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The point of view that weak interactions must have a second threshold below 300 —-
600 GeV is developed. Above this threshold new physics must come in. This new physics
may be the Higgs system, or some other nonperturbative system possibly having some similari-
ties to the Higgs system. The limit of large Higgs mass is thought to be relevant in this context.
Radiative corrections proportional to m? and In m?, m being the Higgs mass, are calculated.
Contemplation of the theory in the limit of large Higgs mass suggests that the “new physics”
may contain breakdown of y-e universality and other than V-A neutrino interactions already
at relatively low energies.

1. Introduction

The work of ’t Hooft on the renormalization of gauge theories [1] has resulted in
a fundamental change in theoretical elementary particle physics. Gauge theories of weak
and e.m. interactions [2] have become credible’, and the so-called standard model [3]
including a color gauge theory of strong interactions is now very popular. The observation
of neutral currents [4], as well as the apparent experimental verification [5] of the prophetic
paper of Gaillard, Lee and Rosner [6] concerning charm [7] is most encouraging.

In spite of these successes we must be careful to maintain an objective attitude. What
can be concluded given that neutral currents and charm exist as required ? From a phenom-
enological point of view we can say that the data fit a current-current type model, where
the currents satisfy an algebra as required by a gauge theory. But we have no direct evidence
for the existence of vector bosons, and the Higgs mechanism is experimentally totally
unverified. The vector boson hypothesis may perhaps be verified with the new accelerators

* Address: Instituut voor Theoretische Fysica, Sorbonnelaan 4, de Uithof, Utrecht, The Netherlands.
! Obviously, a theory with unknown calculational rules can hardly be credible. Such was the state of
affairs before the work of Ref. [1].
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presently under construction. Even if the energy is insufficient to actually create the vector
bosons, the energy dependence as implied by the propagator structure (—s+M?)-! is
perhaps observable. It must be emphasized that this is an even more important issue
than the observation of weak and e.m. interference. It would, in fact, constitute the obser-
vation of the first threshold of weak interactions, where the four fermion theory ceases
to be valid and vector bosons are essential.

This article is directed towards the question of the existence of a second threshold,
related to the Higgs mechanism. Things may conveniently be formulated as follows.
At low energies the four fermion current x current theory is perfectly adequate to describe
the data. This theory is non-renormalizable, which means that there exists a threshold
energy above which new physics must enter. Let us call this threshold E,, and let us for
the sake of argﬁment assume that for £ > E, there would be no weak interactions. In
such a theory radiative corrections would be a function of E,, and due to the non-renor-
malizable character of the theory these radiative corrections would become arbitrarely
large as E, is increased. The observed smaliness of these corrections implies then an upper
limit for E,. Above this limit the theory cannot be the four fermion theory, and new physics
must enter.

From this point of view there are several modifications of the theory that help to push
up the allowed value of E,. First one may introduce intermediate vector bosons, and
secondly the couplings of these vector bosons to fermions and themselves may be made
according to a Yang-Mills structure. Apart from the vector boson and fermion mass
terms one has then a gauge theory. If the existence of the vector boson is experimentally
established then we are very close to the experimental verification of such a model. The
vector boson mass is our first threshold. We will designate this model as the massive
Yang-Mills theory.

Now the analysis of the massive Yang-Miils theory given before [8] has shown that
also this theory is non-renormalizable. That means that there must still be a threshold
energy E, above which new physics must necessarily enter. What are the reasonable
candidates for a theory above this threshold? Essentially there are two possibilities:

(i) the massive Yang-Mills theory augmented with a Higgs mechanism, which theory
has proven to be renormalizable [1], and

(ii) a pure massless Yang-Mills theory.

Objectively speaking we have no way of deciding between these possibilities.

It is perhaps necessary to elaborate slightly on possibility (if). It has been shown that
the mass-less theory is not the limit of the massive theory [9], no matter how large the
energy is relative to the masses. We do not want to discuss this here at length, but only
note that the essential difference is in the existence of two or three polarization states
of the vector boson. Case (i) would correspond to disappearance, in some way or other,
of the third state of polarization of the vector bosons. Bound states could be crucial in
this context.

A convenient way of regularization of the massive Yang-Mills theory is in fact the
Higgs mechanism. We may view then the Higgs mass as the parameter E,. An upper
limit for E, follows essentially from the observed smallness of radiative corrections. We
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are thus led to the study of gauge theories as a function of the Higgs mass, in the limit
of large Higgs mass.

