would be of interest to apply the results of
this paper to the analysis of a possible role of the highly relativistic spin-
gravity coupling in the astrophysical processes with fast-spinning particles
in strong gravitational fields.
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