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Gauge theories have become the universal language of fundamental in-
teractions. To this discovery, Martinus J.G. Veltman played a major role.
In this short note, dedicated to his memory, we try to understand some of
their geometrical properties. We show that a d-dimensional SU(N) Yang–
Mills theory can be formulated on a (d + 2)-dimensional space, with the
extra two dimensions forming a surface with non-commutative geometry.
The non-commutativity parameter is proportional to 1/N and the equiv-
alence is valid to any order in 1/N . We study explicitly the case of the
sphere and the torus.
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1. Introduction

The most important discovery in high-energy physics of the last decades
was undoubtedly the realisation that all interactions among elementary par-
ticles are described by gauge-invariant theories. The concept of gauge in-
variance has a very long history, it spans almost two centuries, and cannot
be attributed to a single man. In the next section, we will sketch a very brief
history of the evolution of these ideas by indicating its main milestones. We
will see that a very important one is marked by Martinus Justinus Gode-
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friedus Veltman (1931–2021)1 who, in the late 1960s, decided to launch a
frontal attack on the renormalisation problem of a quantum field theory in-
volving charged, massive, vector bosons. It is the success of this enterprise
that made possible the building of what became known as The Standard
Model of particle physics.

Today gauge theories are part of our scientific culture and are taught in
basic university courses. They brought to physics novel ideas which include
concepts and techniques from differential geometry. We are not yet at the
end of this adventure and we continuously discover new paths leading to
unexplored territories. In this note, we want to present some speculations,
although we do not yet know whether they correspond to paths still to be
explored or to mere dead ends. We thought it was appropriate to devote this
essay to Veltman’s memory because we try to follow his example. As we will
see in the next section, Veltman attacked the problem of gauge field theories
by direct computations [2], hoping that whichever problems are there they
will eventually show up.

2. Brief historical notes

The concept of gauge invariance can be traced to classical electromag-
netic theory [3]. The vector potential was introduced during the first half
of the nineteenth century, either implicitly or explicitly, by several authors
independently. It appears in some manuscript notes by C.F. Gauss as early
as 1835, and it was fully written by G. Kirchoff in 1857, following some
earlier work by F. Neumann. It was soon noticed that it carried redundant
variables and several “gauge conditions” were used2. However, for internal
symmetries, the concept of gauge invariance, as we know it today, belongs to
the quantum theory [4]. It is the phase of the wave function, or that of the
quantum fields, which is not an observable quantity and produces the inter-
nal symmetry transformations. The local version of these symmetries are the
gauge theories of the Standard Model. The first person who realised that the
invariance under local transformations of the phase of the wave function in
the Schrödinger theory implies the introduction of an electromagnetic field
was Fock in 1926 [5], just after Schrödinger wrote his equation. Naturally,
one would expect non-Abelian gauge theories to be constructed following

1 Martinus (“Tini”) Veltman started his scientific career relatively late: he obtained his
Ph.D. from the University of Utrecht in 1963 [1] under the direction of Leon Van
Hove, but he had moved to CERN already in 1961 following his advisor who was
named leader of the CERN Theory Division. At CERN, van Hove studied mainly
hadronic physics but Veltman became interested in weak interactions (he even joined
Bernardini’s neutrino experiment for a while) and current algebras. It is in these
fields that he made his most important and lasting contributions.

2 The condition, which in modern notation is written as ∂µA
µ = 0, was proposed by

the Dane L.V. Lorenz in 1867.
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the same principle immediately after Heisenberg introduced the concept of
isospin in 1932. However, in this case, history took a totally unexpected
route.

The development of the General Theory of Relativity offered a new
paradigm for a gauge theory. It exerted such a fascination on an entire
generation of physicists that for many years, local transformations could
not be conceived independently of general coordinate transformations. Two
attempts were made to construct an SU(2) gauge theory: the first by Klein
in 1938 [6] and the second by Pauli in 1953 [7]. The amazing fact is that
both, fifteen years apart one from the other, decided to construct the SU(2)
gauge theory for strong interactions and both choose to follow a totally
counter-intuitive method. They started from a theory of general relativity
formulated in a six-dimensional space-time3, they compactified the extra di-
mensions à la Kaluza–Klein, and took the flat space limit. Yang and Mills
[8] were the first to understand that the gauge theory of an internal symme-
try takes place in a fixed background space which can be chosen to be flat,
in which case general relativity plays no role.

