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1. Introduction

Tini Veltman was a great scientific personality who for decades contin-
uously contributed in the most significant manner in establishing what ev-
erybody accepts today as the Standard Model (SM) of Elementary Particle
Physics1.

His numerous important contributions in the field and, in particular, the
breakthrough of Tini Veltman and Gerard ‘t Hooft on the renormalizability
of the Standard Model (SM), one of the great moments in the twentieth-
century physics, was awarded a Nobel Prize in Physics in 1999 “for elucidat-
ing the quantum structure of electroweak interactions in physics”.

Here, we would like to present how one of Tini Veltman’s ideas influenced
the development of a particular direction of research, which eventually led
to early successful predictions of the top quark and Higgs masses.

A concept that inspired Veltman in the direction that we would like to
discuss and which is in the center of theoretical discussions after Veltman’s
work is the naturalness of a theory [1–3]. According to this idea, a the-
ory is considered natural if at ordinary energies it is not too sensitive to
the fundamental constants of nature. More specifically, a theory is consid-
ered unnatural if the radiative corrections to a physical observable have an
intrinsic magnitude much greater than the observed value, so that a con-
spiracy among different orders in perturbation theory or a “fine tuning” is
required. The naturalness criterion is particularly serious in the case of the
SM since it belongs to the general category of renormalizable field theories
with scalar masses which are known to suffer from quadratic divergences.
Then quadratic divergences are indicative of the fact that the natural order
of magnitude of the Higgs mass in the SM is O(fLΛ), where fL is a loop
factor and Λ is the scale of new physics beyond the SM. Clearly then, ab-
sence of quadratic divergences is a necessary condition for the naturalness
of the SM, which has to be modified in such a way so they are removed, and
that the mass scale of the modification should be in the TeV scale. This
requirement is not sufficient since such a theory might still suffer from the
gauge hierarchy problem, i.e. could not provide the reason that there exist
scales with huge differences in magnitude in nature, as for instance among
the electroweak and the Planck scale.

With considerations along the above lines, Veltman was led to impose
the condition of the absence of the quadratic divergences in the SM in his
famous paper published in Acta Physics Polonica [4]. It is a very important
work since it was shown that this condition, known as the Veltman condi-

1 A more personal, but also more detailed presentation of Veltman’s contributions
together with some biografical notes can be found at the Corfu Institute (EISA)
homepage: http://eisa.institute

http://eisa.institute
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tion, is not just technical, but was leading to a relation among the masses
of the SM, i.e. it has physical consequences, although after the discovery of
the top and Higgs particles it appeared not to hold. Equally important is
the fact that this work paved the way for supersymmetry (SUSY) [5] to be
considered widely, and not only among the experts, as a theory with physical
significance and consequences. Specifically, renormalizable supersymmetric
theories are free of quadratic divergences to all orders in perturbation the-
ory due to non-renormalization theorems. Of particular interest is the fact
that such a property holds also in theories with softly broken supersymme-
try (SSB) [6–9], such as the celebrated Minimal Supersymmetric Standard
Model (MSSM) (for details, see [10]), which has good chances to describe
physics beyond the SM. Finally, it should be stressed that for a very general
class of theories with spontaneously broken supersymmetry, a mass formula
was derived [11], which is very similar to the one resulting from Veltman’s
condition for cancellation of quadratic divergences.

The next question in this exciting avenue of development of ideas, start-
ing from Veltman’s fundamental work in [4], concerns the uniqueness of
supersymmetry as a solution to the problem of cancellation of quadratic di-
vergences in renormalizable field theories involving scalars. This was posed
by two groups in [12] and [13, 14] and was answered positively. Indeed,
supersymmetry is the unique way to cancel the quadratic divergences in
renormalizable field theories with scalars that can be examined perturba-
tively. Still, there is another very interesting way to avoid the problem by
considering that the scalars are not fundamental but composite, i.e. a bound
state of two fermions and was also mentioned in Veltman’s paper in Ref. [4].

It should also be noted that Decker and Pestieau did, independently of
Veltman, a similar analysis but they went a step further requiring that the
lepton self-masses be finite [15], i.e. cancellation of the logarithmic diver-
gences, too. As a result, new mass relations were found. Inspired by all
the above ideas, we were searching for the construction of realistic Finite
Theories with predictive power concerning some of the SM free parameters,
the proliferation of which was always considered as another big obstacle of
this theory. Quite naturally, we were led to the framework of SSB super-
symmetric theories where cancellation of quadratic divergences holds to all
orders in perturbation theory and, moreover, to require the absence of log-
arithmic divergences. It is remarkable that all-orders finite supersymmetric
gauge theories can be constructed using the reduction of couplings scheme
[15] and we consider ourselves lucky that we managed to construct the first
realistic Finite Unified Theory [16, 17]. Moreover, this model was predicting
correctly the top-quark mass one and a half year before its discovery; a pre-
diction which survived for twelve years. Another version of the model [18]
was predicting — in addition to the top-quark mass — the Higgs-boson
mass, four and half years before the experimental discovery [19].
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In the present paper, in Sect. 2, we briefly present some details on Velt-
man’s condition on the cancellation of quadratic divergences in SM with
comments of other authors and similarly the works on the uniqueness of
supersymmetry as a solution to the cancellation of quadratic divergences
problem. Then we continue in Sect. 3 with the presentation of the scheme
of reduction of couplings and in Sect. 4 with the necessary conditions for
finiteness. In Sect. 5, we review the above-mentioned all-loop finite N = 1
supersymmetric SU(5) model and give its latest phenomenological analysis.
Sect. 6 is dedicated to a few closing remarks.

2. Cancellation of quadratic divergences and supersymmetry

2.1. Comments on Veltman’s relation

Let us present few more details on Veltman’s relation resulting from the
requirement of cancellation of quadratic divergences in the SM at one loop.
Veltman suggested that within the dimensional regularization [20], which
does not catch the quadratic divergences, a suitable criterion of identifying
such divergences is the occurrence of poles in the complex dimensional plane
of n less than four. Therefore quadratic divergences at the one-loop level
would correspond to poles for n = 2. Then, in the SM within the dimen-
sional regularization scheme, poles for n = 2 occur in the vector boson and
Higgs self-energy and in the tadpole diagrams. However Veltman, inspired
by the way dimensional regularisation has to be modified in order for the
scheme to be suitable also for supersymmetric theories [21, 22], chose the
dimension of the Dirac matrices to be four, independent of the space-time
dimension. In other words, Veltman concluded that although conventional
dimensional regularisation would suggest n = 2 as the dimension of the
Dirac algebra, the appropriate choice is n = 4. This preserves the number
of gauge degrees of freedom and hence respects supersymmetry, and corre-
sponds to the use of regularisation by dimensional reduction [21, 22]. In any
case, in Ref. [23], the equivalence of dimensional reduction and dimensional
regularisation was shown. With the above reasoning, Veltman derived the
following mass relation:

m2
e+m2

µ+m2
τ +3

(
m2
u +m2

d +m2
c +m2

s +m2
t +m2

b

)
= 3

2m
2
W + 3

4m
2
Z+ 3

4m
2
H ,
(1)

known as Veltman’s mass relation. It is very interesting that the same
formula was derived in Ref. [24], based on the point-splitting regulariza-
tion [25], which makes no reference to dimensions of space-time other than
four. For discussions concerning the two-loop corrections, we refer the reader
to [26, 27]. Clearly now, given the measured values of the top and Higgs
masses, relation (1) does not hold. From the above discussion, it is worth
keeping the point that Veltman, although working within the SM had a
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vision that supersymmetric theories were the appropriate framework for
the cancellation of quadratic divergences, in which the contributions of the
bosons and the fermions have opposite sign. Equally important is the ob-
servation that the requirement of the cancellation of quadratic divergences
was leading to very useful mass relations. Actually, strong support towards
this direction was already provided by the work of Ferrara, Girardello and
Palumbo [11], who derived in supersymmetric theories with spontaneously
broken supersymmetry a very similar quadratic mass formula∑

J

(−1)2J(2J + 1)m2
J = 0 . (2)

Some further interesting comments on Veltman’s relation were done by
Kubo, Sibold and Zimmermann [28] using the reduction of couplings scheme,
which will be discussed in detail in the next section. Here we would like only
to remind that based on this scheme, the parameters of SM were related to
αs leading to predictions for the top and Higgs masses [29, 30] that do
not hold. In Ref. [28], it was analyzed whether it is possible to require in
addition the absence of quadratical divergences using Veltman’s relation. It
has been shown first that postulating the absence of quadratical divergences
is a gauge and renormalization group-invariant statement. Moreover, the
resulting constraint is compatible with reduction, at least with what they
called ‘the trivial one’, meaning that the top mass was considered as another
free parameter instead of having been predicted by the dimensional reduction
as in [29, 30].

