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Martinus Veltman was the first to point out the inconsistency of the
experimental value for the decay rate of π0 → γγ and its calculation by
J. Steinberger with the very successful concept of the pion as the (pseudo)
Nambu–Goldstone boson of the spontaneously broken global axial symme-
try of strong interactions. That inconsistency has been resolved by J. Bell
and R. Jackiw in their famous paper on the chiral anomalies. We review
the connection between the decay amplitudes of an axion into two gauge
bosons in Abelian vector-like and chiral gauge theories. The axion is the
Nambu–Goldstone boson of a spontaneously broken axial global symmetry
of the theory. Similarly as for the vector-like gauge theory, also in the chiral
one, the axion decay amplitude is uniquely determined by the anomaly of
the current of that global symmetry. Certain subtlety in the calculation of
the anomaly in chiral gauge theories is emphasised.

DOI:10.5506/APhysPolB.52.651

1. Introduction

In 1999, Martinus Veltman shared with Gerard t’Hooft the Nobel Prize in
physics for their contribution to the proof of renormalisability of non-Abelian
gauge theories. It is less remembered that he also was the first, together with
Sutherland [1, 2], to point out the inconsistency of the experimental value for
the decay rate of π0 → γγ and its direct calculation by Steinberger [3] with
the very successful concept of the pion as the (pseudo)Nambu–Goldstone
boson (PNGB) of the spontaneously broken global axial symmetry of strong
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interactions. That inconsistency has been resolved by Bell and Jackiw in
their famous paper on the chiral anomalies [4]. In beyond the Standard
Model theories there may be new PNGBs that play important roles in par-
ticle physics and cosmology. The most famous example is the QCD axion
that can solve the strong CP problem [5–7] and/or explain the origin of
dark matter [8–10] (for a review, see [11]). Axion-like particles (ALPs) may
also drive inflation [12, 13] or make dark matter dynamical [14–16]. The
important aspect of the ALPs physics is the link of their properties to the
chiral anomalies. The PNGB playing the role of the QCD axion must have
anomalous couplings to gluons, similarly as the pion to photons to explain
the π0 → γγ decay. Such couplings are not needed for the ALPs that play
the other roles mentioned above but their experimental signatures depend
on whether the anomalous couplings are present or not.

Extensions of the Standard Model with ALPs in the particle spectrum
have been under continuous research for various reasons. Some of them are:
a global symmetry as a remnant of gauge symmetries to protect the axion
potential against gravitational corrections [17–20], the potential link of ALPs
to the fermion mass theories [21], ALPs in chiral gauge theories [22, 23], and
the experimental signatures of ALPs.

In this brief review, we recall some selected topics and subtleties related
to the link between the properties of ALPs and the global chiral anomalies.
For simplicity (and capturing the main points), we work with global U(1)
and Abelian gauge symmetries.

2. Axion decay in gauge theories

2.1. Vector-like gauge theories

The model we consider first is defined by the Lagrangian with a local
U(1) symmetry

L = −1
4F

2
µν + ψ̄L /DψL + ψ̄R /DψR + |∂µφ|2 − V

(
|φ|2

)
−
(
yφψ̄LψR + h.c.

)
,

(2.1)
where Dµ = ∂µ − iqgAµ and the gauge symmetry is vector-like, that is the
gauge charges of the left- and right-handed Weyl fermions are: qL = qR ≡ q.
Without loss of generality, one can normalise the gauge charge as q = 1. The
scalar field φ is a singlet of the gauge symmetry. The Lagrangian is classically
invariant under two orthogonal vector and axial global symmetries, U(1)V
and U(1)A, respectively, defined by the transformations

ψL,R → eiQ
V,A
L,R θψL,R , φ→ eiQ

V,A
φ θφ, (2.2)

with the charges
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U(1)V : QV
R = QV

L ≡ QV , QV
φ = 0 ,

U(1)A : QA
R = −QA

L ≡ QA/2 , QA
φ = −QA . (2.3)

Without loss of generality, the global charges are normalised as QV =
QA = 11. In the Dirac fermion notation, ψ = (ψR, ψL)T, and U(1)V and
U(1)A transformations are written as ψ → eiQ