With the work of Yang and Mills, gauge theories entered particle physics4.
Although the initial motivation was a theory of the strong interactions, the
first semi-realistic models aimed at describing the weak and electromagnetic
interactions and used the group SU(2) × U(1) [10]. The only one among
these early attempts which has survived the test of time is due to Glashow
[11] who understood that a rich algebraic structure is obtained if you allow
for a mixing between the two neutral generators, that of U(1) and the neu-
tral component of SU(2). The resulting mixing angle is known as θW . In
the same year, Gell-Mann and Glashow published a paper [12] in which they
extend the Yang–Mills construction to direct products of Lie algebras. The
well-known result of associating a coupling constant to every simple factor
in the algebra is obtained there. In addition, they correctly identify vari-
ous phenomenological problems, such as the absence of strangeness violating
neutral currents.

In all these early works, two questions were left aside: (i) the mass
of the vector bosons was put in by hand thus breaking gauge invariance
and, (ii) there was no attempt to study these theories as quantum field

3 Klein starts from a 5-d theory but his fifth dimension has, in fact, two components.
4 The term gauge is due to Weyl [9]. He is more known for his 1918 unsuccessful
attempt to enlarge diffeomorphisms to local scale transformations but, in fact, a
byproduct of this work was a different form of unification between electromagnetism
and gravitation. In his 1929 paper, which contains the gauge theory for the Dirac
electron, he introduced many concepts which have become classic, such as the Weyl
two-component spinors and the vierbein and spin-connection formalism. Although
the theory is no more scale invariant, he still used the term gauge invariance, a term
which has survived ever since.
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theories by computing higher orders in the perturbation expansion. The
first was answered in 1964 [13] with the concept of spontaneous symmetry
breaking. It was incorporated into the SU(2)×U(1) model in 1967 [14] and,
supplemented with the GIM mechanism [15], gave rise to the electroweak
sector of the Standard Model [16]. The second question is the one first
addressed by Veltman.

Around 1966, Veltman was trying to understand the deeper origin of the
conservation, or near conservation, of the weak currents. In particular, he
tried to throw some light on the general confusion which prevailed at that
time concerning the so-called “Schwinger terms” in the commutators of two
current components. While he was on a visit from CERN to Brookhaven, he
wrote a paper in which he suggested a set of divergence equations which gen-
eralised the notion of the covariant derivative of quantum electrodynamics.
This fundamental idea was taken up next year and developed further by Bell
[17]. At that time, people had postulated the existence of a pair of charged,
massive vector bosons W± as intermediaries of the weak interactions, so
motivated by these divergence equations, Veltman decided to study their
field theory properties. This study turned out to be very complicated, both
conceptually, because the correct Feynman rules were not known, as well
as practically because the number of terms grew very fast. Veltman had to
develop a computer program to handle them. He called it SCHOONSCHIP5

and it was the first program of symbolic manipulations applied to theoretical
high-energy physics.

We find here Veltman’s method of direct attack. No matter which form
the final theory will turn out to have, it will certainly contain the photon
and the charged W s. Thus, he started from the electrodynamics of charged
vector bosons. It was known [18] that electromagnetic gauge invariance
allows to express the vector boson’s charge e, magnetic moment µ, and
quadrupole moment Q in terms of only two parameters e and κ, as µ =
e(1 + κ)/2mW and Q = −eκ/m2

W . The resulting theory is highly divergent
but Veltman noticed that many divergences cancel for the particular value
κ = 1. It is the value predicted by a theory in which W± and the photon
form a Yang–Mills triplet. For Veltman, this was a clear signal that the
theory of weak and electromagnetic interactions must obey a Yang–Mills
gauge invariance.

