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In the present study, we examine Casimir effects of the charged massless
scalar field in 1+1 dimensions in the external background potential which
includes linear and non-linear electrostatic fields. We calculate the Casimir
energy for Dirichlet, Neumann, and mixed boundary conditions using the
perturbation theory. We find that the Casimir energy is strengthened in
the Neumann boundary condition and is lowered in other cases.
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1. Introduction

The Casimir effect, a proof for the existence of vacuum fluctuations, was
proposed by Casimir in 1948 [1] in an attempt to explain the interaction
between two polarizable atoms [2]. In the original formulation, the Casimir
effect is understood as an emerging attraction between two neutral super-
conducting parallel plates separated by a distance. The attractive force
between these plates is derived by differentiating vacuum energy densities
with and without boundaries. The effect was confirmed by Lamoreaux’s
measurements in 1997 [3].

The influence of the external magnetic field on Casimir effect, based on
the formulation of Landau quantization, is an interesting topic. In Ref. [4],
the Casimir energy of the scalar field is calculated as a function of the
magnetic field. The fields considered in Ref. [4] include both bosonic and
fermionic degrees of freedom. The results in that study are in agreement with
those in Ref. [5], which state that the magnetic field inhibits the Casimir
energy for a bosonic field and enhances the energy for a fermionic field [6].

The scalar Casimir effects influenced by an external electric field were
first studied by Ambjørn andWolfram [7] who perform the calculation of vac-
uum polarizations of the charged scalar field by summing over scalar modes.
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We also mention the research by Elizalde and Romeo [8] who computed
Casimir energy for both chargeless and charged scalar field under electric
field using numerical estimation based on the zeta function regularization,
the Dirichlet boundary condition is applied in the paper. Recently, Taya [9]
has studied the relation between the dynamic Casimir effect and Schwinger
mechanism of a massive charged scalar field under a strong electric field,
the results of which suggest that the electric field enhances the dynamical
Casimir effect.

The present paper investigates the Casimir effect of the massless charged
scalar field under the electrostatic fields using perturbation theory in 1+1
dimensions. The concrete boundary conditions include: Dirichlet, Neumann
and mixed (hybrid) boundary conditions. Unlike the study in Ref. [7] which
focuses on the calculation of the vacuum polarization of the scalar field, in
our work, we figure out the calculation of Casimir energy and the behavior
of its perturbative contribution. In [8], the authors used the zeta function
regularization to estimate the Casimir energy for every value of the external
potential for both closed and open boundaries. The open boundary in the
paper assumed that boundary condition is applied at one point and the
second one at infinity. In contrast to the study in Ref. [8] which numerically
estimated the total Casimir energy as a function of external potential for
concrete values, in the present paper, we assume that the external field is
a perturbation. Hence, we obtain perturbative contributions to Casimir
energies. Furthermore, we extend the external potential to the non-linear
form conceived from the beta function of massless QED [10].

Our strategy is as follows: Section 2 is devoted to the description of
solving the Klein–Gordon equation with the external field to get a general
solution. Next, the linear electrostatic is assumed as an electrostatic pertur-
bation. By the perturbative method, the Casimir energies are determined
by three kinds of boundaries: Dirichlet, Neumann, and mixed, respectively.
The beta-function form of the electrostatic field is used to calculate the
Casimir energies in Section 3. Section 4 is devoted to the summary and
outlook.

2. Casimir effect of the scalar field under
a linear electrostatic potential

2.1. Dirichlet boundary condition

For the sake of simplicity, let us consider a massless charged scalar field
confined in a finite spatial interval 0 ≤ x ≤ L. The field is coupled with an
electrostatic field via the following Lagrangian:

L = (Dµφ)∗ (Dµφ) , (1)
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and the corresponding action

S =

∫
d2x (Dµφ)∗ (Dµφ) . (2)

Here, Dµ = ∂µ + iqAµ is a covariant derivative expressed via the time-
independent external field Aµ which has the form of

Aµ = (A0, A1) = ∆φ

(
x

L
− 1

2
, 0

)
. (3)

Note that in a 1 + 1 dimensional system, the coupling constant q has a
dimension of mass, while the scalar field is of dimensionless quantity.