Vθψ and ψ → eiQ
Aγ5θψ, re-

spectively, where γ5 = iγ0γ1γ2γ3 = diag(1,−1).
Associated with those global symmetries, one can find the Noether cur-

rents

JV
µ = iQV

(
ψ̄LγµψL + ψ̄RγµψR

)
,

JA
µ = iQA

[(
ψ̄LγµψL − ψ̄RγµψR

)
+ i (φ∗∂µφ− φ∂µφ∗)

]
. (2.4)

Classically, these currents are conserved; ∂µJV
µ = ∂µJA

µ = 0 (classically).
Note that since there are two orthogonal U(1) symmetries, any linear

combinations of them are also classical symmetries of the Lagrangian. For
example, one can define the two symmetry axes as Q1

i = cosϕQV
i − sinϕQA

i
and Q2

i = sinϕQV
i +cosϕQA

i with i = L,R, φ. The corresponding symmetry
currents J1

µ = cosϕJV
µ − sinϕJA

µ and J2
µ = sinϕJV

µ + cosϕJA
µ are also

conserved classically.
Among infinitely many choices of global symmetry axes, U(1)V and

U(1)A directions are special since a non-zero vacuum expectation value of
the field φ

φ =
1√
2

(f + σ) eia(x)/f (2.5)

breaks spontaneously the U(1)A, while its orthogonal one, U(1)V, remains
unbroken2. The physical spectrum of the theory below the scale f contains
then the Nambu–Goldstone boson a(x) of the spontaneously broken U(1)A
symmetry, which we also call the axion, the massive Dirac fermion and the
massless gauge boson, γ. The Lagrangian for these fields takes the form of
(for definiteness, we put QA = −1)

L ⊃ −1

4
F 2
µν + ψ̄

(
γµDµ −

yf√
2

)
ψ +

1

2
(∂µa)2 − i y√

2
aψ̄γ5ψ + (· · · ) , (2.6)

where (· · · ) corresponds to the higher-order terms of the axion field. One
can give a small mass to the axion by introducing a term that explicitly
breaks U(1)A. For instance, with the term −

√
2εφ, the axion acquires the

mass m2
a = ε

f .
1 In this example, U(1)V transformation is a special case of the gauge transformation

with the constant gauge transformation parameter. Still, it is useful to talk about
the U(1)V global symmetry here for later discussions.

2 The more general case is discussed in detail in [23].
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The axion decay rate into two gauge bosons can be calculated in the stan-
dard way. From Lorentz and CP invariance, we see that the amplitude must
be proportional to εµνρσk

µ
1k

ν
2ε
ρ
1ε
σ
2 , where k1,2 are the photon momenta and

ε1,2 are their polarisation vectors. Since there is no direct coupling between
the axion and gauge bosons, the leading contribution to the amplitude is
given by triangle diagrams with fermions with mass M = yf/

√
2 running in

the loop. The coupling between the axion and fermions is given by −iy/
√

2,
as can be seen in Eq. (2.6), and the amplitude picks up this coupling. The
result reads

iM(a→ γγ) = q2 ig
2

4π2

(
y√
2

)
1

M

[
1 +O

(
m2
a

M2

)]
εµνρσk

µ
1k

σ
2 ε
ρ
1ε
σ
2 . (2.7)

Note that the leading order term is independent of the Yukawa cou-
pling y, since y in the numerator cancels the one in the fermion mass
M = yf/

√
2. We observe that this result can be obtained at tree level

by the effective Lagrangian with a term

Leff 3 q2 g2

16π2f
aFµνF̃

µν . (2.8)

Under the global U(1)A transformation, the axion field gets shifted as
a(x) → a(x) + fθ (with QA = −1). This shows that at the quantum level,
U(1)A is no longer a symmetry of the model. We see that the leading contri-
bution to the a→ γγ amplitude is directly related to this anomaly and that
link will be reviewed in more detail in the next section. This anomalous vio-
lation of a global axial symmetry reconciles an apparent inconsistency of the
decay rate for π0 → γγ with the concept of the pion as a (pseudo)Nambu–
Goldstone boson of the spontaneously broken approximate axial symmetry
of strong interactions of the light quarks [4].

One can highlight this point by considering a model with another fermion
pair (ψ′L, ψ

′
R) with the same gauge charge, q′L = q′R = q, and the opposite

U(1)A charge compared to those of the original pair, (ψL, ψR). Classical
symmetries allow the Lagrangian to have the Yukawa term

−
(
y′φ†ψ̄′Lψ

′
R + h.c.