Actually, the situation is quite complicated. It has been shown that in a massive
Yang-Mills theory without mass terms for the leptons there are no non-renormalizable
divergences at the one loop level [8]. This situation is to all practical purposes unchanged
if a lepton mass is introduced, provided that the lepton mass is small with respect to the
vector boson mass. Therefore the increase in radiative corrections as a function of increasing
Higgs mass must come from two or more loop diagrams, and is thus suppressed by an
additional factor of at least g2 (g = coupling constant, presumably g?/4n%~1/45). In this
sense the new physics is screened off. However, inspection of the Higgs sector shows,
that for large Higgs mass we essentially obtain a strong interaction theory. Thus for very
large Higgs mass we have a strongly interacting system, screened off from direct observation
through a factor g2. Studying this is very much like studying strong interactions using
exclusively leptons. It is obvious that the study of strong interactions through radiative
corrections on pure lepton systems is a rather futile enterprise.

On the other hand, a strongly interacting system will in general have bound states
that may well be quite low in mass compared to the elementary constituents (i.e. the Higgs
particles in our case)®. Such low mass states would have striking properties: they would
be evident in neutrino physics, and they could perhaps result in explicit breakdown of
1t—e universality. Here there is an extremely interesting domain of speculation, and one
may even be tempted to identify a strongly interacting Higgs system with the usual strong
interactions. We will not enter into this any further, for the time being, but wish to emphasize
here only that one should always be very watchful for other than V — A currents in neutrino
reactions at very high energy, as well as a possible breakdown of —e universality, perhaps
even at relatively low energies.

There is one exception to the screening rule mentioned above, and that is in radiative
corrections to coupling constants and masses. Such quantities are considered to be renormal-
ized in the above mentioned result. Clearly, such corrections are unobservable, unless
the same coupling constant is supposed to appear at different places. Indeed, it turns
out that the coupling constant g of the vector boson to the leptons is affected differently
from the three W vertex coupling constant, as a function of large Higgs mass. There is
consequently an order g2 In m effect to the three W vertex relative to the W-lepton vertex
(m = Higgs mass).

Similarly, in the Weinberg model, the vector boson mass is related to the Higgs-
-lepton coupling. This relation turns out to have g?m? radiative corrections.

In the rest of the paper we will substantiate the various statements made above,
restricting ourselves to a somewhat simplified model of weak interactions. This model
is essentially the Weinberg model in the limit of zero weak mixing angle 6, and zero
electric charge. We believe that this is quite adequate to the purposes of this article. Inciden-
tally, there is no interesting radiative correction to the ratio of neutral to charged vector
boson mass in the Weinberg model, at least as a function of the Higgs mass.

2 In particular such seems to be the case in the usual Higgs system, as shown by preliminary investiga-
tions by G. Passarino and the author.
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2. The model

For the purposes of this paper we will use a simple SU, model, discussed before
in Sect. 6 of Ref. [1] as well as in Ref. [10]. This model contains three equal mass vector
bosons Wy, and one neutral physical Higgs particle Z. To this we add a fermion doublet
(like e—v, or u—v,). The resulting model is then equal to the Weinberg model in the
limit where the weak mixing angle 0,, and the electric charge e are simultaneously made to go
to zero, while g, the weak interaction coupling constant is held fixed. According to the
experimental data we have for g and the vector boson mass M:

M =~ 66 GeV, 2.1)

with error margins of about 15%. In Appendix A the model and its Feynman rules in
the ’t Hooft gauge are summarized.

For the purposes of Section 3 we simplify even further, by removing the Higgs particle
and its interactions, and then adding vector boson and fermion mass terms by hand.
The Lagrangian becomes

£ = —3GoGo,—T1.9"D, 1, —1_y"0,1 - —% MXW])? —m (ee) 2.2

Goy = O,W)—0,Wi+ ge WIWS,

ara 14y® (v
D”=0ﬂ—gWMT, ly = s

2 e

i i(w) W) —iw}
WmTa:“‘WaTa: e B H I‘)'
“ 2 " 2 (W‘}-’,—in -w,;}

It is perhaps worth mentioning that in the Weinberg model this matrix differs only in the
diagonal elements, which become

2 2

1 sT—c¢
— W) and -

4

W, 4254,
[4

for the 11 and 22 elements respectively. Here ¢ = cos §,, and s = sin 8, and A4, is the
electromagnetic field. Note that often Z, is used instead of W, for the neutral vector
boson.