The scalar field can be represented in the form: ψ(x, t) = e−iωtφ(x).
Hence, the Klein–Gordon equation with the external potential (3), after
separating the time variable, is reduced to the following equation for spatial
mode φ(x):

∂2
xφ(x) +

(
ω − qL∆φ

(
x

L
− 1

2

))2

φ(x) = 0 . (4)

In order to simplify the above equation, it is convenient to introduce the
dimensionless parameters: ξ = x

L , Ω = ωL, ε = qL∆φ. The differential
equation can be rewritten in its dimensionless form

∂2
ξφ(ξ) +

(
Ω − ε

(
ξ − 1

2

))2

φ(ξ) = 0 . (5)

Solving this equation, one gets a general solution

φ(y) =
√
y

(
C1J1/4

(
y2

2ε

)
+ C2J−1/4

(
y2

2ε

))
, (6)

with a new variable y = Ω − ε
(
ξ − 1

2

)
and the Bessel function Jν(x) . The

coefficients C1, C2 can be determined by boundary conditions.
Imposing the Dirichlet boundary condition at boundaries ξ = {0 ; 1}, one

realizes that the energy density of the system will be given by solving the
following equation:

J 1
4

(
κ−Ωε
)
J− 1

4

(
κ+
Ωε

)
−J 1

4

(
κ+
Ωε

)
J− 1

4

(
κ−Ωε
)

= 0 , (7)

where
κ±Ωε ≡

1

2ε

(
Ω ± ε

2

)2
. (8)
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Assuming the external potential is weak ε � 1, one can apply the asymp-
totic expansion for a large argument of the Bessel function. Consequently,
Eq. (7) can be written as follows (after neglecting irrelevant factors and
higher corrections):{(

8Ω2 + 3
)
ε2 − 8Ω4

}
sinΩ − 3Ωε2 cosΩ = 0 . (9)

It is not difficult to find the solutions of this equation with the form of

Ωn = nπ − 3ε2

8(nπ)3
; n = 1 , 2, . . . (10)

In this paper, we would like to solve the Klein–Gordon equation by the
perturbative method. We assume the external fields to be weak potentials
ε� 1. Therefore, we can use the perturbative method to solve the differen-
tial equation by the following perturbative expansion of the wave function
and the energy density up to the second-order correction:

φn(ξ) = φ0)
n (ξ) + ε φ(1)

n (ξ) + ε2 φ(2)
n (ξ) +O

(
ε3
)
, (11)

Ωn = Ω(0)
n + εΩ(1)

n + ε2Ω(2)
n +O

(
ε3
)
. (12)

Substituting expansions (11) and (12) into the differential equation (5) and
solving this equation up to the second-order correction, one gets the pertur-
bative solution of the Klein–Gordon equation satisfying in Dirichlet bound-
ary condition

φ(0)
n (ξ) =

√
2 sinwnξ , (13a)

φ(1)
n (ξ) =

1

2
√

2wn
[(2ξ − 1) sinwnξ + 2 (1− ξ)wnξ coswnξ] , (13b)

φ(2)
n (ξ) =

1

8
√

2w2
n

[ {
6ξ(ξ − 1)− 2ξ2w2

n(ξ − 1)2 + 1
}

sinwnξ

−2ξwn(ξ − 1)(2ξ − 1) coswnξ
]
, (13c)

where wn = nπ , n ∈ 1 , 2 , . . . In addition, the components of the energy
density in expression (12) can be derived as

Ω(0)
n = wn , Ω(1)

n = 0 , Ω(2)
n = − 3

8w3
n

, wn = nπ . (14)

Let us rewrite the dimensionless results (13) and (14) into the following
dimensionful expressions. The scalar field

φn(x) = φ(0)
n (x) + ε φ(1)

n (x) + ε2φ(2)
n (x) , (15)
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and the energy density (10)

ωn = ω(0)
n + ε2 ω(2)

n (16)

are written in the dimensionful forms by using the transformation from di-
mensionless parameters to dimensionful one ωn = Ωn

L , x = Lξ in Eqs. (11)
and (12). From this point on, we denote ωXn with the subscription n which
indicates the discrete spectrum, and the superscription X which denotes
the kind of boundary conditions: Dirichlet, Neumann and mixed boundary
conditions, respectively.