)
. (2.9)

After φ acquires the v.e.v. in Eq. (2.5), the new fermions obtain the
mass M ′ = y′f/

√
2. Since they couple to φ† rather than φ (due to the

opposite U(1)A charge), the coupling to the axion has the opposite sign,
i(y′/

√
2)aψ̄′γ5ψ

′, compared to the previous case. The new fermions give the
same contribution to iM(a→ γγ) as Eq. (2.7) but with the opposite sign.
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The leading contributions to the iM(a→ γγ) from ψ and from ψ′ cancel
out. This is consistent with the fact that the theory with the new fermion
pair is free from the axial anomaly (see Sec. 3). The next-to-leading terms
in this case do not cancel and give

iM(a→ γγ) = q2 ig2

4π2f

[
m2
a

24

(
1

M2
− 1

M ′2

)
+O

(
1

M4

)]
εµνρσk

µ
1k

σ
2 ε
ρ
1ε
σ
2 .

(2.10)
Before closing this subsection, we comment on the case where the vector-

like U(1) gauge symmetry is broken by the Brout–Englert–Higgs mechanism.
This can easily be realised by adding to the above model (2.1) a new scalar,
φ′, with a non-vanishing gauge charge q′ 6= 0 and assume that φ′ gets a v.e.v.
The Yukawa term for φ′ is forbidden due to the non-zero gauge charge and
the previous calculation of the axion decay is not modified except that the
gauge bosons (we call them Z in this case) are now massive. We have

iM(a→ ZZ) = q2 ig2

4π2f
(1 +∆) εµνρσk

µ
1k

σ
2 ε
ρ
1ε
σ
2 (2.11)

with

∆ =
m2
a + 2m2

Z

24M2
+O

(
1

M4

)
. (2.12)

It is somewhat amusing that the expression of the leading term of the ax-
ion decay amplitude is unchanged from the previous case with the unbroken
U(1) despite the fact that gauge bosons in this case have a longitudinal com-
ponent. The latter effect is encapsulated in the polarization vectors ε1(k1)
and ε2(k2), which are different from the ones for massless gauge bosons in
Eq. (2.7).

2.2. Chiral gauge theories

When the gauge theory is chiral, the model of (2.1) needs extensions.
First of all, when the gauge charges of left- and right-handed Weyl fermions
that couple to a scalar, φ, are chiral (qL 6= qR), the guage invariance of the
Yukawa term requires that the scalar necessarily carries a non-zero gauge
charge, qφ = qL − qR 6= 0. Therefore, in this case, the v.e.v. of φ breaks
a global U(1)A spontaneously and also breaks the local U(1). Secondly,
since the gauge boson acquires a mass, for the axion (the pseudo-Nambu–
Goldstone boson of the U(1)A breaking) to remain in the physical spectrum,
one needs at least two scalars (or two phases) because one combination of
them is eaten up by the Brout–Englert–Higgs mechanism.
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We illustrate these points in an explicit model. Our model contains two
scalars (φ1, φ2) and one pair of fermions (ψL, ψR)3. We assume φ1 and φ2

have non-zero but different gauge charges qφ1 6= qφ2 and qφ1 = qL−qR 6= 0. In
this case, only φ1 can have a gauge-invariant Yukawa term with the fermions

L 3 −yφ1ψ̄LψR + h.c. . (2.13)

We assume both φ1 and φ2 develop non-zero v.e.v.s; 〈φi〉 = fi 6= 0 (i = 1, 2).
Writing φi = 1√

2
(fi+σi(x)) eiai(x)/fi , the phase degrees of freedom transform

as ai(x) → ai(x) + qφifiα(x) under the gauge transformation. Therefore,
defining

a(x) = cosϕa1(x)− sinϕa2(x) ,

ã(x) = sinϕa1(x) + cosϕa2(x) , (2.14)

with

cosϕ =
qφ2f2

f̃
, sinϕ =

qφ1f1

f̃
, f̃ =

√
(qφ1f1)2 + (qφ2f2)2 , (2.15)

ã(x) transforms as ã(x) → ã(x) + f̃α(x), while a(x) is invariant under the
gauge transformation. We can thus identify ã(x) as the would-be Nambu–
Goldstone boson to be eaten by the gauge boson and a(x) remains physical
in the low-energy spectrum.