2.2. Uniqueness of supersymmetry as solution
of the quadratic divergences problem

The absence of quadratic divergences in supersymmetric theories was
known due to the non-renormalization theorems, as is already mentioned in
Introduction. A further question was if this solution was unique, that is, if
there are non-supersymmetric theories where also the quadratic divergences
are absent.

In order to address this problem, the inverse question was posed, given
the absence of quadratic divergences, what kind of solutions it implies.

The first development in this direction, following the spirit of [4], was
done in [12]. In order to show whether the absence of quadratic diver-
gences implies supersymmetry, they studied the case of one Majorana field
and an arbitrary number of scalar and pseudoscalar fields systematically.
By carrying out the loop expansion to two-loop order, and requiring that
the quadratic divergences cancel order by order, they derived relationships
among the dimensionless couplings. They found no solutions with only one
spin-0 field, either scalar or pseudoscalar. In the case of either a pair of
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scalars or pseudoscalar fields, the only solutions are the trivial ones. The
combination of one scalar and one pseudoscalar gives a non-trivial solution to
the cancellation of quadratic divergences, which corresponds to the massive
Wess–Zumino model with soft supersymmetry breaking terms.

They concluded that the necessary and sufficient conditions for the ab-
sence of quadratic divergences to two-loop order in the cases of two or less
bosonic fields lead uniquely to the softly broken supersymmetric theories.
The statement can be extended to all loops since in theories with soft break-
ing terms there will appear no quadratic divergences.

Shortly later, in [13], the requirement of absence of quadratic divergences
in a quantum field theory with one or more scalar bosons was studied. The
analysis was done at one loop, but it was further required that the constraints
resulting from eliminating the quadratic divergences should be Renormal-
ization Group Invariant (RGI) in order to have a physical meaning. More
specifically, each scalar boson has associated a quadratic divergence and de-
manding that these are eliminated leads to parametric conditions, which
then were required to be preserved under a change of the renormalization
scale. In general, the resulting systems are severely overconstrained. With
a procedure very close to the reduction of couplings (see the next section),
they determined the independent couplings and the relations among them.
In all cases considered in that paper, the only solutions found were super-
symmetric.

This work was extended and detailed in [14], where they considered gen-
eral classes of theories with scalars, Abelian and non-Abelian, with quartic
and Yukawa interactions. By requiring renormalization group invariance at
one loop, besides the cancellation of quadratic divergences, they found that
the only solutions possible are supersymmetric. As a notable exception they
found that in a chiral supersymmetric U(1) model, the quadratic divergence
associated with a radiatively induced Fayet–IliopoulosD-term, does not can-
cel. It seems in their analysis they missed that the Veltman relation is RGI
according to Ref. [28].

Thus, the absence of quadratic divergences induced by scalar couplings,
leads in general to a supersymmetric solution. Given that SSB terms are by
construction free of quadratic divergences, the necessity to add them in any
supersymmetric model in the prospect to become realistic is very welcome
without any cost.

3. Theoretical basis of reduction of couplings

The idea of reduction of couplings was introduced in [31] and evolved
over the next two decades. It aims to express the parameters of a theory —
that are considered independent — in terms of one basic parameter, which
is called primary coupling. This is achieved by searching for Renormaliza-
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tion Group Invariant (RGI) relations among couplings and using them to
reduce the — seemingly — free parameters. In this section, we will out-
line the procedure, first applied to parameters without mass dimension, and
then it will be extended to parameters of dimension one or two, i.e. the
parameters of the soft breaking sector of an N = 1 SUSY theory.

3.1. Reduction of dimensionless parameters

Any RGI relation among couplings g1, . . . , gA of a renormalizable theory
can be written in the form of Φ(g1, . . . , gA) = const, which has to satisfy the
partial differential equation

µ
dΦ

dµ
= ~∇Φ · ~β =

A∑
a=1

βa
∂Φ

∂ga
= 0 , (3)

where βa is the β-function of ga. Solving this partial differential equation
is equivalent to solving a set of ordinary differential equations, known as
reduction equations (REs) [31–33]

βg
dga
dg

= βa , a = 1, . . . , A , (4)

where g and βg are the primary coupling and its β-function, respectively,
while the counting on a does not include g. Since the Φa’s can impose a max-
imum of (A− 1) independent RGI “constraints” in the A-dimensional space
of parameters, one could express them all in terms of a single coupling g.
However, the general solutions of Eqs. (4) contain as many integration con-
stants as the number of equations. Thus, we have just traded an integration
constant for each renormalized coupling and such general solutions cannot
be considered “reduced ones”. The crucial requirement is to demand power
series solutions to the REs which preserve perturbative renormalizability

ga =
∑
n

ρ(n)a g2n+1 . (5)

This ansatz fixes the integration constant in each of the REs and chooses a
special solution. Remarkably, the uniqueness of these power series solutions
can be decided already at one-loop level [31–33]. As an illustration, we
assume β-functions of the form of

βa =
1

16π2

 ∑
b,c,d 6=g

β(1) bcda gbgcgd +
∑
b6=g

β(1) ba gbg
2

+ . . . ,

βg =
1

16π2
β(1)g g3 + . . .

(6)
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Here, . . . stands for higher-order terms, and β(1) bcda ’s are symmetric in b, c, d.
We will assume that the ρ(n)a ’s with n ≤ r are uniquely determined. To ob-
tain ρ(r+1)

a ’s, we insert the power series (5) into the REs (4) and collect terms
of O(g2r+3) ∑

d 6=g
M(r)da ρ

(r+1)
d = lower order quantities ,

where the right-hand side is known by assumption, and

M(r)da = 3
∑
b,c 6=g

β(1) bcda ρ
(1)
b ρ(1)c + β(1) da − (2r + 1)β(1)g δda , (7)

0 =
∑

b,c,d 6=g
β(1) bcda ρ

(1)
b ρ(1)c ρ

(1)
d +

∑
d6=g

β(1) da ρ
(1)
d − β

(1)
g ρ(1)a . (8)

Therefore, the ρ(n)a ’s for all n > 1 for a given set of ρ(1)a ’s are uniquely de-
termined if detM(n)da 6= 0 for all n ≥ 0.

The couplings in SUSY theories have the same asymptotic behaviour.
Thus, it is natural to search for such a power series solution to the REs.
The prospect of coupling unification described in this section is very at-
tractive, as the “completely reduced” theory contains only one independent
coupling, with primary examples the FUTs [16–18]. However, since it is of-
ten unrealistic, one usually imposes fewer RGI constraints, achieving “partial
reduction” [29, 30].

All the above hint (recall also [28]) towards an underlying connection
among reduction of couplings and supersymmetry. As an example, let us
consider an SU(N) gauge theory with φi(N) and φ̂i(N̄) complex scalars,
ψi(N) and ψ̂i(N̄) left-handed Weyl spinors, and λa (a = 1, . . . , N2 − 1)
right-handed Weyl spinors in the adjoint representation of SU(N), i.e. a
model with the field content of a supersymmetric theory, but not with the
corresponding couplings. The Lagrangian then includes

L ⊃ i
√

2
{
gY ψ̄λ

aT aφ− ĝY ¯̂
ψλaT aφ̂+ h.c.