In the canonical quantization perspective, it is possible to introduce the
positive- and negative-frequency solutions of the Klein–Gordon equation by
a complete form

ψ(+)
n (t, x) =

C√
2

e−iωntφn(x) , ψ(−)
n (t, x) =

[
ψ(+)
n (t, x)

]∗
. (17)

To determine the normalization coefficient C, one can use the following
normalization conditions:(

ψ(±)
n (t, x), ψ(±)

m (t, x)
)

= δnm ,
(
ψ(±)
n (t, x), ψ(∓)

m (t, x)
)

= 0 , (18)

where the scalar product is defined by [15]

(ψ1 , ψ2) = i

L∫
0

dx (ψ∗1Dtψ2 − ψ2Dtψ
∗
1) . (19)

Inserting the explicit expression (15) into the normalization condition (18)
and neglecting higher corrections, one gets the following formula to deter-
mine the normalization coefficient:

C2

L∫
0

dx (ωn − qAt)φ∗n(x)φm(x) = δnm . (20)

The normalization coefficient can be determined by

C =

[
wn −

ε2(w2
n + 18)

16w3
n

]−1/2

, (21)

where the dimensionless notation wn is defined in Eq. (14). We would like to
note that this notation is different from the dimensionful energy density ωn
defined in Eq. (16).
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According to the procedure of canonical quantization, the field operator
can be represented by summing the modes as

ψ(x, t) =
∑
n

[
ânψ

(+)
n (t, x) + â+

nψ
(−)
n (t, x)

]
. (22)

The annihilation and creation operators ân, â+
n of the field satisfy the fol-

lowing commutation relations:[
ân , â

+
n′
]

= δnn′ , [â n , â n′ ] =
[
â+
n , â

+
n′
]

= 0 . (23)

The vacuum state of the scalar field in this case is

ân|0〉 = 0 , (24)

and the scalar field states can be obtained by applying the creation operators
to the vacuum state.

According to the Noether theorem, the canonical energy-momentum ten-
sor of the charged scalar field can be determined by the following formula:

Tµν = DµψDνψ − gµνL . (25)
Therefore, the Casimir energy can be obtained by integrating the considered
volume of the mean value of the 00-component of the energy-momentum
tensor in the vacuum state

EC≡
L∫

0

dx 〈0|T 00(x)|0〉=
∞∑
n=1

L∫
0

dxC2 (ωn − qAt)2 φ∗n(x)φn(x) . (26)

Inserting the solution of Klein–Gordon equation (15) and the normalization
coefficient C in Eq. (21) into formula (26), neglecting higher corrections, one
gets

EC =
1

L

∞∑
n=1

(
nπ +

3ε2

8(nπ)3

)
= − π

12L
+

3ζ(3)ε2

8π3L
. (27)

The first term in Eq. (27) is the regularized Casimir energy respective to
the non-perturbative case, without an external field. It corresponds to the
Casimir energy of the scalar field in 1+1 dimensions. The second term is a
perturbative contribution under the Dirichlet boundary condition.

In conclusion, we have just derived the Casimir energy of the scalar field
under the Dirichlet boundary condition with an external potential using the
perturbative method in Eq. (27). The opposite signs of the non-perturbative
and perturbative terms reflect the fact that the electrostatic field lowers the
Casimir energy. Moreover, the absence of a linear term ε in (27) shows
that the Casimir energy does not depend on the alignment of the external
electrostatic field.
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2.2. Neumann boundary condition

In this section, we consider the Casimir effect under an external field by
the Neumann boundary condition. In particular, the scalar field satisfies the
following boundary condition:

∂xφ(x)
∣∣∣
x=0

= ∂xφ(x)
∣∣∣
x=L

= 0 . (28)

In this boundary condition, general solution (6) is written with notation (8)

J 3
4

(
κ+
Ωε

)
J− 3

4

(
κ−Ωε
)
−J− 3

4

(
κ+
Ωε

)
J 3

4

(
κ−Ωε
)

= 0 . (29)

For large arguments of the Bessel function approximation, the above equa-
tion is equivalent to{(

8Ω2 − 5
)
ε2 − 8Ω4

}
sinΩ + 5Ωε2 cosΩ = 0 , (30)

and yields solutions as follows:

Ωn = nπ +
5ε2

8(nπ)3
. (31)