Similarly as for the vector-like gauge theory, classically, the theory has
two global symmetries: U(1)V and U(1)A. The U(1)A symmetry (QA(ψR) =
−QA(ψL) = 1

2 , Q
A(φ1) = −1) is spontaneously broken by 〈φ1〉 = f1. The

Nambu–Goldstone mode of this broken symmetry is a1(x), which can be
expressed in terms of the physical field a(x) and the would-be Nambu–
Goldstone boson ã(x) as a1(x) = cosϕa(x) + sinϕã(x). At the leading
order, the interaction between the physical axion a(x) and the fermions is
given by

L 3 i
y cosϕ√

2
a(x)ψ̄LψR + h.c. = i

y cosϕ√
2

a(x)ψ̄γ5ψ . (2.16)

In the last expression, we combine theWeyl fermions into the four-component
Dirac spinor field as ψ = (ψR, ψL)T. In the Dirac spinor notation, the
fermion kinetic term is organised as

iψ̄γµ (∂µ − ig [α− βγ5]Aµ −M)ψ , (2.17)

where α = (qL + qR)/2, β = (qL − qR)/2 and M = yf1/
√

2.
3 We assume the existence of additional fermions that cancel the [U(1)]3 gauge anomaly.

Such fermions can always be introduced so that they do not couple to the scalars and
do not modify the axion decay.
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Understanding the axion–fermion and gauge boson–fermion interactions
in Eqs. (2.16) and (2.17), respectively, we are ready to compute the axion
decay amplitude, a → ZZ, in this scenario. A diagramatic calculation of
the amplitude is performed in Appendix and the result reads [23]

iM(a→ ZZ) =
i cosϕg2

4π2f1

[(
α2 +

1

3
β2

)
+∆

]
εµνρσε1µε

2
νq
ρ
1q
σ
2 , (2.18)

where ∆ are higher-order terms in m2
a/M

2 and m2
Z/M

2 given in Eq. (A.23).
It is not obvious how the leading term with the factor (α2 + β2/3) is

related to the chiral anomaly. In the next section, we provide a general
argument for the relation between the axion decay and divergences of three-
current-correlator and interpret the factor (α2 + β2/3) from the anomaly
view point.

3. Axion decays and chiral anomaly

Our starting point is the LSZ formula for the S-matrix element of the
axion decay a(p)→ Z(k1)Z(k2)

〈ε1(k1)ε2(k2)|S|a(p)〉 = εµ1 ε
ν
2

[
i

∫
dx e−ipx

][
i

∫
dy2 eik1y1

][
i

∫
dy1 eik2y2

]
×
(
2x +m2

a

) (
2y1 +m2

Z

) (
2y2 +m2

Z

)
〈Ω|T{a(x)Aµ(y1)Aν(y2)}|Ω〉 . (3.1)

The next step is to use the Schwinger–Dyson equations [24](
2x +m2

φx

)
〈φxφ1 · · ·φn〉 =

〈
L′int[φx]φ1 · · ·φn

〉
−i~

∑
j

δ4(x− xj)〈φ1 · · ·φj−1φj+1 · · ·φn〉 , (3.2)

and remove three (2 +m2) from the second line of Eq. (3.1). In the above
equation and hereafter, we use a shorthand notation for a Green function
of a time-ordered product 〈· · · 〉 ≡ 〈Ω|T{· · · }|Ω〉. In Eq. (3.2), φi ≡ φ(xi)
represents a general field, which will be a(x), Aµ(y1) and Aν(y2) in our case,
and L′int[φx] ≡ ∂Lint[φx]/∂φx, where the Lagrangian is assumed to have a
form of L 3 −1

2φi(2i +m2
φi

)φi + Lint[φi]. Generally, we observe

Lint = −Aµ(x)Jgauge
µ (x) − cosϕ

2f1
a(x)

[
∂µJA

µ (x)
]
, (3.3)

where Jgauge
µ is the U(1) gauge current and JA

µ = ψ̄γ5γµψ is the fermionic
part of the U(1)A current. Here, we have assumed a scalar field φ1 has a
Yukawa term with fermions and its phase a1(x) in φ1 = f1 eia1(x)/f1 has
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the physical axion component as a1(x) = cosϕa(x) . . . This is the exact
situation we have encountered in the model discussed in Section 2.2 for chiral
gauge theories. For the vector-like gauge theories discussed in Section 2.1,
one can simply take f1 = f and cosϕ = 1.