In order to go further, he needed to have the correct Feynman rules.
We know today that they are not the ones you would guess naïvely by
generalising QED. A few years earlier, Feynman had made the right guess
[19]. It is worth noticing that Feynman did not use the path integral method
to derive the rules. This was done later by Faddeev and Popov. However,

5 “Clean ship” in Dutch.
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Feynman knew better than anybody else that in perturbation theory the
Feynman rules are not God-given by some Lagrangian; the rules define the
theory. So, he introduced the ghost fields for internal consistency at the
one-loop level. Veltman had to learn all this by himself, by trial and error.
The experience he had acquired in his thesis working with diagrams in which
the particles in the intermediate lines were on their mass shells, the so-called
“cutting rules”, was precious. In 1969, he was joined in Utrecht by Gerard
’t Hooft, a graduate student with whom he shared the 1999 Nobel Prize.
Their work was a real “tour de force” [20]. The citation of the Nobel Prize
reads “. . . for elucidating the quantum structure of electroweak interactions
in physics.” The importance of this work cannot be overestimated. Although
the citation refers to the electroweak interactions, their result made possible
the subsequent discovery of QCD. Since that time, gauge theories became
the universal language of fundamental physics.

In 1973, ’t Hooft and Veltman published a review article as a CERN yel-
low report [21]. In the introduction, we read: “. . . (Feynman) diagrams form
the basis from which everything must be derived. They define the opera-
tional rules, and tell us when to worry about Schwinger terms, subtractions,
and whatever other mythological objects need to be introduced.” This is
part of Veltman’s legacy: when you are short of intuition, sit down and
compute. If you are smart, ideas may be revealed from the computations.

3. The large-N limit of SU(N) gauge theories

The limit when the number of fields becomes very large often reveals
interesting properties of quantum field theories. They include the O(N)
vector model of a λ(φiφi)2 i = 1, . . . , N theory which becomes soluble in
the large-N limit, and the SU(N) gauge theory which reduces to the sum
over planar diagrams. In both cases, we must rescale the coupling constant
in order to take into account the fact that, in this limit, we sum over an
infinite number of graphs. The bare coupling constant goes to zero and we
keep fixed λ̃ = λN and g̃2 = g2N , respectively.

Here, we shall consider the SU(N) gauge theory but in a different limit
because we are interested in some geometrical properties. The main remark
which underlines our approach is the following: Let φi(x) i = 1, . . . , N
N → ∞ be an N -component field defined in a d-dimensional space. At
large N , we can write φi(x) → φ(σ, x) 0 ≤ σ ≤ 2π, i.e. we can consider
φi(x) as the Fourier components of a field in (d + 1) dimensions with the
extra dimension being a circle. In this case, we have

∞∑
i=1

φi(x)φi(x)→
2π∫
0

dσ(φ(σ, x))2 . (1)
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However, the interaction term will be non-local in σ:

φ4 →

 2π∫
0

dσ(φ(σ, x))2

2

. (2)

The crucial remark is that, for a Yang–Mills field Aµ(x) belonging to
the adjoint representation of an SU(N) group, the resulting expression at
large N is local [22].

Written explicitly we have: Given an SU(N) Yang–Mills theory in a
d-dimensional space Aµ(x) = Aaµ(x)ta, there exists a reformulation in (d+2)
dimensions Aµ(x)→Aµ(x, σ1, σ2) and Fµν(x)→ Fµν(x, σ1, σ2) with σ1 and
σ2 appropriately chosen coordinates on a compact 2-dimensional surface,
such that, at N → ∞, the matrix commutators become the usual Poisson
brackets with respect to σ1 and σ2

[Aµ(x), Aν(x)] → {Aµ(x, σ1, σ2),Aν(x, σ1, σ2)} ,
[Aµ(x), Ω(x)] → {Aµ(x, σ1, σ2), Ω(x, σ1, σ2)} , (3)

where Ω is an element of the gauge group. We can show that the Yang–Mills
action becomes∫
d4xTr (Fµν(x)F

µν(x))→
∫

d4x dσ1 dσ2 Fµν(x, σ1, σ2)Fµν(x, σ1, σ2) . (4)

The SU(N) gauge invariance has become invariance under area-preserving
diffeomorphisms of the 2-dimensional surface spanned by σ1 and σ2. The
proof of this statement is essentially algebraic. A direct way [23] is to prove
that at the limit N → ∞, the SU(N) structure constants, appropriately
rescaled, go to those of [SDiff2]. We can also show it explicitly for the
sphere [22] and the torus [22, 24]. We shall present briefly these derivations
in the following section.