}
− V

(
φ, φ̄

)
, (9)

where

V
(
φ, φ̄

)
= 1

4λ1
(
φiφ∗i

)2
+ 1

4λ2

(
φ̂iφ̂
∗ i
)2

+ λ3
(
φiφ∗i

) (
φ̂jφ̂

∗ j
)

+λ4
(
φiφ∗j

) (
φ̂iφ̂
∗ j
)
. (10)

This is the most general renormalizable form in 4D. Searching for a solution
like those in Eq. (5) for the REs, one finds among the many possible solutions
in lowest order
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gY = ĝY = g ,

λ1 = λ2 =
N − 1

N
g2 ,

λ3 =
1

2N
g2 , λ4 = −1

2
g2 , (11)

which corresponds to an N = 1 SUSY gauge theory. While the above do not
provide an answer about the relation of reduction of couplings and SUSY,
they indeed point to further study in that direction.

3.2. Reduction of couplings in N = 1 SUSY gauge theories —
partial reduction

Let us consider a chiral, N = 1 supersymmetric gauge theory with group
G and gauge coupling g. The superpotential of the theory can be written as

W =
1

2
mij φi φj +

1

6
Cijk φi φj φk , (12)

where mij and Cijk are gauge invariant tensors and the chiral superfield φi
belongs to the irreducible representation Ri of the gauge group. The renor-
malization constants associated with the superpotential, for preserved SUSY,
are

φ0i =
(
Zji

)(1/2)
φj , (13)

m0
ij = Zi

′j′

ij mi′j′ , (14)

C0
ijk = Zi

′j′k′

ijk Ci′j′k′ . (15)

By virtue of the N = 1 non-renormalization theorem [5, 6, 34, 35], there
are no mass and cubic interaction term infinities

Zi
′j′

ij

(
Zi
′′
i′

)(1/2) (
Zj
′′

j′

)(1/2)
= δi

′′

(i δ
j′′

j) ,

Zi
′j′k′

ijk

(
Zi
′′
i′

)(1/2) (
Zj
′′

j′

)(1/2) (
Zk
′′
k′

)(1/2)
= δi

′′

(i δ
j′′

j δ
k′′

k) . (16)

Therefore, the only surviving infinities are the wave function renormalization
constants Zji , so just one infinity per field. The one-loop β-function of g is
given by [36–40]

β(1)g =
dg

dt
=

g3

16π2

[∑
i

T (Ri)− 3C2(G)

]
, (17)
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where C2(G) is the quadratic Casimir operator of the adjoint representation
of the gauge group G and Tr[T aT b] = T (R)δab, where T a are the group gen-
erators in the appropriate representation. Due to the non-renormalization
theorem [5, 6, 35], the β-functions of Cijk are related to the anomalous di-
mension matrices γij of the matter fields as

βijk =
dCijk

dt
= Cijl γ

l
k + Cikl γ

l
j + Cjkl γ

l
i . (18)

The one-loop γij is given by [36]

γ(1)ij =
1

32π2

[
Cikl Cjkl − 2 g2C2(Ri)δ

i
j

]
, (19)

where Cijk = C∗ijk.
We take Cijk to be real so that C2

ijk are always positive. The squares of
the couplings are convenient to work with, and the Cijk can be covered by
a single index i (i = 1, . . . , n)

α =
g2

4π
, αi =

g2i
4π

. (20)

Then the evolution of α’s in perturbation theory will take the form of

dα

dt
= β = −β(1)α2 + . . . ,

dαi
dt

= βi = −β(1)i αi α+
∑
j,k

β
(1)
i,jk αj αk + . . .

(21)

Here, . . . denotes higher-order contributions and β(1)i,jk = β
(1)
i,kj . For the evolu-

tion equations (21), following Ref. [41], we investigate the asymptotic prop-
erties. First, we define [31, 33, 42–44]

α̃i ≡
αi
α
, i = 1, . . . , n , (22)

and derive from Eq. (21)

α
dα̃i
dα

= −α̃i +
βi
β

=

(
−1 +

β
(1)
i

β(1)

)
α̃i

−
∑
j,k

β
(1)
i,jk

β(1)
α̃j α̃k +

∑
r=2

(α
π

)r−1
β̃
(r)
i (α̃) , (23)
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where β̃(r)i (α̃) (r = 2, . . . ) are power series of α̃’s and can be computed
from the rth-loop β-functions. We then search for fixed points ρi of Eq. (22)
at α = 0. We have to solve the equation(

−1 +
β
(1)
i

β(1)

)
ρi −

∑
j,k

β
(1)
i,jk

β(1)
ρj ρk = 0 , (24)

assuming fixed points of the form of

ρi = 0 for i = 1, . . . , n′ ; ρi > 0 for i = n′ + 1, . . . , n . (25)

Next, we treat α̃i with i ≤ n′ as small perturbations to the undisturbed sys-
tem (defined by setting α̃i with i ≤ n′ equal to zero). It is possible to
verify the existence of the unique power series solution of the reduction
equations (23) to all orders already at the one-loop level [31–33, 42]

α̃i = ρi +
∑
r=2

ρ
(r)
i αr−1 , i = n′ + 1, . . . , n . (26)

These are RGI relations among parameters and preserve formally pertur-
bative renormalizability. Thus, in the undisturbed system, there is only
one independent parameter, the primary coupling α.

The non-vanishing α̃i with i ≤ n′ cause small perturbations that enter
in a way that the reduced couplings (α̃i with i > n′) become functions both
of α and α̃i with i ≤ n′. Investigating such systems with partial reduction
is very convenient to work with the following PDEs:{

β̃
∂

∂α
+

n′∑
a=1

β̃a
∂

∂α̃a

}
α̃i(α, α̃) = β̃i(α, α̃) ,

β̃i(a) =
βi(a)

α2
− β

α2
α̃i(a) , β̃ ≡ β

α
. (27)

These equations are equivalent to the REs (23), where, in order to avoid any
confusion, we let a, b run from 1 to n′ and i, j from n′ + 1 to n. Then, we
search for solutions of the form of

α̃i = ρi +
∑
r=2

(α
π

)r−1
f
(r)
i (α̃a) , i = n′ + 1, . . . , n , (28)

where f (r)i (α̃a) are power series of α̃a. The requirement that in the limit
of vanishing perturbations we obtain the undisturbed solutions (26) [30, 45]
suggests this type of solutions. Once more, one can obtain the condi-
tions for uniqueness of f (r)i in terms of the lowest order coefficients.
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3.3. Reduction of dimension-1 and -2 parameters

The extension of the reduction of couplings method to massive param-
eters is not straightforward, since the technique was originally aimed at
massless theories on the basis of the Callan–Symanzik equation [31, 32].
Many requirements have to be met, such as the normalization conditions im-
posed on irreducible Green’s functions [46] etc. significant progress has been
made towards this goal, starting from [47], where, as an assumption, a mass-
independent renormalization scheme renders all RG functions only trivially
dependent on dimensional parameters. Mass parameters can then be intro-
duced similarly to couplings.

This was justified later [48, 49], where it was demonstrated that, apart
from dimensionless parameters, pole masses and gauge couplings, the model
can also include couplings carrying a dimension and masses. To simplify
the analysis, we follow Ref. [47] and use a mass-independent renormalization
scheme as well.