It may be useful to comment on the origin of the second term in the
above expression. In general, the interaction between the axion and fermions
is originated from the Yukawa term

yφ1ψ̄LψR 3 yf1 e
i
a1(x)
f1 ψ̄LψR . (3.4)

It is possible to redefine the fermion fields so that the axion field is removed

from the Yukawa term. This can be achieved by ψL → e
i
a1(x)
2f1 ψL, ψR →

e
−ia1(x)

2f1 ψR. However, since these field redefinitions are position-dependent,
fermion kinetic terms are not invariant and give extra terms

δL =
1

2f1
(∂µa1(x))

[
ψ̄RγµψR − ψ̄LγµψL

]
= −cosϕ

2f1
a(x)

[
∂µJA

µ (x)
]
, (3.5)

which agrees with the second term in Eq. (3.3). In the last expression,
we have used integration by parts and assumed a1(x) contains the physical
axion a(x) with the coefficient cosϕ. Also, we have omitted the term due to
the non-invariance of the fermionic path integral measure since its addition
to Eq. (3.5) contributes at two-loop level.

Now, let us use Eq. (3.2) with Eq. (3.3) and remove three (2 + m2)
operators from the right-hand side of the LSZ formula (3.1). The contact
terms (the second term of Eq. (3.2)) in the Schwinger–Dyson equation do
not contribute to the S-matrix element when the three momenta p, k1 and
k2 are different. The result reads

〈ε1(k1)ε2(k2)|S|a(p)〉 =
cosϕ

2f1
εµ1 ε

ν
2 p

α
〈
JA
α (−p)Jgauge

µ (k1)Jgauge
ν (k2)

〉
,

(3.6)

where JA
ρ (−p) and Jgauge

µ (k) are the currents in the momentum space;
JIµ(k) ≡

∫
d4x eikxJI(x). This equation clearly relates the axion decay, a→

ZZ, and the non-conservation of the axial current, 〈[∂ρJA
ρ ]Jgauge

µ Jgauge
ν 〉 6= 0,

i.e. chiral anomaly.
It is well known that the calculation of the divergence of three-current-

correlator 〈[∂ρJ1
ρ ]J2

µJ
3
ν 〉 involves a subtlety that the result depends on the

reparametrisation of the loop momenta. This ambiguity corresponds to a
freedom to move the anomaly around amongst the three currents. We discuss
the evaluation of the right-hand side of Eq. (3.6) in concrete examples.



Goldstone Boson Decays and Chiral Anomalies 659

Vector-like gauge theory

In model (2.1) discussed in Section 2.1, the gauge current is given by
Jgauge
µ = iqg ψ̄γµψ. If the gauge symmetry is not broken, the calculation of

a divergence of three-current-correlators must be performed in such a way
that the gauge current is conserved

kµ1
〈
JA(−p)Jgauge

µ (k1)Jgauge
ν (k2)

〉
= kν2

〈
JA(−p)Jgauge

µ (k1)Jgauge
ν (k2)

〉
= 0 .
(3.7)

Fixing the loop momentum ambiguity by the above condition, the divergence
of the axial current is determined. The leading contribution is found as (the
fermion mass dependent terms are omitted)

pα
〈
JA
α (−p)Jgauge

µ (k1)Jgauge
ν (k2)

〉
=
q2g2

4π2
εµνρσk

ρ
1k

σ
2 (3.8)

up to the (2π)2δ4(p−k1−k2) factor. Plugging this into Eq. (3.6) and taking
f1 = f and cosϕ = 1, we reproduce the result in Eq. (2.7).

At the end of Section 2.1, we have discussed a case where the vector-like
gauge symmetry is broken by a v.e.v. of additional scalar φ′. In this case,
there seems no reason why condition (3.7) should be imposed. However, even
with the non-zero 〈φ〉 and 〈φ′〉, the global U(1)V, defined in Eqs. (2.2) and
(2.3), is not broken. Thus, JV

µ in Eq. (2.4) is conserved. Since the fermionic
part of Jgauge

µ is proportional to JV
µ , the conservation of JV

µ implies condition
(3.7). Therefore, even in the case where the vector-like gauge symmetry is
broken, we have Eq. (3.8) and the expression of the amplitude is unchanged
from the unbroken case. The result again agrees with Eq. (2.11) obtained
in Section 2.1.