A final remark: Equivalence (4) is established for the classical theories.
To go to the quantum theory, we should first find a suitable gauge and this
can be done. However, then we are facing a second problem: The quadratic
part of the new 6-dimensional action has no derivatives with respect to the
variables σ1 and σ2. As a result, the perturbation expansion cannot be de-
fined. This is not surprising. In proving (4), we have not imposed ’t Hooft’s
rescaling condition in which g2N is kept fixed and we recover, already at
lowest order, the infinite number of graphs. It is possible, although we have
no explicit proof, that we can absorb these divergences in a clever renormal-
isation scheme, but it is not clear whether any new insight can be obtained
this way. The 4-dimensional theory we started from is renormalisable for
any finite N . A different approach would be to expand around a non-trivial
solution which, hopefully, captures part of the non-perturbative dynamics
of the Yang–Mills theory. Such a “master field” has not yet been found.
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4. Gauge theories and non-commutative geometry

There may be several motivations to study a quantum theory in a space
with non-commutative geometry and we will list some of them here.

— Not surprisingly, the first proposal goes back to Heisenberg who, in a
letter to Peierls in 1930 [25], suggested that non-commutativity among
space coordinates could eliminate the short-distance singularities. He
tried to convince Peierls and Pauli to work on this problem, but, ap-
parently, Pauli did not think much of the idea6. He talked instead to
Oppenheimer [27] who, apparently, gave it as a problem to his former
Ph.D. student Snyder, known from their common paper on gravitational
collapse [28]. Snyder published a paper in 1947 [29] in which he tries
to enlarge the quantum mechanical commutation relations to a system
involving the commutators among space components. His main concern
seems to have been compatibility with Poincaré invariance. He wrote a
system of rather obscure commutation relations of the form of

[x, y] =
(
ia2/~

)
Lz , [t, x] =

(
ia2/~c

)
Mx ,

[x, px] = i~
[
1 + (a/~)2p2x

]
, [x, py] = i~(a/~)2pxpy , (5)

where a is the parameter defining space non-commutativity and L andM
are the generators of Lorentz transformations. As far as we know, nei-
ther Snyder nor anybody else attempted to write a field theory based
on these relations and there was no follow-up for many years7. Snyder
himself left non-commutative geometry and had a successful career as
an accelerator engineer [30]. In fact, as history evolved, Pauli was prob-
ably right. The motivation based on short-distance singularities did not
prove fruitful for elementary particle physics. With the development of
the renormalisation program in the framework of quantum field theo-
ries, the problem of ultraviolet divergences took a completely different
turn. While a space cut-off makes all theories finite, the renormalisa-
tion program applies to very few and very specific field theories. It is a
most remarkable fact that they are precisely the ones chosen by Nature.
It is not finiteness but rather lack of sensitivity to unknown physics at
very short distances that turned out to be the important criterion. The
geometry of physical space may still produce an ultraviolet cut-off, but
its presence does not seem to be relevant for the calculation of physical
processes among elementary particles.

6 In a letter to Bohr he commented: “. . . it seems to be a failure for reasons of physics.”
[26].

7 It is also strange that Oppenheimer’s name is never mentioned in the paper.
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— However, almost at the same time, a new motivation for studying theo-
ries in a non-commutative space appeared, although only recently, it was
fully appreciated. In 1930, Landau [31] solved the problem of the mo-
tion of an electron in an external constant magnetic field and, besides
computing the energy levels, the so-called “Landau levels”, he showed
that the components of the velocity operator of the electron do not com-
mute. A simple way to visualise this result is to think of the classical case
where the electron follows a spiral trajectory whose projection on a plane
perpendicular to the field is a circle. In Landau’s quantum mechanical
solution, the centre’s coordinates are

xc =
cpy
eH

+ x ; yc = −
cpx
eH

(6)

which shows that the two coordinates do not commute. The magnetic
field has induced a non-commutative structure on space itself. Following
Heisenberg’s suggestion, Peierls [32] showed that, at least the lowest Lan-
dau level, can be obtained by using this space non-commutativity. Since
the presence of non-vanishing magnetic-type external fields is a common
feature in many modern supergravity and string models, the study of
field theories formulated on spaces with non-commutative geometry has
become quite fashionable [33].

— A new element was added a few years ago with the work of Seiberg and
Witten [34] who showed the existence of a map between gauge theories
formulated in spaces with commuting and non-commuting coordinates.

— An independent line of approach has been initiated by Connes [35] and
co-workers, and aims at constructing a gauge theory with spontaneously
broken symmetry using the techniques of non-commutative geometry.
The result which relates the symmetry breaking parameter to the dis-
tance between different branes has been first obtained in this approach.