Let us consider a renormalizable theory that contains (N+1) dimension-0
couplings, (ĝ0, ĝ1, . . . , ĝN ), L parameters with mass dimension-1,

(̂
h1, . . . , ĥL

)
,

and M parameters with mass dimension-2,
(
m̂2

1, . . . , m̂
2
M

)
. The renormal-

ized irreducible vertex function Γ satisfies the RGE

DΓ
[
Φ′s; ĝ0, ĝ1, . . . , ĝN ; ĥ1, . . . , ĥL; m̂2

1, . . . , m̂
2
M ;µ

]
= 0 , (29)

with

D = µ
∂

∂µ
+

N∑
i=0

βi
∂

∂ĝi
+

L∑
a=1

γha
∂

∂ĥa
+

M∑
α=1

γm
2

α

∂

∂m̂2
α

+
∑
J

ΦIγ
φI
J

δ

δΦJ
, (30)

where βi are the β-functions of the dimensionless couplings gi and ΦI are
the matter fields. The mass, trilinear coupling and wave function anoma-
lous dimensions, respectively, are denoted by γm2

α , γha and γφIJ and µ de-
notes the energy scale. For a mass-independent renormalization scheme, the
γ’s are given by

γha =
L∑
b=1

γh,ba (g0, g1, . . . , gN )ĥb ,

γm
2

α =
M∑
β=1

γm
2,β

α (g0, g1, . . . , gN )m̂2
β +

L∑
a,b=1

γm
2,ab

α (g0, g1, . . . , gN )ĥaĥb .

(31)

The γh,ba , γm
2,β

α and γm
2,ab

α are power series of the (dimensionless) g’s.
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We search for a reduced theory, where

g ≡ g0 , ha ≡ ĥa for 1 ≤ a ≤ P , m2
α ≡ m̂2

α for 1 ≤ α ≤ Q

are independent parameters. The reduction of the rest of the parameters,
namely

ĝi = ĝi(g) , (i = 1, . . . , N) ,

ĥa =
P∑
b=1

f ba(g)hb , (a = P + 1, . . . , L) ,

m̂2
α =

Q∑
β=1

eβα(g)m2
β +

P∑
a,b=1

kabα (g)hahb , (α = Q+ 1, . . . ,M) (32)

is consistent with the RGEs (29) and (30). The following relations should be
satisfied:

βg
∂ĝi
∂g

= βi , (i = 1, . . . , N) ,

βg
∂ĥa
∂g

+

P∑
b=1

γhb
∂ĥa
∂hb

= γha , (a = P + 1, . . . , L) ,

βg
∂m̂2

α

∂g
+

P∑
a=1

γha
∂m̂2

α

∂ha
+

Q∑
β=1

γm
2

β

∂m̂2
α

∂m2
β

= γm
2

α , (α = Q+ 1, . . . ,M) .

(33)

Using Eqs. (31) and (32), they reduce to

βg
df ba
dg

+
P∑
c=1

f ca

[
γh,bc +

L∑
d=P+1

γh,dc f bd

]
− γh,ba −

L∑
d=P+1

γh,da f bd = 0 ,

(a = P + 1, . . . , L ; b = 1, . . . , P ) ,

βg
deβα
dg

+

Q∑
γ=1

eγα

γm2,β
γ +

M∑
δ=Q+1

γm
2,δ

γ eβδ

− γm2,β
α −

M∑
δ=Q+1

γm
2,d

α eβδ = 0 ,

(α = Q+ 1, . . . ,M ; β = 1, . . . , Q) ,
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βg
dkabα
dg

+ 2
P∑
c=1

(
γh,ac +

L∑
d=P+1

γh,dc fad

)
kcbα

+

Q∑
β=1

eβα

γm2,ab
β +

L∑
c,d=P+1

γm
2,cd

β fac f
b
d + 2

L∑
c=P+1

γm
2,cb

β fac +
M∑

δ=Q+1

γm
2,d

β kabδ


−

γm2,ab
α +

L∑
c,d=P+1

γm
2,cd

α fac f
b
d + 2

L∑
c=P+1

γm
2,cb

α fac +
M∑

δ=Q+1

γm
2,δ

α kabδ

 = 0 ,

(α = Q+ 1, . . . ,M ; a, b = 1, . . . , P ) .

(34)

The above relations ensure that the irreducible vertex function of the re-
duced theory

ΓR
[
Φ’s; g;h1, . . . , hP ;m2

1, . . . ,m
2
Q;µ

]
≡

Γ
[
Φ’s; g, ĝ1(g) . . . , ĝN (g);h1, . . . , hP , ĥP+1(g, h), . . . , ĥL(g, h);

m2
1, . . . ,m

2
Q, m̂

2
Q+1

(
g, h,m2

)
, . . . , m̂2

M

(
g, h,m2

)
;µ
]

(35)

has the same renormalization group flow as the original one.
Assuming a perturbatively renormalizable reduced theory, the functions

ĝi, f ba, e
β
α and kabα are expressed as power series in the primary coupling

ĝi = g
∞∑
n=0

ρ
(n)
i gn , f ba = g

∞∑
n=0

ηb(n)a gn ,

eβα =

∞∑
n=0

ξβ(n)α gn , kabα =

∞∑
n=0

χab(n)α gn .

(36)

These expansion coefficients are found by inserting the above power series
into Eqs. (33), (34) and requiring the equations to be satisfied at each order
of g. It is not trivial to have a unique power series solution; it depends both
on the theory and the choice of independent couplings.

If there are no independent dimension-1 parameters (ĥ), their reduc-
tion becomes

ĥa =

L∑
b=1

f ba(g)M ,

where M is a dimension-1 parameter (i.e. a gaugino mass, correspond-
ing to the independent gauge coupling). If there are no independent dimen-
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sion-2 parameters (m̂2), their reduction takes the form of

m̂2
a =

M∑
b=1

eba(g)M2 .

3.4. Reduction of couplings of soft breaking terms in N = 1 SUSY theories

The reduction of dimensionless couplings was extended [47, 50] to the
SSB dimensionful parameters of N = 1 supersymmetric theories. It was also
found [18, 51] that soft scalar masses satisfy a universal sum rule.

Let us consider superpotential (12)

W =
1

2
µij Φi Φj +

1

6
Cijk Φi Φj Φk , (37)

and the SSB Lagrangian

−LSSB =
1

6
hijk φiφjφk +

1

2
bij φiφj +

1

2

(
m2
)j
i
φ∗ iφj +

1

2
M λiλi+h.c. (38)

The φi’s are the scalar parts of chiral superfields Φi, λ are gauginos and M
the unified gaugino mass.

The one-loop gauge and Yukawa beta-functions are given by (17) and
(18), respectively, and the one-loop anomalous dimensions by (19). We
make the assumption that the REs admit power series solutions

Cijk = g
∑
n=0

ρijk(n)g
2n . (39)

Since we want to obtain higher-loop results instead of knowledge of ex-
plicit β-functions, we require relations among β-functions. The spurion tech-
nique [9, 35, 52–54] gives all-loop relations among SSB β-functions [55–62]

βM = 2O
(
βg
g

)
, (40)

βijkh = γilh
ljk + γjl h

ilk + γkl h
ijl

−2 (γ1)
i
l C

ljk − 2 (γ1)
j
l C

ilk − 2 (γ1)
k
l C

ijl , (41)

(βm2)ij =

[
∆+X

∂

∂g

]
γij , (42)
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where

O =

(
Mg2

∂

∂g2
− hlmn ∂

∂C lmn

)
, (43)

∆ = 2OO∗ + 2|M |2g2 ∂

∂g2
+ C̃lmn

∂

∂Clmn
+ C̃ lmn

∂

∂C lmn
, (44)

(γ1)
i
j = Oγij , (45)

C̃ijk =
(
m2
)i
l
C ljk +

(
m2
)j
l
Cilk +

(
m2
)k
l
Cijl . (46)

Assuming (following [57]) that the relation among couplings

hijk = −M(Cijk)′ ≡ −M dCijk(g)

d ln g
(47)

is RGI to all orders and the use of the all-loop gauge β-function of [63–65]

βNSVZ
g =

g3

16π2

[∑
l T (Rl)(1− γl/2)− 3C2(G)