Apart from the mass and source terms the Lagrangian (2.2) is invariant for the
infinitesimal gauge transformations:

Wi = Wi+ geae A" Wi —0,4°%,

i g
I, > 1, - EgA"r"lﬂ I, 1, + —2‘51+A“1“,

I —-1_. 2.3)
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The fermion mass term can be rewritten
— m? T 3 m(? x1 3
mgee) = —=(I-(1=) )+ 5= (L (1=7)L-) (24

which makes its transformation properties more transparent.
In the following the above Higgs-less model will be designated as the massive Yang-
-Mills model.

3. One loop divergencies

As argued in the introduction the massive Yang-Mills model as described in the
previous section is non-renormalizable and therefore can given an accurate prescription
of the data only up to some cut-off energy E,. Radiative corrections will blow up if E, is made
too high. A study of the infinities of the model will reveal where the radiative corrections
will be sensitive to this cut-off E,. The techniques for doing this are those of Ref. [8];
the only modification is that due to the fermion mass term. We will sketch the analysis
for one closed loop, and indicate at the end what happens for two or more closed loops.

Consider thus the Lagrangian (2.2), with the fermion mass term written in the form
(2.4). To this we apply an operator gauge transformation of the form (2.3) (Bell-Treiman
transformation) involving a set of scalar fields 4” divided by the vector boson mass M.
To first order in the fields 4° the Lagrangian (2.2) becomes

a a imeg T a.a i’nt’g 7 a_a,
L - LMW, AT 0 (J-(1—-7)A"1,)— g (A (1-t30). (3.
As shown in Ref. [8] this leads to a Ward identity which now involves also vertices of the
type A(l). Further Ward identities are obtained by an iterative procedure, and in the
second step one will meet vertices obtained from the above by a further gauge transformation
involving a set of fields B

geucB°W,0,4°—0,B0, A

megz

e (-1 =7)AT"B"’1,)+

+

2

Z’;fz (1, BT A1 — )LL), (3.2
We will not repeat the analysis of Ref. 8, and note only that in one loop diagrams in the
so-called unitary gauge the k,k, term in the vector boson propagator can be removed
at the expense of introducing vertices of the form as given by the above terms. The latter
two terms correspond to non-renormalizable type vertices, and they generate the non-
-renormalizable part of the massive theory at the one loop level. Specifically, we have
the diagram for fermion-fermion scattering
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It is logaritmically divergent, implying a behaviour of the form

2
m .
g* — InE 3.3)

as a function of the threshold E,. This is the only infinity apart from corrections to masses
and coupling constants. Because of the appearance of the ratio of the lepton to the vector
boson mass this contribution is extremely small and no sensible limit onto E, results.
For diagrams with two loops one encounters vertices obtained by two further gauge
transformations on the terms (3.2). Then other processes get In E, terms, and the fermion
process gets a contribution proportional to E?Z, but multiplied by an extra factor g2. One
gets, generally, for the fermion-fermion amplitude a series of the form
2 2 4
m E E
2 2t 4 ™
— {ME+g —+g —+ ...p.
gM“{ TE R TE A }
The same type of contribution will arise for any process, except that there will be more

factors g2, as the divergencies appear only in higher order. For instance, in the vector
boson propagator one will have a contribution of the form

E? E}
g‘tk4 {lﬂ E‘+g2 _I_VI-—Z "i'gAMf4 + .7,

which is a momentum dependence to the fourth power, normally not occurring in a renor-
malizable theory. However, there is at least a factor g* here, because it occurs for the
first time at two loop level.

What can be concluded from this? If there had been a contribution of the form
g2 EX[M? at the one loop level we would certainly have obtained an interesting limit for
E,, perhaps E, less than a few times the vector boson mass. As it is we cannot say very
much, except that we may expect considerable corrections if g2 E/M? 2 1. But then
perturbation theory breaks down, and our calculational methods are insufficient. Some
segment of the theory becomes a strong interaction type theory. We then have the situation
as described in the introduction. In such a case mass-spectra are more interesting, from
an experimental point of view.

