
Vol. 52 (2021) Acta Physica Polonica B No 5

THREE NUCLEON SCATTERING USING
A “THREE-DIMENSIONAL” APPROACH —

CHALLENGES

K. Topolnicki

M. Smoluchowski Institute of Physics, Jagiellonian University
30-348 Kraków, Poland

(Received March 31, 2021; accepted May 5, 2021)

The so-called “three-dimensional” (3D) treatment of elastic nucleon–
deuteron scattering and nucleon-induced deuteron breakup reactions has a
potential to resolve certain issues related to the full understanding of these
processes. 3D calculations, by working directly with the three-component
momentum vectors of the nucleons, are in principle equivalent to using all
partial waves simultaneously. It is expected that the advantages of the 3D
formalism will be apparent for higher energies where traditional calculations
require many partial waves to converge. The 3D description of neutron–
deuteron scattering using first-order terms of the Faddeev equation seems
to demonstrate these benefits. This paper outlines the 3D description of
the elastic and the breakup channels of nucleon–deuteron scattering, points
to difficulties related to the construction of a numerical realization, and
suggests a workaround to some of these issues.

DOI:10.5506/APhysPolB.52.391

1. Introduction

An accurate description of three-nucleon (3N) scattering is based on the
Faddeev equation. Neglecting the 3N potential energy, this equation has the
form [1] of

Ť | q0;φ〉 = ťP̌ | q0;φ〉+ ťP̌ Ǧ0Ť | q0;φ〉 , (1)

where | q0;φ〉 is a 3N state composed from the deuteron in the space of
particles 2, 3 and a free particle with momentum q0 in the space of particle 1.
The capital Ť is the 3N transition operator (the inverted hat symbol is
used to distinguish operators from unit vectors), ť is the two nucleon (2N)
transition operator, satisfying the Lippmann–Schwinger equation and acting
in the space of particles 2 and 3, Ǧ0 is the free propagator and, finally, P̌ is
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a permutation operator composed from operators P̌ij that exchange particles
i and j

P̌ = P̌12P̌23 + P̌13P̌23 . (2)

The scattering amplitude Ť | q0;φ〉 is the central object in equation (1),
and together with the breakup operator Ǔ0 and the elastic scattering op-
erator Ǔ , it can be used to calculate observables in both the breakup and
elastic channels of 3N scattering via the matrix elements [1]

〈φ0 | Ǔ0 | q0;φ〉 = 〈φ0 |
(
1̌ + P̌

)
Ť | q0;φ〉 , (3)

〈q′0;φ | Ǔ | q0;φ〉 = 〈q′0;φ | P̌ Ǧ−10 + P̌ Ť | q0;φ〉 . (4)

The state 〈φ0 | in (3) describes the motion of three free particles and in (4)
the free particle has a different momentum q′0 in the final state.

Solutions to equation (1) obtained using partial wave decomposition are
available in the literature (see e.g. [1] and references therein). However,
solving this equation using the so-called “three-dimensional” (3D) approach
might provide new insights and more precise predictions that are necessary
to verify new models of nuclear interactions against experimental data, es-
pecially in cases where traditional calculations require many partial waves
to converge. An additional benefit of this approach is the possibility to skip
the partial wave (PW) decomposition procedure for newly derived forces
allowing researchers to perform calculations with new interactions in less
time. These benefits are a result of the 3D formalism working directly with
the three-component nucleon momentum vectors and by choosing two- or
three-nucleon momentum eigenstates as the working basis in the calcula-
tions. This choice makes 3D calculations, in principle, equivalent to using
all partial waves simultaneously. In practice, this is of course limited by the
number of computing resources available. For an introduction to 3D calcu-
lations, please refer to [2] and references therein. More information on the
3D treatment of two nucleon systems, the 3H bound state, the 3He bound
state with a screened Coulomb potential, and first-order neutron–deuteron
scattering calculations can be found in [3–6].