1− g2C2(G)/8π2

]
, (48)

we are led to an all-loop RGI sum rule [66] (assuming (m2)ij = m2
jδ
i
j)

m2
i +m2

j +m2
k = |M |2

{
1

1− g2C2(G)/(8π2)

d lnCijk

d ln g
+

1

2

d2 lnCijk

d (ln g)2

}
+
∑
l

m2
l T (Rl)

C2(G)− 8π2/g2
d lnCijk

d ln g
. (49)

It is worth noting that the all-loop result of Eq. (49) coincides with the
superstring result for the finite case in a certain class of orbifold models [18,
67, 68] if d lnCijk

d ln g = 1 [17].
As mentioned above, the all-loop results on the SSB β-functions, Eqs. (40)–

(46), lead to all-loop RGI relations. We assume:

(a) the existence of an RGI surface on which C = C(g), or equivalently
that the expression

dCijk

dg
=
βijkC
βg

(50)

holds (i.e. reduction of couplings is possible);

(b) the existence of a RGI surface on which

hijk = −M dC(g)ijk

d ln g
(51)

holds to all orders.
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Then it can be proven [69–71] that the relations that follow are all-loop RGI
(note that in both assumptions we do not rely on specific solutions of
these equations)

M = M0
βg
g
, (52)

hijk = −M0 β
ijk
C , (53)

bij = −M0 β
ij
µ , (54)(

m2
)i
j

=
1

2
|M0|2 µ

dγij
dµ

, (55)

where M0 is an arbitrary reference mass scale to be specified shortly. As-
suming

Ca
∂

∂Ca
= C∗a

∂

∂C∗a
(56)

for an RGI surface F (g, Cijk, C∗ijk), we are led to

d

dg
=

(
∂

∂g
+ 2

∂

∂C

dC

dg

)
=

(
∂

∂g
+ 2

βC
βg

∂

∂C

)
, (57)

where Eq. (50) was used. Let us now consider the partial differential opera-
tor O in Eq. (43) which (assuming Eq. (47)) becomes

O =
1

2
M

d

d ln g
(58)

and βM , given in Eq. (40), becomes

βM = M
d

d ln g

(
βg
g

)
, (59)

which by integration provides us [62, 69] with the generalized, i.e. including
Yukawa couplings, all-loop RGI Hisano–Shifman relation [58]

M =
βg
g
M0 . (60)

M0 is the integration constant and can be associated with the unified gaug-
ino mass M (of an assumed covering GUT), or to the gravitino mass m3/2

in a supergravity framework. Therefore, Eq. (52) becomes the all-loop RGI
Eq. (52). βM , using Eqs. (59) and (52), can be written as follows:

βM = M0
d

dt

(
βg
g

)
. (61)
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Similarly,

(γ1)
i
j = Oγij =

1

2
M0

dγij
dt

. (62)

Next, from Eq. (47) and Eq. (52), we get

hijk = −M0 β
ijk
C , (63)

while βijkh , using Eq. (62), becomes [69]

βijkh = −M0
d

dt
βijkC , (64)

which shows that Eq. (63) is RGI to all loops. Equation (54) can simi-
larly be shown to be all-loop RGI as well.

It should be noted concerning the β-functions of the SBB parameters, as
in Eqs. (61) and (64), that the vanishing of the dimensionless β-functions,
even to all-orders, as will be discussed in the next section, is transferred to
the dimensionful SSB sector of the theory.

4. Finiteness

A natural development of the ideas started with Veltman’s work on the
cancellation of quadratic divergences in renormalizable field theories with
scalars, which found an excellent realisation in supersymmetric theories with
soft supersymmetry breaking terms, as we have already discussed, led to the
search of constructing renormalizable field theories free also of logarithmic
divergences, i.e. completely Finite Theories.

The finiteness that will be discussed here is a consequence of the re-
duction of couplings, presented in the previous section, and is based on
the fact that in supersymmetric theories it is possible to find RGI rela-
tions among couplings that keep finiteness in perturbation theory, even to
all orders. Accepting finiteness as a guiding principle in constructing re-
alistic theories of EPP, the first thing that comes to mind is to look for
an N = 4 supersymmetric unified gauge theory since any ultraviolet (UV)
divergences are absent in these theories. However, nobody has managed
so far to produce realistic models in the framework of N = 4 SUSY. In
the best case one could try to do a drastic truncation of the theory like
the orbifold projection of Refs. [72, 73], but this is already a different theory
than the original one. The next possibility is to consider an N = 2 super-
symmetric gauge theory, whose β-function receives corrections only at one
loop. Then it is not hard to select a spectrum to make the theory all-loop
finite. However, a serious obstacle in these theories is their mirror spectrum,
which in the absence of a mechanism to make it heavy, does not permit the
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construction of realistic models. Therefore, one is naturally led to consider
N = 1 supersymmetric gauge theories, which can be chiral and in principle
realistic.

It should be noted that in the approach followed here (UV), finiteness
means the vanishing of all the β-functions, i.e. the non-renormalization of
the coupling constants, in contrast to a complete (UV) finiteness where
even field amplitude renormalization is absent. Before the work of several
members of our group, the studies on N = 1 finite theories were following
two directions: (i) construction of finite theories up to two loops examin-
ing various possibilities to make them phenomenologically viable, (ii) con-
struction of all-loop finite models without particular emphasis on the phe-
nomenological consequences. The success of the work of our group started
in Refs. [16, 17] with the construction of the first realistic all-loop finite
model, based on the theorem presented below, realising in this way an old
theoretical dream of field theorists.

4.1. Finiteness in N = 1 supersymmetric gauge theories

Let us, once more, consider a chiral, anomaly free, N = 1 globally super-
symmetric gauge theory based on a group G with gauge coupling constant g.
The superpotential of the theory is given by (see Eq. (12))

W = 1
2 mij φi φj + 1

6 Cijk φi φj φk . (65)

The N = 1 non-renormalization theorem, ensuring the absence of mass and
cubic-interaction-term infinities, leads to wave-function infinities only; one
for each superfield. As one can see from Eqs. (17) and (19), all the one-loop
β-functions of the theory vanish if β(1)g and γ(1)ij vanish, i.e.∑

i

T (Ri) = 3C2(G) , (66)

CiklCjkl = 2δijg
2C2(Ri) . (67)

The conditions for finiteness for N = 1 field theories with SU(N) gauge sym-
metry are discussed in [74], and the analysis of the anomaly-free and no-
charge renormalization requirements for these theories can be found in [75].
A very interesting result is that conditions (66) and (67) are necessary and
sufficient for finiteness at the two-loop level [36–40].

In case SUSY is broken by soft terms, the requirement of finiteness in
the one-loop soft breaking terms imposes further constraints among them
[76]. In addition, the same set of conditions that are sufficient for one-loop
finiteness of the soft breaking terms render the soft sector of the theory
two-loop finite [77].
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The one- and two-loop finiteness conditions of Eqs. (66) and (67) re-
strict considerably the possible choices of the irreducible representations (ir-
reps) Ri for a given group G, as well as the Yukawa couplings in superpoten-
tial (65). Note in particular that the finiteness conditions cannot be applied
to the MSSM, since the presence of a U(1) gauge group is incompatible with
condition (66), due to C2[U(1)] = 0. This naturally leads to the expectation
that finiteness should be attained at the grand unified level only, the MSSM
being just the corresponding, low-energy, effective theory.

Another important consequence of one- and two-loop finiteness is that
SUSY (most probably) can only be broken due to the soft breaking terms.
Indeed, due to the unacceptability of gauge singlets, F -type spontaneous
symmetry breaking [78] terms are incompatible with finiteness, as well as
D-type [79] spontaneous breaking which requires the existence of a U(1)
gauge group.