— A different but related motivation comes from SU(N) gauge theories at
large N and matrix models, to which we turn next.

4.1. A fuzzy sphere

For the classical sphere, a convenient choice of coordinates is given by
the usual angles θ and φ. We can write x1 = cosφ sin θ, x2 = sinφ sin θ
and x3 = cos θ. The corresponding spherical harmonics are given by

Yl,m(θ, φ) =
∑

ik=1,2,3
k=1,...,l

α
(m)
i1...il

xi1 . . . xil , (7)
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where α(m)
i1...il

is a symmetric and traceless tensor. For fixed l, there are 2l+1

linearly-independent tensors α(m)
i1...il

, m = −l, . . . , l.
We choose, inside SU(N), an SU(2) subgroup8 whose generators we call

Si. They satisfy the commutation relations: [Si, Sj ] = iεijkSk. We can use
them as a basis to build the N2−1 generators of SU(N) in the fundamental
representation

S
(N)
l,m =

∑
ik=1,2,3
k=1,...,l

α
(m)
i1...il

Si1 . . . Sil ⇒
[
S
(N)
l,m , S

(N)
l′,m′

]
= if

(N)l′′,m′′

l,m; l′,m′ S
(N)
l′′,m′′ , (8)

where the constants f (N) are the SU(N) structure constants in a somehow
unusual notation. It is now clear that the three SU(2) generators Si, rescaled
by a factor proportional to 1/N , will have well-defined limits as N goes to
infinity

Si → Ti =
2

N
Si implies [Ti, Tj ] =

2i

N
εijkTk

and
T 2 = T 2

1 + T 2
2 + T 2

3 = 1− 1

N2
.

In other words: under the norm ‖x‖2 = Trx2, the limits as N goes
to infinity of the generators Ti are three objects xi, which commute and
are constrained by x21 + x22 + x23 = 1. This, in turn, shows that the classi-
cal Yang–Mills theory becomes the theory invariant under area-preserving
diffeomorphisms of equation (4) with the closed surface being a sphere S2.

So much for the large-N limit. For any value of N , we can parametrise
the three operators Ti in terms of two operators, z1 and z2 as follows9:

T+ = T1 + iT2 = e
iz1
2
(
1− z22

) 1
2 e

iz1
2 ,

T− = T1 − iT2 = e−
iz1
2
(
1− z22

) 1
2 e−

iz1
2 ,

T3 = z2 . (9)

Then it is straightforward algebra [22] to prove the following algebraic state-
ment:

[z1, z2] =
2i

N
⇔ [Ti, Tj ] =

2i

N
εijkTk , (10)

in other words, if z1 and z2 satisfy the Heisenberg algebra, the operators Ti
satisfy the SU(2) algebra and the opposite is also true, the SU(2) algebra
for the operators Ti imply the Heisenberg algebra among z1 and z2.

8 For a more precise definition of this choice, see reference [36].
9 A similar parametrisation has been used by Holstein and Primakoff in terms of cre-
ation and annihilation operators [37].
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From that point, we can go on and show a formal equivalence: Given an
SU(N) Yang–Mills theory in a d-dimensional space, there exists a reformu-
lation in (d+ 2) dimensions in which

Aµ(x)→ Aµ (x, z1, z2) , Fµν(x)→ Fµν (x, z1, z2) and [z1, z2] =
2i

N

such that

[Aµ(x), Aν(x)] → {Aµ (x, z1, z2) ,Aν (x, z1, z2)}Moyal , (11)

[Aµ(x), Ω(x)] → {Aµ (x, z1, z2) , Ω (x, z1, z2)}Moyal , (12)

where the brackets are the symmetrised Moyal brackets [38] with respect to
the operators z1 and z2, and the action becomes∫

d4xTr (Fµν(x)F
µν(x))→

∫
d4x dz1 dz2 Fµν (x, z1, z2) ∗ Fµν (x, z1, z2)

(13)
with a *-product which should be appropriately defined for the sphere. Note
that this is not the one induced from the variables z1 and z2 which, as we
shall see in the following section, is the *-product appropriate to the torus.
We do not have a closed expression for the sphere *-product expressed in
terms of the canonically conjugate variables cos θ and φ, but it is instructive
to understand better the form of the N ×N matrices which reproduce the
sphere at the large-N limit.