On the basis of the above we would like to conclude, tentatively, that the Higgs mass
is less than the value which makes perturbation theory break down. Thus we require

2 2
£ 2 s,
4n M
where m = Higgs mass. This gives m < 300 GeV. We emphasize that this must be con-
sidered as an indication, and not as a very solidly established number.
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4. Radiative corrections to the vector boson mdass

In the Weinberg model the Higgs system contains only one multiplet, and due to this
limitation there are some specific relations concerning masses and coupling constants.
These relations are

2
P= M , (4.1)
cos? 0,
e 42
8 = 830 4.2

In here M, and M are the neutral and charged vector boson masses, g, is the Higgs-
-electron Yukawa coupling constant, and m, = electron mass. Note that the weak
mixing angle 0, can be determined from the structure of the neutral currents.

The relations (4.1) and (4.2) need not be true in general, so deviations to these relations
may be due to more complicated Higgs structures, or radiative corrections. We will consider
the second possibility, and compute the lowest order radiative corrections in leading
order with respect to the Higgs mass. It will be shown that there are g2m?/M? type radiative
corrections to the relation (4.2), such that g,, is larger than deduced from (4.2). The
relation (4.1) suffers no correction, which liberates us from the need to work in the full
Weinberg model, and we restrict ourselves to the simplified model with zero 8, and zero
electric charge.

The computation of the radiative corrections to the vector boson mass and g,, is
straight-forward. No g?m?/M? terms appear in the radiative corrections to m, or g.
Limiting ourselves to terms proportional to m? (the Higgs mass squared) relatively few
one-loop diagrams survive. They are listed in Appendix B. The relation (4.2) suffers two
corrections, namely a correction to M, and a correction to g,, due to the Higgs particle
wave function renormalization. The vector boson propagator becomes

1 1 5= gt m?
@emti K+M*(1+6)° 12827 M?

The Z-propagator

1 1 1
@2y 1-6" k24+m'?’

where m’ is the radiative corrected mass of the Higgs particle, and &’ is given by

5 = g'm* (, 3
T 16nM*\: 4 )’

The Zee coupling constant becomes

m 1 m m g*m? n/3
—f e~ g (1418 = el 3_
3 Ji=s - Eam 1Y) gZM{ +32n2M2(" 4 )}
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If we write g,, and M for the coupling constant and mass inclusive the above radiative
correction, then we have
§23.2]—\-l_ N . g'm® (. w3
% m (A+30)(A+36) ~1+16+40 =1+ 32n2M2(§ - ),
which is larger than one. If g2m?/n?M? becomes of the order one then the calculation is
meaningless because contributions of higher order in g become of order one also.

The conclusion Qf the above is this: in the limit of large Higgs mass the coupling of
the lepton system to the Higgs system suffers large corrections. Alternatively, one can
say that the vector boson mass gets a large contribution relative to the lepton mass. This
view leads us to suppose that perhaps the vector boson mass arises mainly from radiative
corrections, and this automatically raises the interest of any process that is supposedly
sensitive to the structure of the vector boson. In particular we may think of the 3W vertex
and further WWX vertices, where X stands for any combination of particles, and notably
involving Higgs particles. We will not investigate the latter, because the main interest
of such a vertex will be the case of very high Higgs mass, so that bound states arise. It
may well be that in that case the vector boson becomes a major tool for studying
the Higgs system.

5. Radiative corrections to the WWW vertex

The radiative corrections to the WWW vertex are proportional to g2ln m2/M?2. Of
course, as g’m?[n*M? becomes of order 1 we get further corrections of order g2 due to
higher order diagrams. Again, we must think of a series of the type mentioned in Section 3.
An accurate measurement of the WWW coupling constant relative to the W-lepton coupling
constant may be extremely difficult, but in principle we have here a truly weak radiative
correction of order a. In the unfortunate case that the Higgs mass is larger than 200 GeV
but not so large that low lying bound states appear then this measurement may well be
the only clue to the Higgs system.

As shown in Appendix C the vector boson propagator obtains a wave function renor-
malization amounting to a propagator factor

1 g>
—, 8=
1-¢ 192n

The 3W vertex, inclusive its lowest order radiative corrections proportional to ln m?