Hence, the energy density of the field can be obtained as the solution of
the general equation (29) in a small ε approximation. Next, let us solve the
Klein–Gordon equation which satisfies the Neumann boundary condition.
Considering the external electrostatic field as a perturbation, we can find
the solution for the Klein–Gordon equation of the form as in (11) with the
following components:

φ(0)
n (ξ) =

√
2 coswnξ , (32a)

φ(1)
n (ξ) =

1

2
√

2w2
n

[
2
{

(ξ−1)ξw2
n−1

}
sinwnξ+(2ξ − 1)wn coswnξ

]
, (32b)

φ(2)
n (ξ) =

1

8
√

2w4
n

[
2(2ξ−1)wn

{
(ξ−1)ξw2

n−5
}

sinwnξ

+
(
w2
n

{
2(ξ−1)ξ

[
5−(ξ−1)ξw2

n

]
+1
}
−10

)
coswnξ

]
, (32c)

where wn = nπ. The components of energy density (12) have the same form
as in Eq. (31), especially

Ω(0)
n = wn , Ω(1)

n = 0 , Ω(2)
n =

5

8w3
n

, wn = nπ . (33)

It follows that, in the perturbative method, the energy density of the scalar
field, which satisfies the Neumann boundary condition, is re-examined in the
perturbative form (12) with the components in (33).
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We apply similar procedures to the Dirichlet boundary condition case.
First, deforming the classical solution in (32) to a quantum form and normal-
izing using (20) and applying formula (26), we can find the Casimir energy

EN
C =

1

L

∞∑
n=1

(
nπ − 5ε2

8π3n3

)
= − π

12L
− 5ζ(3)ε2

8π3L
. (34)

Result (34) suggests that the external potential enhances the Casimir energy
under the Neumann boundary condition.

Figure 1 shows Casimir energies as the functions of the linear electrostatic
field for both Dirichlet and Neumann boundary conditions. The right inset
illustrates the lowest mode for energy densities ωD

0 , ω
N
0 as a function of ε.

When dividing both results (27) and (34) by the difference of electrostatic
potential between two boundaries ∆φ, we can find the dependence of EC

∆φ

and ε in the left inset.
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Fig. 1. Casimir energies of the scalar field as a function of external potential in (27)
and (34). The right inset demonstrates the lowest energy densities, and the left
one illustrates the quantity of ratio between the Casimir energy per variation of
electrostatic field EC

∆φ as a function of ε.

2.3. Mixed boundary condition

In this section, let us consider another type of boundary condition which
is sometimes called the mixed or hybrid boundary condition. This boundary
condition consists of the Dirichlet boundary condition at x = 0 and the
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Neumann boundary condition at x = L

ψ(t, x)
∣∣∣
x=0

=
∂ψ(t, x)

∂x

∣∣∣
x=L

= 0 . (35)

The equation of energy density that satisfies this boundary condition from
general solution (6) is as follows:

J 1
4

(
κ+
Ωε

)
J 3

4

(
κ−Ωε
)

+ J− 3
4

(
κ−Ωε
)
J− 1

4

(
κ+
Ωε

)
= 0 , (36)

with κ±Ωε defined in Eq. (8). Hence, the simplified form of Eq. (36) at the
large argument approximation of Bessel function is given as

8Ω
(
Ω2 − ε2

)
cosΩ − ε (4Ω + ε) sinΩ = 0 . (37)

This equation gives a solution in a discretized form of Ω = Ωn as

Ωn = wn +
ε

2wn
+ ε2

(
1

8w3
n

− 1

2w5
n

)
, (38)

with wn = π
(
n+ 1

2

)
, n = 0, 1, . . .

The energy density for the mixed boundary condition depends on the
direction of the electrostatic field via the linear-dependent term in (38). This
does not occur in the cases of Dirichlet and Neumann boundary condition.