An iterative approach to solving (1) with Padé summation or Krylov sub-
space methods will generally involve the repeated applications of operators
from the right-hand side of this equation. This is the case for both tradi-
tional PW calculations and 3D calculations. Unfortunately, 3D calculations
using only the first order of this equation and assuming

Ť | q0;φ〉 ≈ ťP̌ | q0;φ〉

are already quite complicated [6]. Going to the next order of the calculation

Ť | q0;φ〉 ≈ ťP̌ | q0;φ〉+ ťǦ0P̌ ťP̌ | q0;φ〉
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or higher orders introduces a substantial increase in the complexity of an-
alytical expressions that make practical numerical implementations within
the 3D formalism prohibitively difficult. Recently, following [7, 8], a tem-
plate that can fit Ť | q0, φ〉 at all orders of the calculation was proposed
in [9]. This development can be used in solving problems related to the 3D
description of neutron–deuteron scattering and was important for two rea-
sons. Firstly, higher-order calculations or calculations that attempt to solve
the entire Faddeev equation by reducing its dimensionality via Krylov sub-
space methods are necessary in order to obtain a precise description of 3N
scattering. The operator form from [9] can be used to keep the complexity
of analytical expressions constant across all orders and/or iterations of the
calculation. Secondly, the operator template from [9] reduces the number
of numerical resources required by the calculations by taking into account
rotational symmetry.

This paper outlines problems related to the construction of a practical
numerical implementation of a solution to the full Fadeev equation that is
based on the operator template from [9]. The text is organized as follows.
Section 2 contains a discussion of the postulated form of the 3N scattering
amplitude. Next, Section 3 outlines problems with a practical numerical
implementation of the calculation and suggests a partial solution. Finally,
Section 4 contains the summary and outlook.

2. The operator form of the 3N scattering amplitude

Arguments presented in [9] lead to the following form of the 3N transition
amplitude:

〈pq | Ť (E) | q0;φ〉 =
∑
γ

64∑
r=1

τγr (E,p, q, q0) | γ〉 ⊗
(
Ǒr(p, q, q0) | s〉

)
, (5)

where E is the 3N energy and τγr (p, q, q0) are scalar functions of the final-
state momenta p, q and the momentum of the free particle in the initial
state is q0. Furthermore, 〈pq | is a product state of Jacobi momenta, | γ〉
is one of the eight possible isospin states of the 3N system and, finally,
Ǒr(p, q, q0) | s〉 is a spin state in which one of the 64 operators Ǒr(p, q, q0)
(listed in Appendix A in [9]) acts on a given 3N spin state | s〉.

The operator from (5) can be inserted into both parts of the right-hand
side of (1)

ťP̌ | q0;φ〉 , (6)
ťP̌ Ǧ0Ť | q0;φ〉 (7)
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and numerical tests can be performed to verify whether the resulting states
still match (5). In order to achieve this, it can be assumed that for a given
2N energy E2N, the 2N transition operator ť can be written in the following
general, isospin conserving form in the space of two particles [10]:

〈k′ | ťγ2N
(
E2N

)
| k〉 =

6∑
i=1

tγ2Ni

(
E2N, k′, k, k̂′ · k̂

)
w̌i
(
k′,k

)
. (8)

In (8), γ2N is a given 2N isospin state, k′, k are relative particle momenta
in the final and initial state, tγ2Ni (E2N, k′, k, k̂′ · k̂) are scalar functions of the
initial and final momenta and, finally, w̌i(k′,k) are known 2N spin opera-
tors. More precisely, in the combined isospin–spin space of the 3N system,
equation (8) turns into

〈p′q′ | ť(E) | pq〉 =

6∑
i=1

4∑
γ2N=1

tγ2Ni

(
E − 3

4m
q2; p′, p, p̂′ · p̂

)
δ3
(
q′ − q

)
×
(

1̌particle 1 ⊗ (| γ2N〉〈γ2N |)particle 2,3
)3N isospin

⊗
(

1̌particle 1 ⊗ w̌i
(
p′,p

)particle 2,3
)3N spin

, (9)

where m is the nucleon mass and the subspaces corresponding to different
particles are marked explicitly together with the association to either the
3N spin or isospin spaces.