In m?.

g2
’ ’ 2
g(1+6), E = — -12—81;51Hm = '—‘%6.

The radiative corrections to a process like u-decay are
Yu

7
7-¢ “ W o ©

g
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The radiative corrections to ete~ — uv + uv are

2T r

-th

1

S

Thus in u decay the experimental coupling constant is

Bexp = g(l +% 8)

while the 3W coupling constant is unchanged
1 3/2
gcxp.3W = g(l +B') (1-—8> = g(l -% 8+% E) =

In the second process mentioned above one thus must measure a correction (I —4e) in

amplitude. Unfortunately, the interesting factor In m? appears in ¢ with the small coefficient
2 2

g 1 g L

= —— . A

2 ~ ~ 1074
1927  48n 4n  '°0 43

6. Conclusions

From the foregoing we can draw the following conclusions:

(i) Somewhere around or before 300 — 600 GeV new physics must necessarily appear.

(ii) This new physics may be the Higgs system as employed in the various models.
If the Higgs mass is less than 200 GeV (which we take as the practically reachable limit
of energy for an e*e~ machine) then it can perhaps be observed directly [11]. If the Higgs
mass is between 200 and 600 GeV then detection andfor investigation seems extremely
difficult, if not hopeless. If the Higgs mass is larger than 600 GeV we may hope for the
existence of low lying bound states, that may be detected if they are below 200 GeV.

(iii) The new physics may be something beyond perturbation theory (e.g. bound
states). Even if this new_physics is not a Higgs system we nevertheless expect that many
features will be like in the Higgs system. In particular, the large Higgs mass case may be
an attractive simulation for that case, because for large mass also bound states arise. The
physical phenomena arising in that case are plentiful and very interesting; however the
analysis has not yet reached a stage in which more precise statements can be made. But
it seems that breakdown of u—e universality, as well as other then V—A interactions
in neutrino eXperiments would be likely consequences, among others. It will be very
difficult to substantiate these speculations, because the calculation of physical effects
from a strongly interacting Lagrangian is far from a well established procedure. In any
case, it is interesting and stimulating to know that potentially the new physics needed
by weak interactions could plausibly involve effects normally taken to be absent.
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APPENDIX A

The model chosen as a basis for our computations is the model of Ref. 1, Section 6
enlarged with a lepton doublet. We then have essentially the Weinberg model in the simul-
taneous limit e » 0 and 6, — 0, that is weak interactions without electromagnetism
The Lagrangian is

L = L% C2+$ghost’

where C is the gauge fixing term and %, is the Faddeev-Popov ghost Lagrangian.
Further

Lo = ~F GuGlo=k MW= (0,20~ 4 m?Z*
1 08 (D) + 1 WLZOY 470, 2)
—1 WY +2%)—1 gMW?Z —aMgZ(y* +27)
—togt+ 2P -p[ 4@ 4+ B 2] -y
~@Fa)-meo)+ £ H+PIED

gm, , — gm
- Z(ee)—
2M (ce) 4

Me Yol HEapets® + ity —isp )1}
In here
W? = Wews, v’ =y, Gp, = 8, W =0, Wi+ gen oWy,

m2

=
m = Higgs mass, Z = physical Higgs particle, y = unphysical Higgs ghost, m, = electron

Diy = 0,9+ gea W, 9",  «

v . . . . . .
mass, [ = e"’ = lepton doublet, t* = Pauli spin matrices. The quantity s is a spurion,

with §' = s2 = 0 and s® = 1. B is a constant to be adjusted so that the total tadpole
contribution disappears. In lowest order f = 0.
For the gauge fixing term we take

C* = — 3, W+ My,

which is the ’t Hooft gauge. The transformation properties of the various fields under
infinitesimal gauge transformations A are.