With small values of ε, the perturbative method gives the solution for the
Klein–Gordon equation, which has the same form as (11) and (12). First,
the wave function (11) has the following components:

φ(0)
n =

√
2 sinwnξ , (39a)

φ(1)
n (ξ) =

1

2
√

2w3
n

[(
(2ξ−1)w2

n−1
)

sinwnξ+2ξwn
(
1−(ξ−1)w2

n

)
coswnξ

]
, (39b)

φ(2)
n (ξ) =

[(
2ξ
(
2ξ2+ξ−3

)
+ 1
)
w4
n−2(ξ−1)2ξ2w6

n−2(ξ(ξ+3)+1)w2
n+5

]
sinwnξ

8
√

2w6
n

−
ξ
[
(ξ−1)(2ξ−1)w4

n − (3ξ+2)w2
n + 5

]
coswnξ

4
√

2w5
n

. (39c)

Let us recall that in mixed boundary condition, we used the notation wn =
π
(
n+ 1

2

)
, n = 0 , 1 , 2, . . . The energy density in Eq. (12) yields

Ω(0)
n = wn , Ω(1)

n =
1

2w2
n

, Ω(2)
n =

1

8w3
n

− 1

2w5
n

. (40)
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Repeating procedure with the previous cases, we obtain the Casimir en-
ergy as

EC =
1

L

∑
n

(
wn −

(
w2
n − 4

)
ε2

8w5
n

)

=

∞∑
n=0

wn
L

+
ε2

L

∞∑
n=0

(
1

w5
n

− 1

8w3
n

)
≡ E0 + Eε . (41)

Here, we have just split the Casimir energy into two parts: non-perturbative
energy E0

E0 =
∞∑
n=0

π

L

(
n+

1

2

)
, (42)

and perturbative term Eε

Eε =
ε2

L

∞∑
n=0

(
1

w5
n

− 1

8w3
n

)
= −

(
7ζ(3)

8π3
− 18ζ(5)

π5

)
ε2

L
. (43)

The perturbative term is convergent. However, the non-perturbative term E0

is divergent, which therefore should be regularized. Applying the modifica-
tion of the Abel–Plana formula [17]

∞∑
n=0

F

(
n+

1

2

)
−
∞∫

0

F (t)dt = −i
∞∫

0

dt

e2πt + 1
[F (it)− F (−it)] , (44)

we can take the sum over half-integer numbers for E0 to get

E0 =
LΛ2

UV

2π
+

π

24L
. (45)

The divergent term in (45) has the same form as those in the Dirichlet or
Neumann boundary conditions. Therefore, it is equal to the contribution
of the free space, without boundary. The Casimir energy of the scalar field
under the mixed boundary condition is positive. It is obvious that the
respective Casimir force is the repulsive [12]

E0 =
π

24L
. (46)

In short, the Casimir energy for the scalar field under the mixed boundary
condition has the form of

EM
C =

π

24L
−
(

7ζ(3)

8π3
− 18ζ(5)

π5

)
ε2

L
. (47)
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Figure 2 illustrates the Casimir energy in (47) as a function of ε. The inset
describes the lowest level of the energy density in (38). Although the energy
density in (38) depends on the direction of the external field via the sign of
ε, the total Casimir energy in (47) does not.
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Fig. 2. Casimir energy for scalar field with the electrostatic perturbation by mixed
boundary conditions from result (47), while the inserted plot shows the lowest
energy density of the system in (38).

3. Casimir effect of a scalar field under a non-linear potential

In the previous section, we have studied the Casimir effect under a linear
perturbation electric field. In this section, we consider that the system
resides in a thermodynamic equilibrium with the effective local chemical
potential µ(x) = φ(x) [10].

Our configuration is assumed to be a semi-metal in the form of a slab of
a finite length L in the x direction (0 ≤ x ≤ L). The electrostatic potential
∆φ ≡ φ(L) − φ(0) is applied to the opposite boundaries x = 0, L of the
slab. For the sake of simplification in the later calculation, we set φ(L) =
∆φ , φ(0) = 0. In this assumption, the external field has a form of

A0 = ∆φh(ν)

(
B
(x
L

; 1−ν, 1−ν
)
−B

(
1

2
; 1−ν, 1−ν

))
, (48)

where ∆φ is the electrostatic potential, which is also a perturbation,

B(z; a, b) =

z∫
0

ta−1dt

(1− t)b−1
(49)
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is the Euler incomplete beta function, and

h(ν) =
Γ (2− 2ν)

Γ 2(1− ν)
≡ 1

B(1− ν, 1− ν)
(50)

is the normalization coefficient expressed via the gamma function Γ (x) and
the beta function B(a, b) ≡ B(1; a, b). The field of interest is considered
inside the region of 0 ≤ x ≤ L, therefore, the electrostatic potential in (48)
can be approximated as