Since the isospin part, | γ〉, of (5) cannot depend on momenta, it is
much simpler than the spin part Ǒr(p, q, q0) | s〉. If the isospin dependence
is ignored, then checking whether (6) fits into the form of (5) reduces to
verifying if operators of the type of(

1̌⊗ w̌
)
P̌n
(
1̌⊗ b̌

)
(10)

can be written as a linear combination of scalar functions τ and operators Ǒ
from the set used in equation (5). Similarly, checking whether (7) fits into
(5) boils down to verifying if operators of the type of(

1̌⊗ w̌
)
P̌nǑ (11)

can be written in a similar way. In equations (10) and (11), w̌ are the
3N spin operators 1̌ ⊗ w̌i,j(p′,p) from (8) with the momenta having values
calculated by taking into account the permutations, P̌n is one of the two
3N spin permutation operators from P̌ = P̌12P̌23 + P̌13P̌23 ≡ P̌1 + P̌2, and,
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finally, b̌ is one of the two 2N operators appearing in the operator form of
the deuteron bound state [3]

| φ〉 =

∫
d3p

2∑
l=1

φl(|p|)b̌l(p) | p〉⊗ | 1md〉 , (12)

where md is the deuteron spin projection. The Kronecker product of b̌
and an identity operator 1̌ in equation (10) results in a 3N spin operator.
Operators of both types (10) and (11) are a result of plugging the operator
forms of the 3N scattering amplitude (5), the 2N transition operator (9) and
the deuteron bound state (12) into the Faddeev equation (1).

In order to verify that (10) and (11) can be written using (5), the spin
dependencies are removed by multiplying all equations from the left with
one of the Ǒ operators and taking a trace over spin states resulting in a
set of coupled linear equations for the scalar functions τ . Numerical tests
were conducted, where random values for selected vectors were assumed
with the remaining vectors calculated by taking into account the permuta-
tion operators. In the tests, the scalar function values in (5) were calculated.
Successfully running the tests a number of times, each time drawing different
random values of the chosen vectors, suggested that the postulated operator
form for the 3N scattering amplitude is correct and can be used in the con-
struction of a numerical solution to the full Faddeev equation. However, for
certain cases, the random values of momentum vector coordinates resulted
in badly conditioned 64 × 64 matrices A whose elements are calculated by
taking a trace over the spin states of the 3N system

Aij ≡ Tr
(
ǑiǑj

)
, (13)

where the trace operation over the spin states is used to remove spin depen-
dence from the calculation. Since in practical calculations the inversion of
the A matrix (13) would have to be performed many times, it is important
to understand where the problem with these matrices originates.

3. Numerical considerations

Further investigations showed that the determinant A drops sharply to
zero when the vectors p, q, q0 approach directions in which they are parallel
to each other. This is not a new predicament, similar problems were encoun-
tered in some other 3D calculations but were alleviated when the relevant
inverted matrix was multiplied by a separate array of scalar coefficients later
in the calculation. This multiplication was typically performed analytically
using symbolic programming inside Mathematica [11] and canceled out most
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of the singularities. Unfortunately, the size of the A matrix does not allow
direct analytical inversion. Additionally, each element of the inverted matrix
would be a very complicated expression that could not be easily handled or
simplified inside Mathematica [11].

A partial solution to this problem was found on the math.stackexchange
mathematics forum [12]. The first step involves identifying all non-zero
elements of A as shown in Fig. 1. Next, the algorithm separates the domain
of A into seven vector subspaces such that if A is applied to a vector from
a given subspace, then the resulting vector is also a member of the same
subspace. As a result, the seven subspaces correspond to the seven blocks
from the block-diagonal form of A in Fig. 2. The relation between the block
diagonal form Ad and the original matrix A is:

Ad = P−1d APd , (14)

where Pd is the matrix form of the following permutation operator written
using cycles:

P̌d = (3 5)(4 8)(7 9)(12 14 20)(13 17 28 45)

(15 24 27 43 22)(16 26 18 42)(19 44)(23 25 29) .