W2 — Wi+ geaeA Wi —0,4°%
Y0 > Y+ ) geg A Y — % gZA - M A",
Z —» Z+% gAY,

- (1_ %gA"t“) L, o1, Iy=31£
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The choice of C and the transformation properties of the W and vy fields imply the trans-
formation property

C* - C'+ 02N~ M N*— gey O, (AW )+ Mge, Ay — 1 MgZ A%,
The ghost Lagrangian is then
ogghost = ¢:(62 - M2)®a + geabcan®:¢bwj+ % ngabc@:}:Qby"c -z gM@j¢aZ

The Feynman rules corresponding to this Lagrangian can now be written down

a b 0440
— @ W-propagator
é » K2+ M2 —ig
a b aab .
e PERg Y Higgs ghost propagator
AN ! Physical Hi t
S si r
Eimi—q Physical Higgs propagator
a (4 Ow F—P ghost propagator
Sm——p e kK*+M?*—ig
~iyk+m; lepton propagator

k*+m? m = m, for electron, = 0 for neutrino

o6p

ax - igaabc{éav(k—q)ﬁ+5ﬂy(q—p)z+6uﬁ(p_k)y}

k Yang-Mills three W vertex
cyq

a
Y 35 — 8 {Bqactop( 28,0 ps— BusBpy — B4015)
+ sgdbsgca(zaaﬁ 5)!& - Babéyﬂ - aa'ysﬂﬂ)}
cy Yang-Mills four W-vertex

dé
cq,
au -7 i g b
-/'(——'< N - "ﬁ‘ gﬁabc(p - q)a from E sach:(auip )w"'
bp™
g
ax i g
k ~ 5 8 0a5(P—4)a 2 W20,y ~y"0,2)
~
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ac
>< —3 8%0.100p — 1 2 WWSZ
o6
ax
>W. — gM 48,5 —1 gMW*W’Z
Y
a/
// 2
N —2aMgd,, —aMgZy
5
W/{ —6aMg —aMgZ?
a
™ b "’b/ 2 b, b
LK — 48’ (BapPcat Oacdbat Basloc)  —F g YYYY
-~ ~
- ~,

N

d
e
:b( < 080 ~Fag’y"yZ’
~
N W
()
:>< — 3ocg2 ""é" agzz-t

P . _p 3 ﬂzz
' 2
et o ipy
2M 2M
g g
Cq/
rd
aka :f +iKgEqpcPu - Kgaa,,c¢*"6 ‘,((Db W;)
o
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‘”“‘(\A —4 Mgd,, -3 Mg®;0,Z
>
’/ C
/k * <
qe-=—— -(\-L 1 Mgey,. + Mge Do Dy
\\b

i
‘"_.< Egy”(l+'y5)7:“
a
gm, be, : al ;a5
..... - EapcT S* + ity —is
a < i e Y 77)
7

gm, -3 (1—5"% lepton
2M couplings

From the experiment we infer

where we use

Further

If 6, # 0 then the neutral vector boson has a mass of 66/cos 8, = 80 GeV.

g? e? 1

4n 47 sin® 0, -

1

75

sin 0,, = 0.32+0.05.

140
M? = - zg GeV2?, M = 66+6GeV.
sin” 6,

APPENDIX B

One-loop radiative corrections
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For completeness we list all lowest order radiative corrections proportional to the
Higgs mass squared

(i) Tadpoles

The first

,"\
f AY

diagram gives

- 2‘—w(2n)4iﬂ.
g
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The constant § must be chosen such that the total is zero. This gives

) 3g%i ,  m*\ /2 ) s 3 , L, omt
@ntip = — T[(m + — ! —A-n° ) +n*m In M +n i Inm?|.

Note that these diagrams carry a combinatorial factor, see Appendix of Ref. 8.

(i) W-selfenergy

Ho Y u p
. 2
in
Sw=—g° 3 mzéuv

The second diagram has a combinatorial factor 1/2.

@iit) p-selfenergy

7N
j/’""‘\ o
—-—— ——— — _— [, SV BV S,
Y / = %
\\-’I

5 - , m? mPk?
¢ I VE

(iv) y— W transition

\ 7/

Since this is only one diagram we give the complete calculation, as an example

- igzaM j‘d"q 2(k+3q)“2 2
(g +k)"+m%) (¢"+M?)
ig?m? (k+2q), 2qk+k*
T M (qz+i4—23{ - ?Tn?‘}
ig2 m2

12
1
|

—5 | dua : —k 29,4,
4 M2 n (q2+nIZ) (q2+1\42) [ v q2+’n2

1
|
l

ig? m? e [a 1 4 1
4 M2 ) @+m?)(@*+M>  n (gP+m?)?

ig> m? 2n* 4 2n*
= - —%— %ik“[— n—-n4 +A+7*—n?Inm?— ~n—<~ h—gz +4—n*In mz)]

s 2 2 2 . 2 2

1 m T n m

=T gl 2T D ik
4 M
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(v) Z-selfenergy

'vww(:’ \\)'V‘NV MQM
Here we are interested in the wave function renormalization. We must develop
IAK?) = Eg(—m*)+(k* +m*)Zy(—m*)+ O((k* + m*)?).