A natural question to ask is what happens at higher-loop orders. The
answer is contained in a theorem [15, 80] which states the necessary and suf-
ficient conditions to achieve finiteness at all orders. Before we discuss the
theorem, let us make some introductory remarks. The finiteness conditions
impose relations between the gauge and Yukawa couplings. To require such
relations which render the couplings mutually dependent at a given renor-
malization point is trivial. What is not trivial is to guarantee that relations
leading to a reduction of the couplings hold at any renormalization point. As
we have seen (see Eq. (50)), the necessary and also sufficient, condition
for this to happen is to require that such relations are solutions to the REs

βg
dCijk

dg
= βijk (68)

and hold at all orders. Remarkably, the existence of all-order power series
solutions to (68) can be decided at one-loop level, as already mentioned.

Let us now turn to the all-order finiteness theorem [15, 80], which states
under which conditions an N = 1 supersymmetric gauge theory can become
finite to all orders in perturbation theory, that is attain physical scale in-
variance. It is based on (a) the structure of the supercurrent in N = 1
supersymmetric gauge theory [81–83], and on (b) the non-renormalization
properties of N = 1 chiral anomalies [15, 80, 84–86]. Details of the proof can
be found in Refs. [15, 80] and further discussion in Refs. [84–88]. Here, fol-
lowing mostly Ref. [88], we present a comprehensible sketch of the proof.

Let us consider an N = 1 supersymmetric gauge theory, with simple Lie
group G. The content of this theory is given at the classical level by the mat-
ter supermultiplets Si, which contain a scalar field φi and a Weyl spinor ψia,
and the vector supermultiplet Va, which contains a gauge vector field Aaµ
and a gaugino Weyl spinor λaα.
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Let us first recall certain facts about the theory:

(1) A massless N = 1 supersymmetric theory is invariant under a U(1)
chiral transformation R under which the various fields transform as
follows:

A′µ = Aµ , λ′α = exp(−iθ)λα
φ′ = exp

(
−i23θ

)
φ , ψ′α = exp

(
−i13θ

)
ψα, . . .

(69)

The corresponding axial Noether current JµR(x)

JµR(x) = λ̄γµγ5λ+ . . . (70)

is conserved classically, while in the quantum case, it is violated by the
axial anomaly

∂µJ
µ
R = r (εµνσρFµνFσρ + . . . ) . (71)

From its known topological origin in ordinary gauge theories [89–
91], one would expect the axial vector current JµR to satisfy the Adler–
Bardeen theorem and receive corrections only at the one-loop level.
Indeed, it has been shown that the same non-renormalization theo-
rem holds also in supersymmetric theories [84–86]. Therefore,

r = ~β(1)g . (72)

(2) The massless theory we consider is scale invariant at the classical level
and, in general, there is a scale anomaly due to radiative corrections.
The scale anomaly appears in the trace of the energy momentum ten-
sor Tµν , which is traceless classically. It has the form of

Tµµ = βgF
µνFµν + . . . (73)

(3) Massless, N = 1 supersymmetric gauge theories are classically-invar-
iant under the supersymmetric extension of the conformal group — the
superconformal group. Examining the superconformal algebra, it can
be seen that the subset of superconformal transformations consisting
of translations, SUSY transformations, and axial R transformations
is closed under SUSY, i.e. these transformations form a representa-
tion of SUSY. It follows that the conserved currents corresponding
to these transformations make up a supermultiplet represented by an
axial vector superfield called the supercurrent J

J ≡
{
J ′µR , Q

µ
α, T

µ
ν , . . .

}
, (74)
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where J ′µR is the current associated with R invariance, Qµα is the one as-
sociated with SUSY invariance, and Tµν the one associated with trans-
lational invariance (energy-momentum tensor).
The anomalies of the R current J ′µR , the trace anomalies of the SUSY
current, and the energy-momentum tensor form also a second super-
multiplet, called the supertrace anomaly

S = {Re S, Im S, Sα} =
{
Tµµ , ∂µJ

′µ
R , σ

µ

αβ̇
Q̄β̇µ + . . .

}
,

where Tµµ is given in Eq. (73) and

∂µJ
′µ
R = βgε

µνσρFµνFσρ + . . . , (75)

σµ
αβ̇
Q̄β̇µ = βgλ

βσµναβFµν + . . . (76)

(4) It is very important to note that the Noether current defined in (70) is
not the same as the current associated with R invariance that appears
in the supercurrent J in (74), but they coincide in the tree approxi-
mation. So starting from a unique classical Noether current JµR(class),
the Noether current JµR is defined as the quantum extension of JµR(class)

which allows for the validity of the non-renormalization theorem. On
the other hand, J ′µR , is defined to belong to the supercurrent J , together
with the energy-momentum tensor. The two requirements cannot be
fulfilled by a single current operator at the same time.

Although the Noether current JµR which obeys (71) and the current J ′µR
belonging to the supercurrent multiplet J are not the same, there is a rela-
tion [15, 80] between quantities associated with them

r = βg(1 + xg) + βijkx
ijk − γArA , (77)

where r was given in Eq. (72). The rA are the non-renormalized coeffi-
cients of the anomalies of the Noether currents associated with the chiral in-
variances of the superpotential, and — like r — are strictly one-loop quan-
tities. The γA’s are linear combinations of the anomalous dimensions of the
matter fields, and xg, and xijk are radiative correction quantities. The struc-
ture of Eq. (77) is independent of the renormalization scheme.

One-loop finiteness, i.e. vanishing of the β-functions at one loop, im-
plies that the Yukawa couplings λijk must be functions of the gauge cou-
pling g. To find a similar condition to all orders, it is necessary and suffi-
cient for the Yukawa couplings to be a formal power series in g, which is the
solution of the REs (68).
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We can now state the theorem for all-order vanishing β-functions [15].

Theorem. Let us consider an N = 1 supersymmetric Yang–Mills theory,
with a simple gauge group. If the following conditions are satisfied

1. There is no gauge anomaly.
2. The gauge β-function vanishes at one loop

β(1)g = 0 =
∑
i

T (Ri)− 3C2(G) . (78)

3. There exist solutions of the form

Cijk = ρijkg , ρijk ∈ IC (79)

to the conditions of vanishing one-loop matter fields anomalous dimen-
sions

γ(1)ij = 0 =
1

32π2

[
Cikl Cjkl − 2 g2 C2(R)δij

]
. (80)

4. These solutions are isolated and non-degenerate when considered as solu-
tions of vanishing one-loop Yukawa β-functions

βijk = 0 . (81)

Then, each of the solutions (79) can be uniquely extended to a formal power
series in g, and the associated super Yang–Mills models depend on the single
coupling constant g with a β-function which vanishes at all-orders.

It is important to note a few things: The requirement of isolated and non-
degenerate solutions guarantees the existence of a unique formal power se-
ries solution to the reduction equations. The vanishing of the gauge β-func-
tion at one loop, β(1)g , is equivalent to the vanishing of the R current anomaly
(71). The vanishing of the anomalous dimensions at one loop implies the
vanishing of the Yukawa couplings β-functions at that order. It also im-
plies the vanishing of the chiral anomaly coefficients rA. This last property
is a necessary condition for having β-functions vanishing at all orders2.

Proof. Insert βijk as given by the REs into relationship (77). Since these chi-
ral anomalies vanish, we get for βg a homogeneous equation of the form

0 = βg(1 +O(~)) . (82)

The solution of this equation in the sense of a formal power series in ~ is
βg = 0, order by order. Therefore, due to the REs (68), βijk = 0 too.

2 There is an alternative way to find finite theories [92–95].
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Thus, we see that finiteness and reduction of couplings are intimately re-
lated. Since an equation like Eq. (77) is lacking in non-supersymmetric theo-
ries, one cannot extend the validity of a similar theorem in such theories.