Fig. 1. (Color online) Non-zero elements of the A matrix are marked using gray/red
squares.

math.stackexchange
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Fig. 2. (Color online) Block diagonal form of A : Ad = P−1
d APd. Non-zero elements

are marked using gray/red squares.

The matrix form of this permutation is easy to obtain. Starting with a null
64 × 64 matrix, the number 1 is placed in appropriate rows and columns
for each permutation of every cycle. For example, taking the fourth cycle
(12 14 20), there will be a 1 in Pd 12,20, Pd 14,12 and Pd 20,14 and when
taking the second cycle (4 8), there will be a 1 in Pd 8,4, Pd 4,8. Additionally,
since index values that do not appear in equation (15) are not permuted,
a 1 should be placed in appropriate places on the diagonal. The inverse of
this permutation is also easy to work out by simply reversing the cycles

P̌−1d = (3 5)(4 8)(7 9)(12 20 14)(13 45 28 17)

(15 22 43 27 24)(16 42 18 26)(19 44)(23 29 25) .

Inverting a block diagonal matrix Ad amounts to inverting each block sep-
arately. The inverse of the original matrix is then obtained via the relation

A−1 = PdA
−1
d P−1d . (15)

Using this approach, it was possible to invert all but the largest block
of Ad. Here, new techniques need to be devised to handle the analytical
inversion and simplification of this 36× 36 matrix. Current efforts ran into
problems related to the very large size of the resulting Wolfram Language
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expressions. Working out and simplifying these expressions using standard
algorithms was exhausting the time constraints of the calculation. Invert-
ing the smaller blocks was greatly helped by identifying 16 distinct scalar
expressions that make up the elements in A but unfortunately this was not
enough to conclude the inversion of the largest fragment.

A separate obstacle in the implementation of a 3D numerical descrip-
tion of nucleon–deuteron scattering is the computational size of the prob-
lem. Solving the Faddeev equation (1) requires working out the τ functions
from (5). Since these are scalar functions, instead of three vector arguments
six real arguments are necessary, a typical choice [13] might be

|p| , |q| , |q0| , p̂ · q̂0 , q̂ · q̂0 , p̂× q0 · q̂ × q0 . (16)

In the numerical realization, each of these arguments needs to be discretized
and the τ functions represented as a multidimensional arrays. Consequently,
(1) turns into a very heavy numerical problem even though the calculation
can be performed separately for some arguments (for example, |q0|). In
addition to this, handling the so-called “moving singularities” (as described
e.g. in [13]) requires the implementation of multidimensional interpolations
that work efficiently on a large computing cluster and can simultaneously
utilize both the MPI and OPENMP protocols. These are, however, technical
problems that can be solved by using appropriate libraries (an attempt at a
Fortran/Wolfram Language library implementing these permutations is avail-
able upon request) and by allocating an appropriate amount of computing
resources.

4. Summary and outlook

The “three-dimensional” description of the neutron–deuteron scattering
process has potential to bring new insights into this process. Contrary to
traditional calculations that utilize a finite set of partial waves, the “three-
dimensional” calculations work directly with the three-dimensional degrees
of freedom of the nucleon. This makes such calculations, in principle, equiv-
alent to using all partial waves simultaneously. In practice, this property
is of course limited by the available computing resources, nonetheless, the
“three dimensional” might be able to more precisely describe certain kine-
matical situations. Additionally, the construction of a numerical solution to
the Faddeev equation that uses the “three-dimensional” approach would be
a valuable tool to test new models of nuclear forces since it does not require
the potentials to undergo the partial wave decomposition procedure. Achiev-
ing these goals will require some fresh ideas in order to overcome problems
related to the size and complexity of the resulting numerical problem and
issues related to the inversion of the A matrix.
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