A0(ξ) = ∆φ

[
22ν
(
ξ − 1

2

)
B(1− ν, 1− ν)

+
22ν+2ν

(
ξ − 1

2

)3
3B(1− ν, 1− ν)

+O
(
ξ − 1

2

)5
]

≡ ∆φk (ξ, ν) + ∆φO
(
ξ − 1

2

)5

, (51)

where

k (ξ, ν) ≡
22ν
(
ξ − 1

2

)
B(1− ν, 1− ν)

+
22ν+2ν

(
ξ − 1

2

)3
3B(1− ν, 1− ν)

. (52)

The Klein–Gordon equation under external potential (51) can be represented
in a dimensionless form

∂2
ξφ (ξ) + (Ω − ε k (ξ, ν))2 φ (ξ) = 0 . (53)

In an assumption that the electrostatic potential is a perturbation, we have
∆φ � 1, therefore, ε � 1. We can solve this equation by perturbative
expansion (11) and its energy density (12). Next, after putting our solution
into quantum representation, we can normalize the field by condition (20)
to find the coefficient C. Finally, we can obtain the Casimir energy from
Eq. (26).

In the remainder of this section, we provide energy densities and Casimir
energies for three kinds of boundary conditions as follows.

Dirichlet boundary condition

The solution of the Klein–Gordon equation (53) which satisfies the Dirich-
let boundary condition gives the energy density

ωD
n =

wn
L

+
ε2

L
fD
n (ν) , (54)

with

fD
n (ν) ≡ 20(23ν+30)νw2

n−2940ν2− ((17ν+70)ν+45)w4
n

15B2(1−ν, 1−ν)23−4νw7
n

, (55)

and wn = nπ ,
(
n = 1 , 2 , . . .

)
.
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The Casimir energy of the scalar field can be represented by

ED
C (ε, ν) = − π

12L
+
ε2

L
gD(ν) , (56)

with

gD(ν) ≡ 3ζ(3) 24ν

8π3B2(1− ν, 1− ν)

+
ν
{
π4(17ν+70)ζ(3)−20π2(23ν+30)ζ(5)+2940νζ(7)

}
30π8Γ 2(1−ν)Γ−2

(
3
2−ν

) . (57)

The result in expression (56) reflects that the Casimir energy for the scalar
field under the perturbation theory will be weakened when imposing the
Dirichlet boundary condition. As ν → 0, we get the result for the linear
potential case (27).

Neumann boundary condition

As with the Dirichlet case, the result for the Neumann boundary can be
summarized as follows. The energy density is

ωN
n =

wn
L

+
ε2

L
fN
n (ν) , (58)

with

fN
n (ν) ≡ 3060ν2+ (ν (23ν+90) +75)w4

n−180ν (3ν+4)w2
n

30πw7
nΓ

2 (1−ν)Γ−2
(

3
2−ν

) , (59)

and wn = nπ. Furthermore, the Casimir energy of the field in this case can
be summarized as

EN
C (ε, ν) = − π

12L
− ε2

L
gN(ν) , (60)

with

gN(ν) ≡ (23ν2+90ν + 75)π4ζ(3)−180π2(3ν2+4ν)ζ(5)+3060ν2ζ(7)

30π8Γ 2(1−ν)Γ−2
(

3
2−ν

) . (61)

This result indicates that the Casimir energy for the scalar field is enhanced
as the external potential is applied. The intuitive behaviors of results in (56)
and (60) for several values of ν, in particular, ν = {0.1 ; 0.2}, are illustrated
in Fig. 3. The amplitude of the Casimir energy for two boundary conditions
shows the difference: the Dirichlet boundary condition depresses, while the
Neumann boundary condition boosts the Casimir energy of field. The inset
demonstrates the dependence of ν for functions EC

q∆φ in unit of ε. As ν→1,
the perturbative contribution vanishes, the system becomes the normal
Casimir effect.