A very interesting development was done in Ref. [56]. Based on the all-
loop relations among the β-functions of the soft supersymmetry breaking
terms and those of the rigid supersymmetric theory with the help of the
differential operators, discussed in Sections 3.3 and 3.4, it was shown that
certain RGI surfaces can be chosen, so as to reach all-loop finiteness of the
full theory. More specifically it was shown that on certain RGI surfaces,
the partial differential operators appearing in Eqs. (40,41) acting on the β-
and γ-functions of the rigid theory can be transformed into total deriva-
tives. Then the all-loop finiteness of the β- and γ-functions of the rigid theory
can be transferred into the β-functions of the soft supersymmetry breaking
terms. Therefore, a totally all-loop finite N = 1 SUSY gauge theory can be
constructed, including the soft supersymmetry breaking terms.

5. Successful finite unification

Below, we briefly review the basic properties of a phenomenologically
successful SUSY model with reduced couplings, which can be made finite
to all-loops in perturbation theory. Its predictions for the top- and bottom-
quark masses, the SM Higgs-boson mass, as well as the supersymmetric and
the other Higgs spectra are discussed in Section 5.3, while experimental con-
straints considered are listed in Section 5.2. A few comments on Cold Dark
Matter (CDM) are mentioned too. Other models with reduced couplings
that were analyzed in [96] and [97] (see also [98] and [99]) are the Reduced
Minimal N = 1 SU(5) [41], the two-loop Finite N = 1 SU(3)3 [100–102],
and the Reduced Minimal Supersymmetric Standard Model [103, 104].

5.1. The finite N = 1 supersymmetric SU(5) model

The model under review is a finite to all-orders SU(5) N = 1 SUSY GUT
(also referred to as FUTB), where the finiteness conditions, resulting from
the application of the reduction of couplings method and the requirement of
vanishing one-loop β-functions, have been applied.

The particle content of the model, resulting from applying condition (78),
consists of three (5̄ + 10) supermultiplets, where the quarks and leptons
are accommodated, while in the Higgs sector there are four supermultiplets
(5̄ + 5) and one 24.

The most general SU(5) invariant, cubic superpotential, where theR-par-
ity that forbids fast proton decay has been imposed, and that is also consis-
tent with the above particle content, is given by
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W = Ha

[
fab H̄b24 + hia 5̄i24 + ḡija 10i5̄j

]
+ p (24)3

+
1

2
10i

[
gija 10jHa + ĝiab H̄aH̄b + g′ijk 5̄j 5̄k

]
, (83)

where i, j, k = 1, 2, 3 and a, b = 1, . . . , 4, and we sum over all indices in W
(notice that the SU(5) indices are suppressed). The 10i’s and 5̄i’s are the
usual three generations, and the four (5+5̄) Higgses are denoted by Ha , H̄a.
As further restrictions, to make the model viable, the anomalous dimensions
have been assumed diagonal, and couplings between the fermions and the 24
in the adjoint are not allowed. To achieve all-loop finiteness, the conditions
3 and 4 from the all-loop finiteness theorem have to be satisfied. These
require the existence of isolated and non-degenerate solutions to the van-
ishing of the anomalous dimensions, and thus the vanishing of the Yukawa
β-functions. One can check that this is indeed the case. As explained in
the previous section, these conditions guarantee a unique solution to the
reduction equations.

The existence of these solutions implies an enhanced symmetry of the
superpotential, which can be found e.g. in Refs. [18, 105], and is given by

W =
3∑
i=1

[
1

2
gui 10i10iHi + gdi 10i5̄i H̄i

]
+ gu23 102103H4 + gd23 1025̄3 H̄4

+gd32 1035̄2 H̄4 + gf2 H2 24 H̄2 + gf3 H3 24 H̄3 +
gλ

3
(24)3 , (84)

while the solutions to the reduction equations, which ensure the vanishing
of γ(1)i , and are non-degenerate and isolated as

(gu1 )2 =
8

5
g2 ,

(
gd1

)2
=

6

5
g2 , (gu2 )2 = (gu3 )2 =

4

5
g2 ,(

gd2

)2
=
(
gd3

)2
=

3

5
g2 , (gu23)

2 =
4

5
g2 ,

(
gd23

)2
=
(
gd32

)2
=

3

5
g2 ,(

gλ
)2

=
15

7
g2 ,

(
gf2

)2
=
(
gf3

)2
=

1

2
g2 ,

(
gf1

)2
= 0 ,

(
gf4

)2
= 0 .

(85)

Regarding the SSB sector of the model, assuming the existence of an RGI
surface on which Eq. (51) holds, we obtain at one loop the generic rela-
tion h = −MC, while the sum rule leads to

m2
Hu

+ 2m2
10 = M2 , m2

Hd
− 2m2

10 = −M
2

3
, 3m2

10 =
4M2

3
. (86)

As a result, there exist two free parameters in the dimensionful sector, m10

and M .
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After the SU(5) breaking, it is required that the resulting model is the
MSSM. To achieve this, it is necessary to perform a rotation of the Higgs
sector, so that the MSSM Higgs doublets are mostly composed from the
5 and 5̄ that couple to the third generation. At the same time, the usual
doublet–triplet mechanism has to be implemented to ensure there is no fast
proton decay [16, 17, 106–109]. The solutions to the vanishing of the anoma-
lous dimensions (85) and the sum rule (86) for the third generation are thus
boundary conditions for the MSSM at the GUT scale. The other two gen-
erations are minimally coupled to the MSSM Higgs doublets and are there-
fore taken to zero in this analysis. The model is discussed in more detail
in [16, 17, 41, 105].

5.2. Phenomenological constraints

Before the analysis of the above-mentioned model, we will review the
experimental constraints applied3.

We have considered the pole mass of the top quark while the bottom-
quark mass is evaluated at the MZ scale, in order to avoid pole mass uncer-
tainties. The experimental values [110] are

mexp
t = 173.1± 0.9 GeV , mb(MZ) = 2.83± 0.10 GeV . (87)

The Higgs-like particle discovered in July 2012 by ATLAS and CMS [111,
112] is interpreted as the light CP-even Higgs boson of the MSSM [113–115].
Its experimental average mass is [110]

M exp
h = 125.10± 0.14 GeV . (88)

However, it is the theoretical uncertainty [116, 117] that dominates the to-
tal uncertainty, since it is much larger than the experimental one. For the
prediction of the Higgs mass, we used the version 2.16.0 of the FeynHiggs
code [116–124]. This version gives an O(2 GeV) downward shift on the
Higgs mass Mh (for large SUSY masses). More importantly, it gives a reli-
able point-by-point evaluation of the uncertainty [125]. The theoretical un-
certainty calculated is added linearly to the experimental error of Eq. (88).

Furthermore, recent ATLAS experiment results [126] limit the neutral
Higgs-boson masses with respect to tanβ. For our case tanβ ∼ 45–55, the
lowest limit for the physical neutral Higgs masses is

MA,H & 1900 GeV . (89)

3 The used values do not correspond to the latest experimental results, which, however,
has a negligible impact on our analysis.
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For the calculation of the heavy Higgs sector and the full supersymmetric
spectrum a SARAH [127] generated, custom module for SPheno [128, 129] was
used. The cross sections for their particle productions at the HL-LHC and
FCC-hh were calculated with MadGraph5_aMC@NLO [130].

We also considered the following flavour observables. For BR(b → sγ),
we take a value from [131–136], while for BR(Bs → µ+µ−), we use a com-
bination of [137–142]

BR(b→ sγ)exp

BR(b→ sγ)SM
= 1.089± 0.27 , BR(Bs → µ+µ−) = (2.9± 1.4)× 10−9 .

(90)
For the Bu decay to τν, we use [136, 143–145] and for ∆MBs , we use [146,
147]

BR(Bu → τν)exp

BR(Bu → τν)SM
= 1.39± 0.69 ,

∆M exp
Bs

∆MSM
Bs

= 0.97± 0.2 . (91)

Finally, we consider Cold Dark Matter (CDM) relic density constraints.
Since the Lightest SUSY Particle (LSP), which in our case is the light-
est neutralino, could be a promising CDM candidate [148, 149], we examine
if the model is within the CDM relic density experimental limits. The cur-
rent bound on the CDM relic density at 2σ level is given by [150]

ΩCDMh
2 = 0.1120± 0.0112 . (92)

For the calculation of the CDM relic density, the MicrOMEGAs 5.0 code [151–
153] was used.