Finally, it is worth returning to our example with two pairs of Weyl
fermions in Section 2.1. In that case, the leading contributions to the
iM(a → γγ) from ψ and from ψ′ cancel out. This is consistent with the
fact that the theory with the new fermion pair with the same gauge charge,
q′L = q′R = q, and the opposite U(1)A charge compared to those of the orig-
inal pair, (ψL, ψR) is free from the U(1)A–U(1)–U(1) anomaly. Indeed, the
anomaly coefficient vanishes: Tr [QA{q, q}] = 0, where the trace is taken in
the space of left- and right-handed fermion fields.

Chiral gauge theory

In the chiral gauge theory introduced in Section 2.2, the fermionic part
of the gauge current is given by

Jgauge
µ = g

(
αJV

µ + βJA
µ

)
, (3.9)
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where α = (qL+qR)/2, β = (qL−qR)/2, and JV
µ ≡ iψ̄γµψ and JA

µ ≡ iψ̄γµγ5ψ
are the currents for U(1)V and U(1)A, respectively. The divergence of three
currents in question can be written as

pα
〈
JA
α (−p)Jgauge

µ (k1)Jgauge
ν (k2)

〉
= g2

[
α2pα

〈
JA
α (−p)JV

µ (k1)JV
ν (k2)

〉
+β2pα

〈
JA
α (−p)JA

µ (k1)JA
ν (k2)

〉 ]
, (3.10)

where we have used the fact that the divergence of three-current-correlator
involving even number of JA vanishes, since there is no γ5 in the fermionic
trace.

We have assumed the gauge symmetry and U(1)A symmetry are broken
by the non-zero v.e.v.s of two scalars 〈φ1〉 and 〈φ2〉, and there is thus no
reason to impose the conservation of Jgauge

µ and JA
µ . However, scalar fields

are not charged under the U(1)V and this symmetry remains unbroken.
Therefore, the calculation of the first term must be done in such a way that
JV
µ is conserved. As mentioned above, this gives

pα
〈
JA
α (−p)JV

µ (k1)JV
ν (k2)

〉
=

1

4π2
εµνρσk

ρ
1k

σ
2 . (3.11)

The second term of Eq. (3.10) does not have any special currents on
which we should impose conservation. On the other hand, all three currents
are identical. In this case, one should fix the loop momentum ambiguity
such that all three internal momenta are treated symmetrically. This results
in [25]

pα
〈
JA
α (−p)JA

µ (k1)JA
ν (k2)

〉
=

1

3

1

4π2
εµνρσk

ρ
1k

σ
2 . (3.12)

Collecting these results, we have

pα
〈
JA
α (−p)Jgauge

µ (k1)Jgauge
ν (k2)

〉
=

g2

4π2

(
α2 +

1

3
β2

)
εµνρσk

ρ
1k

σ
2 , (3.13)

up to the (2π)2δ4(p − k1 − k2) factor. One can see that the result agrees
with the axion decay formula (2.18) as expected.

The axion decay formula (2.18) suggests that the low-energy effective
Lagrangian has a term

g2 cosϕ

16π2f1

(
α2 +

1

3
β2

)
aFµνF̃

µν . (3.14)

In the chiral gauge theory, there is a mismatch between the axion a(x)
and the Goldstone mode of U(1)A (i.e. a1(x)) and their relation is given
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by a1(x) = cosϕa(x) + sinϕã(x), where ã(x) is the would-be Goldstone
mode of the broken gauge symmetry. Under the U(1)A, a1(x) transforms
as a1(x) → a1(x) + f1θ. To reproduce this result, the axion must shift as
a(x) → a(x) + (f1/ cosϕ)θ. With this shift, term (3.14) reproduces the
U(1)A–U(1)–U(1) anomaly. We conclude that the axion decay is captured
by the chiral anomaly also in the case of chiral gauge theories.