354 Nguyen Huu Ha

LEC
D(ϵ,0.1)

LEC
D(ϵ,0.2)

LEC
N(ϵ,0.1)

LEC
N(ϵ,0.2)

X=D

X=N

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

-0.32
-0.30
-0.28
-0.26
-0.24
-0.22
-0.20

ν

E
C
X
(ϵ
,ν
)

q
Δ
ϕ

0.00 0.02 0.04 0.06 0.08 0.10

-0.26200

-0.26195

-0.26190

-0.26185

-0.26180

-0.26175

-0.26170

-0.26165

ϵ

L
E
C

Fig. 3. Casimir energy of the scalar field under the Dirichlet and Neumann bound-
ary conditions under the beta-form potential for concrete values of ν = {0.1 ; 0.2}.
For the limit ν = 0, one gets the results in Section 2. The inserted graph shows
that quantity EX

C

∆φ varies as ν. X is the abbreviation for Dirichlet and Neumann,
respectively, X = {D; N}.

Mixed boundary condition

The energy density for the mixed boundary condition, in this case, has
a form of

ωM
n =

wn
L

+
ε

L
fM

1,n(ν) +
ε2

L
fM

2,n(ν) , (62)

with

fM
1,n(ν) ≡

22ν−1
(
(ν + 1)w2

n − 2ν
)

w4
nB(1− ν, 1− ν)

, (63a)

fM
2,n(ν) ≡ (ν(3ν+10)+15)w6

n−20(ν(5ν+9)+3)w4
n+60ν(7ν+6)w2

n−480ν2

30πw9
nΓ

2(1−ν)Γ−2
(

3
2−ν

) , (63b)

and wn = π
(
n+ 1

2

)
, n = 0 , 1 , . . . Hence, the Casimir energy yields

EM
C =

π

24L
+
ε2

L
gM(ν) , (64)

with
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gM(ν) =
Γ 2
(

3
2−ν

) (
620(ν(5ν + 9) + 3)ζ(5)− 7π2(ν(3ν + 10) + 15)ζ(3)

)
30π6Γ 2(1−ν)

−
Γ 2
(

3
2−ν

)
2ν
(
127π2(7ν + 6)ζ(7)− 4088νζ(9)

)
Γ 2(1− ν)π10

. (65)

The behavior of the Casimir energy to the external potential under the
mixed boundary condition is shown in Fig. 4. The graph illustrates two
interesting properties. First, similar to the linear case in the previous section,
the Casimir energy is enhanced by perturbative potential for the mixed
boundary condition. Second, when we increase ν, the amplitude of the
Casimir energy decreases which is shown in the inset.

EC
M(ϵ,0.1)

EC
M(ϵ,0.2)

EC
M (ϵ,ν)

qΔϕ

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.13

0.14

0.15

0.16

0.17

ν

E
C
M
(ϵ
,ν
)

q
Δ
ϕ

0.00 0.02 0.04 0.06 0.08 0.10

0.13090

0.13095

0.13100

0.13105

ϵ

L
E
C

Fig. 4. Casimir energy for the scalar field satisfying mixed boundary condition is
exhibited for concrete values of ν. The inserted graph is the representation of the
function EC

q∆φ with a variable ν in unit of ε.

4. Conclusion

We have examined Casimir effects of the charged scalar (bosonic) field
influenced by external electrostatic fields using the perturbation theory. The
external fields implemented in this paper include linear and non-linear elec-
trostatic fields. There are three kinds of boundary conditions: Dirichlet,
Neumann and mixed boundary conditions.

The results show that under perturbations, beyond recovering the nor-
mal Casimir energies, the perturbative energy contributions are obtained
and the amplitude of the Casimir energy strongly depends on the type of
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boundary conditions. In particular, the external field lowers the Casimir en-
ergy under the Dirichlet and mixed boundary conditions while, on the other
hand, strengthens it under the Neumann boundary one. The dependence on
“conformal screening exponent” ν, to Casimir energies is also described in
this study, by which it can be stated that the contribution of ν lowers the
Casimir energies. The parameter ν, in this case, is taken to be the small
variables.

Another point worth mentioning in this study is that the formula to
determine the Casimir energy is different from the normal summation by
modes EC =

∑
n ωn. For the presence of the external potential, the Casimir

energy is determined by expression (26).
It would be interesting to extend this study to include higher dimension

cases to better understand the behavior of the Casimir energy with pertur-
bative contributions. Furthermore, one can also apply the electrostatic field
into fermionic fields.

The author is grateful to Maxim Chernodub for his guidance and dis-
cussions on the study. He would also like to thank Stam Nicolis for useful
comments.
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