The result is

4 2 2 2
TAK?) = 3 g o 27 (Mg M MM M
z =58 32 4 s z 2 2

n m m

o 2 m* 2in? +id | oy &

+g —| - — —i nm?—
Aol it L \/3

4 . 2
, mh, m? 3in 9in 2n 3 2
— (k" + —t ——{ 1= O((k

T8 Mz( )[81 * 8mz< 3\/ +OUK" +mYY).

(vi) Slavnov Taylor identities

A check on these results may be obtained by two S—T identities:

where the double line in the first diagram stands for multiplication with ik,. The right
hand side has no m? terms. Thus we must have

.2 .2 2
in [ in” m é
ik, [ —g* — m?*,, }-s—oe +M|g*>— — ik 2 =0
"‘( S I - w vE IR L S vy e

Similarly, the y— W and vy results are related.

APPENDIX C

Coupling constant corrections
We compute up to In m? First there are the triangle diagrams:

g.o.p

\ + permutations

3 27[2 X
FWWW = 'gg Eabe ( - “"‘i +A +% 7[2 __nZ In "12) {éay(k - l)/?+5ﬂy(l—p)a+aaﬁ(p-k)y}'
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The constant ¢ mentioned in Section 3 follows after division by (2n)*. Further there is
the W-wave function renormalization. One computes terms proportional to k? of one

diagram only.
L, = —

Neglecting constant terms and terms of higher order in k we get
.+ 2 2
ig 2n
Ew(kz part) = —1—5 k;‘kv (— -’-1-:4 +A ——nz In m2+% 7'[2)

ig? 22
- ]g_ 5wk2(— a1 +4-7*In m2+3§2—n2).

The part proportional to In m? is
.2
B (k26, —k k)n? In m?.
IV

Also here the results may be checked on a Slavnov-Taylor identity. This is more complicated
than in the previous cases and requires the calculation of the WWwy vertex corrections

The diagrams give

22 3

ng
24M In 'nzgabc{(kz - 12)6‘1?_%— pa(k b l)r_ % (k"' l)zpy}s

rwWW=

which is a multiple of the WW W vertex multiplied by p,. We leave it to the reader to check
the relevant S—T identity.

APPENDIX D

To compute the diagrams of the previous appendices to the order required some
simple tricks have been employed. First

1 m"/zr(1—_'21-> -

= e
dyq = 2= 2 :
q°+m r m

. g 2n? 2, .2 2
im o —A—n"+n°Ilnm” )} +0(n—4). (D)
n—
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In here 4 contains varions pieces coming from the development of 72 and I'(1—n/2)
around n = 4. In fact, the above equation defines 4. By differentiation with respect to m?>

1 . 2n? N 2
d”qi‘m=l '_n_4 +A4—-n‘Inm s (D2)

dq———l—‘—=inzi. (D3)
n (q2+'n2)3 2 2

m

Further, by explicit calculation

2in?

1
dg ———a———g = — —— +id+in’
j Vi emD (@M T n—a
m? M?
—TL'zi {mh’) mz— mlan}. (D4)

Subsequent results obtain through differentiation with respect to m? or M2, The integrals
encountered in the diagrams have momentum dependence. The trick is to move this
momentum dependence to the Higgs propagator and then to develop. For example,
to compute the y-selfenergy one must compute the following integral up to order 1/m?

4 1 _ (4 1 {1_k2—2kq+ }
f"q(qz+M’)((q—k)2+m2)_.[ D E M@ emH U amt T

The term kg gives zero, after symmetrical integration. We then have integral (D4) and &2
times the integral obtained from (D4) by differentiation with respect to m2.

For the Z selfenergy diagrams, where k2 = —m? must be taken one can not apply
the above, but there the computation is straightforward and conventional.

For the triangle diagrams one proceeds as follows. The non-Higgs propagators are
taken together by means of the Feynman trick. That reduces the problem to the type
mentioned above. After working out the terms of the required order in m? there is no
trouble in doing the Feynman parameter integration.
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