5.3. Numerical analysis of the finite SU(5)

We continue with the analysis of the predicted spectrum of the model. Be-
low the GUT scale, we get the MSSM, where the third generation is given
by the finiteness conditions (the first two remain unrestricted). However,
these conditions do not restrict the low-energy renormalization properties,
so the above relations between gauge, Yukawa and the various dimension-
ful parameters serve as boundary conditions atMGUT. The third-generation
quark masses mb(MZ) and mt are predicted within 3σ and 2σ uncertain-
ties, respectively, of their experimental values (see the complete analysis
in [96, 154]), as shown in Fig. 1. The tau lepton mass is used as an input.
µ turns out to be negative, as shown in [96, 99, 155–161].

The plot of the light Higgs mass satisfies all experimental constraints con-
sidered in 5.2 (including B-physics constraints) for a unified gaugino mass
M ∼ 4500–7500 GeV, while its point-by-point theoretical uncertainty [125]
drops significantly (w.r.t. the previous analysis) to 0.65–0.70 GeV. This can
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Fig. 1. mb(MZ) (left) and mt (right) as a function ofM for the finite N = 1 SU(5).
Green points are the ones that satisfy the B-physics constraints. The dashed orange
(blue) lines denote the 2σ (3σ) experimental uncertainties.

be found in Fig. 2. The improved evaluation of Mh and its uncertainty pre-
fer a heavier (Higgs) spectrum (compared to previous analyses [96, 99, 105,
155–160, 162–165]), and thus allows only a heavy supersymmetric spec-
trum, which is in agreement with all existing experimental data. Very heavy
coloured supersymmetric particles are favoured, in agreement with the non-
observation of such particles at the LHC [166, 167].

Fig. 2. Left: Mh as a function of M . Green points comply with B-physics con-
straints. Right: The lightest Higgs mass theoretical uncertainty calculated with
FeynHiggs 2.16.0 [125].

Concerning CDM, although no point fulfills the strict bound of Eq. (92),
since we have an overproduction of CDM in the early universe (for the orig-
inal analysis, see [98]), we can extend the model by considering bilinear
R-parity violating terms (that preserve finiteness) and thus introduce neu-
trino masses [168, 169]. R-parity violation [170–173] would remove the CDM
bound of Eq. (92) completely.
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As explained in more detail in [97], the three benchmarks chosen (for
the purposes of collider phenomenology) feature the LSP above 2100 GeV,
2400 GeV and 2900 GeV, respectively. The resulting masses that are rele-
vant to our analysis were generated by SPheno 4.0.4 [128, 129] and are listed
in Table I for each benchmark (with the corresponding tanβ). The two first
masses refer to the heavy Higgs bosons. The gluino mass isMg̃, the neutrali-
nos and the charginos are denoted as Mχ̃0

i
and Mχ̃±i

, while the slepton and
sneutrino masses for all three generations are given as Mẽ1,2,3 , Mν̃1,2,3 . Sim-
ilarly, the squarks are denoted as Md̃1,2

and Mũ1,2 for the first two genera-
tions. The third generation masses are given by Mt̃1,2

for stops and Mb̃1,2
for sbottoms.

TABLE I

Masses for each of the three benchmarks of the finite N = 1 SU(5) (in TeV) [97].

tanβ MA,H MH± Mg̃ Mχ̃0
1

Mχ̃0
2

Mχ̃0
3

Mχ̃0
4
Mχ̃±

1
Mχ̃±

2

FUTSU5-1 49.9 5.688 5.688 8.966 2.103 3.917 4.829 4.832 3.917 4.833
FUTSU5-2 50.1 7.039 7.086 10.380 2.476 4.592 5.515 5.518 4.592 5.519
FUTSU5-3 49.9 16.382 16.401 12.210 2.972 5.484 6.688 6.691 5.484 6.691

Mẽ1,2 Mν̃1,2 Mτ̃ Mν̃τ Md̃1,2
Mũ1,2

Mb̃1
Mb̃2

Mt̃1
Mt̃2

FUTSU5-1 3.102 3.907 2.205 3.137 7.839 7.888 6.102 6.817 6.099 6.821
FUTSU5-2 3.623 4.566 2.517 3.768 9.059 9.119 7.113 7.877 7.032 7.881
FUTSU5-3 4.334 5.418 3.426 3.834 10.635 10.699 8.000 9.387 8.401 9.390

At 14 TeV HL-LHC, none of the finite SU(5) scenarios listed above has
a SUSY production cross section above 0.01 fb, and thus will most probably
remain unobservable [174]. The discovery prospects for the heavy Higgs-
boson spectrum are significantly better at the FCC-hh [175]. Theoretical
analyses [175, 176] have shown that for large tanβ, heavy Higgs mass that
scales up to ∼ 8 TeV could be accessible. Since in this model we have tanβ ∼
50, the first two benchmark points are well within the reach of the FCC-hh
(as explained in [97]). The third point, however, where MA ∼ 16 TeV, will
be far outside the reach of the collider. At 100 TeV, we have in principle
production of SUSY particles in pairs, although their production cross sec-
tion is at the few fb level. This is a result of the heavy spectrum of the
model. Comparing our benchmark predictions with the simplified model
limits of [177], we have found that the lighter stop might be accessible
in FUTSU5-1 (see [97]). For the squarks of the first two generations, there
are better prospects. All benchmarks could be tested at the 2σ level, but no
discovery at the 5σ can be expected and the same holds for the gluino.
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6. Conclusions

Veltman’s contributions to the field of Particle Physics have a huge im-
pact on the development of the field. Here we have presented only one of the
roads that Veltman opened in particle physics, published in his celebrated
paper in Acta Physica Polonica B [4]. This work of Veltman was guided by
the current at that time notion of naturality which appeared to be of funda-
mental importance in physics discussions and guiding principle in searches
of new physics up to now. Veltman required the absence of quadratic di-
vergences in the SM, which led to a quadratic mass relation among the SM
particles. The fact that Veltman’s relation eventually does not hold can be
taken as a sign that the SM, despite its phenomenological successes cannot
be considered as a complete theory. Moreover, the whole discussion on the
cancellation of quadratic divergences in renormalizable field theories with
scalars was uniquely pointing to the supersymmetric ones, where naturally
do not appear such divergences to all-orders of perturbation theory, as the
arena of searching for a more complete theory. The possibility to achieve
unification of the gauge couplings of the SM in the supersymmetric frame-
work with supersymmetry broken in the TeV scale gave a huge push in the
research in such theories and in particular in MSSM for many years.

Still, the problem of the several independent parameters of the SM is
much more severe even in the minimal version of MSSM, when the supersym-
metry breaking sector is taken into account. Correspondingly, the necessity
of reduction of couplings in the SM becomes substantially stronger in the
MSSM. The application of the method of searching for RGI relations as a
way to reduce the independent parameters of the SM failed, as the Veltman
relation, when it was confronted with the experimental discoveries of the
top quark and Higgs particles and the determination of their masses. Now
after several years of research, it seems that so far supersymmetric unified
schemes such as the finite SU(5), the minimal SU(5) and the SU(3)3 with re-
duced couplings (i.e. satisfying RGI relations) can be realistic. Among them
clearly the most interesting is the SU(5) FUT, since beyond the unification
scale a complete reduction of couplings in favour of the gauge coupling can
be achieved, and it is furthermore finite to all-orders in perturbation theory.
In the latter, clearly even the logarithmic divergences are absent, fulfilling
an old dream of theoretical physicists who were seriously disturbed by the
presence of divergences in field theories. Moreover, it is a realistic theory
with the great successes of predicting successfully the top and Higgs masses
well before their experimental discoveries and passing successfully all exper-
imental tests so far and having chances to be further tested at FCC-hh.
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