4. Summary

We have reviewed the calculation of the axion decay amplitudes into two
gauge bosons in vector-like and chiral U(1) gauge theories and its connection
to the chiral anomalies. The axion is a (pseudo)Nambu–Goldstone boson
(or its component invariant under gauge transformations) of the axial U(1)A
global symmetry of the Lagrangian. The leading contribution to the decay
amplitude depends on whether the gauge theory is vector-like or chiral. In
both cases, it is directly linked to the anomalous divergence of the current
of the axial global symmetry. In the case of the chiral gauge theory, the
calculation of the divergence of the current–current–current Green’s function
requires a special attention. The vector parts of the currents coupled to the
gauge bosons should be conserved, whereas symmetry conditions should be
imposed on the Green’s function involving their axial parts and the U(1)A
current.
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Appendix

Calculation of the axion decay

We compute the a → ZZ amplitude with general interactions and a
mass. The Lagrangian is given by

L 3 iψ̄γµ (∂µ − ig [α− βγ5]Aµ −m)ψ − iλaψ̄γ5ψ . (A.1)

The matrix element takes a form of

iM = (−1)(−λ)(ig)2ε∗1µ ε
∗2
ν Mµν , (A.2)
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where

Mµν = (i)3

∫
d4k

(2π)4

×
{
Tr

[
γ5

(/k− /q1) +m

(k−q1)2 −m2
γµ(α−βγ5)

/k +m

k2 −m2
γν(α−βγ5)

(/k + /q2) +m

(k + q2)2 −m2

]
+ [(q1, µ)↔ (q2, ν)]

}
. (A.3)

Since the matrix element should be invariant under the simultaneous ex-
change (q1, µ)↔ (q2, ν), it has to be proportional to qµ1 q

ν
2 or εµνρσqρ1q

σ
2 . For

both cases, the integral is convergent since ∼
∫

d4k q2k
(k2)3

.
First note that the numerator of the first trace can be organised as

Tr
[
γ5[(/k − /q1) +m]γµ(ω+/k + ω−m)γν [(/k + /q2) +m]

]
−2αβ Tr

[
[(/k − /q1)−m]γµ/kγν [(/k + /q2) +m]

]
, (A.4)

where ω± ≡ α2 ± β2. One can calculate these traces using the formulae

Tr
[
odd # of γ′s

]
= 0 , (A.5)

Tr [γµγνγργσ] = 4 (gµνgρσ − gµρgνσ + gµσgνρ) , (A.6)
Tr [γ5γ

µγν ] = 0 , (A.7)
Tr [γ5γ

µγνγργσ] = −4iεµνρσ . (A.8)

In the first trace of Eq. (A.4), the m3 term vanishes due to Eq. (A.7).
The m2 term and the mass-independent term also vanish since they have
odd numbers of γ matrices. The only non-vanishing term in the first trace
of Eq. (A.4) is linear in m and may be calculated in the form

4iεµνρσm
[
ω−q

1
ρq

2
σ + 2β2kρ(q1 + q2)σ

]
. (A.9)

The non-vanishing term in the second trace of Eq. (A.4) must have four
γ matrices. This term can be calculated as

8αβm [kµ(q1 + q2)ν + kν(q1 + q2)µ − gµνk · (q1 + q2)] . (A.10)

We are left with the evaluation of the momentum integration with the
denominator. One must calculate∫

d4k

(2π)4
(a+ bαkα)

1

[(k − q1)2 −m2]

1

[k2 −m2]

1

[(k + q2)2 −m2]
. (A.11)

Using the Feynman parameter formula

1

A1A2 · · ·An
=

∫
dx1 . . . dxnδ

(∑
xi − 1

) (n− 1)!

[x1A1 + x2A2 + . . . xnAn]n
,

(A.12)
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Eq. (A.11) becomes

2

∫
d4k

(2π)4

1∫
0

dx

1−x∫
0

dy

× a+ bαkα[
x
(

(k − q1)2 −m2
)

+ y
(

(k + q2)2 −m2
)

+ (1− x− y) (k2 −m2)
]3

= 2

∫
d4k

(2π)4

1∫
0

dx

1−x∫
0

dy
a+ bαkα[

k2 + 2k · (yq2 − xq1) + (x+ y)m2
Z −m2

]3 ,
(A.13)

where q2
1 = q2

2 ≡ m2
Z has been used. The

∫
dk4 integral can be performed

by using the formula [25]∫
d4k

(2π)4

a+ bαkα
[k2 + 2k · p+M2]n

=
i

16π2

Γ (n− 2)

Γ (n)

a− bαpα
[M2 − p2]n−2 . (A.14)

The result reads

i

16π2

1∫
0

dx

1−x∫
0

dy
a+ bα (xq1 − yq2)α

(x+ y − x2 − y2)m2
Z −m2 + xy

(
m2
a − 2m2

Z

) , (A.15)

where 2q1 · q2 = m2
a − 2m2

Z was used. Let us assume the fermion mass in
the loop is much larger than the masses of the axion and the gauge boson,
m � ma,mZ . To get the leading-order expression, we take ma,mZ → 0.
Then, we finally find Eq. (A.11) to be

− i

32π2

1

m2

[
a+

1

3
bα(q1 − q2)α

]
. (A.16)

Now, we combine this result with numerators (A.9) and (A.10). First, we
note that the fact that

∫
d4kkα term is proportional to (q1 − q2)α implies

that the pieces in Eq. (A.10) do not contribute to the amplitude. This can
be seen by replacing k with (q1 − q2) in Eq. (A.10)

8αβm
[
(q1 − q2)µ (q1 + q2)ν + (q1 − q2)ν (q1 + q2)µ − gµν

(
q2

1 − q2
2

)]
.

(A.17)
The last term vanishes since q2

1 = q2
2 = m2

Z . The first two terms cancel
when they are contracted with the polarization tensors ε1µε2ν and demand
ε1 · q1 = ε2 · q2 = 0.
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Now, what is left is the pieces that come from Eq. (A.9). The re-
sult can be obtained by taking a = 4iεµνρσm(α2 − β2)qρ1q

σ
2 and bα =

8iεµνρσmβ2δαρ (q1 + q2)σ in Eq. (A.16). This leads to

1

8π2

1

m
εµνρσ

[(
α2 − β2

)
qρ1q

σ
2 +

2

3
β2 (q1 − q2)ρ (q1 + q2)σ

]
=

1

8π2

1

m

(
α2 +

1

3
β2

)
εµνρσq

ρ
1q
σ
2 . (A.18)

The contribution from the second trace in Eq. (A.3) can be obtained by
replacing (q1, µ) ↔ (q2, ν), which is identical. Therefore, the final result is
obtained as

iM =
iλg2

4π2m

(
α2 +

1

3
β2

)
εµνρσε∗1µ ε

∗2
ν q

ρ
1q
σ
2 +O

(
m2
a,m

2
Z

)
. (A.19)

Let us find out the next-to-leading terms in Eq. (A.19) that are linear
in m2

a and m2
Z . The next higher-order terms in the expansion of Eq. (A.15)

go as

− i

32π2

1

m2

1

24m2

[
a
(
m2
a + 2m2

Z

)
+

1

5

(
2m2

a + 3m2
Z

)
bα (q1 − q2)α

]
. (A.20)

Due to the (q1− q2) structure, there is no contribution from Eq. (A.10), and
the contribution from Eq. (A.9) can be obtained by taking a = 4iεµνρσm(α2−
β2)qρ1q

σ
2 and bα = 8iεµνρσmβ2δαρ (q1 + q2)σ. This leads to

1

8π2

1

m

1

24m2
εµνρσ

×
[(
α2 − β2

) (
m2
a + 2m2

Z

)
qρ1q

σ
2 +

2

5
β2
(
2m2

a + 3m2
Z

)
(q1 − q2)ρ (q1 + q2)σ

]
=

1

8π2

1

m

1

24m2

[(
m2
a + 2m2

Z

)
α2 +

1

5

(
3m2

a + 2m2
Z

)
β2

]
εµνρσq

ρ
1q
σ
2 . (A.21)

So, the final result up to the next-to-leading order is

iM =
iλg2

4π2m

[(
α2 +

1

3
β2

)
+∆

]
εµνρσε∗1µ ε

∗2
ν q

ρ
1q
σ
2 (A.22)

with

∆ =
1

24m2

[(
m2
a + 2m2

Z

)
α2 +

1

5

(
3m2

a + 2m2
Z

)
β2

]
+

(
higher order in

m2
a

m2
,
m2
Z

m2

)
. (A.23)
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