We start with the SU(2) generators S± and S3 in an (N = 2s + 1)-
dimensional, unitary, irreducible representation. We choose S3 to be diago-
nal

(S3)kj = δkj(s− k + 1) or S3 = Diag(s, s− 1, . . . ,−s) . (14)

S− has N − 1 non-zero elements, those of the first lower diagonal

(S−)kj = δk−j,1 a
(1)
j , a

(1)
j =

√
(2s− j + 1) j , (15)

where k = 2, . . . , N is the row index and j = 1, 2, . . . , N−1 = 2s the column
index.

Using the three S operators, we construct N2 − 1 operators Ŷlm. They
are traceless N×N matrices built as linearly-independent polynomials of S3,
S+ and S−. They are SU(2) tensor operators and they can be viewed as ma-
trix spherical harmonics defining a fuzzy sphere with the non-commutativity
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parameter ~ ∼ 1/N . The range of the indices l and m is: l = 1, . . . , N − 1

and m = −l, . . . , l. For fixed N , the resulting N2−1 matrices Ŷlm represent
the generators of SU(N).

Since Ŷlm are SU(2) tensor operators, their commutation relations with
the generators S3 and S± are[

S3, Ŷlm

]
= mŶlm ,

[
S±, Ŷlm

]
=
√

(l ∓m)(l ±m+ 1) Ŷl,m±1 . (16)

Following Schwinger, we can construct explicitly the Ŷlms as polynomials in
the SU(2) generators S± and S3: Let z+ and z− be two independent complex
variables, then we have(
−z2+S+ + z2−S− + 2z+z−S3

)l
2l l!

=

√
4π

2l + 1

l∑
m=−l

zl+m+ zl−m−√
(l +m)!(l −m)!

Ŷlm .

(17)
This relation is an identity in the complex numbers z+ and z−.

Let us look at the r.h.s. of (17) for m = −l :
√

4π
2l+1

z2l−√
(2l)!

Ŷl,−l. Com-

paring with the l.h.s. we obtain

Ŷl,−l =

√
2l + 1

4π

√
(2l)!

2l l!
Sl− . (18)

Therefore, we can construct all Ŷlm applying on the matrix Ŷl,−l relation (16)[
S+, Ŷlm

]
=
√
(l −m)(l +m+ 1)Ŷl,m+1 . (19)

We define: ad+ · Ŷlm ≡ [S+, Ŷlm]. It follows:

(ad+)
l+m · Ŷl,−l =

l+m∏
q=1

√
(2l − q + 1)q Ŷl,m . (20)

We call the product: Cl,m ≡
∏l+m
q=1

√
(2l − q + 1)q,

Ŷl,m =
1

Cl,m
(ad+)

l+m · Ŷl,−l =
1

Cl,m

√
2l + 1

4π

√
(2l)!

2l l!
(ad+)

l+m · Sl− . (21)

The spherical harmonics Y m
l (θ, φ) satisfy the complex conjugation rela-

tions Y m∗
l (θ, φ) = (−)mY −ml (θ, φ). We can prove that the Ŷlms satisfy the

hermiticity relations
Ŷ †lm = (−)m Ŷl,−m . (22)
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In order to construct the matrices Ŷlm, we need the powers of S−, see
Eqs. (18) and (21).

(S−)
2 has N − 2 non-zero elements sitting at the second lower diagonal.

We call them a
(2)
j and they are given by a(2)j = a

(1)
j a

(1)
j+1, j = 1, . . . , N − 2.

(S−)
3 has N − 3 non-zero elements sitting at the third lower diagonal.

a
(3)
j = a

(1)
j a

(1)
j+1a

(1)
j+2, j = 1, . . . , N − 3.

(S−)
N−1 has 1 non-zero element, the element (N, 1), given by a(N−1) =∏N−1

j=1 a
(1)
j .

According to (18), the various powers of S− give the matrices Ŷl,−l.
Commuting with S+, we obtain all Ŷl,m. Commuting S+ with a matrix
having non-zero elements in the kth lower (upper), diagonal gives a matrix
having non-zero elements in the (k − 1)th lower ((k + 1)th upper) diagonal.
Thus:

— Ŷl,m with negative m have non-vanishing elements in the lower diago-
nals.

We have: 1 matrix, ŶN,−N , with non-vanishing elements in the N − 1

lower diagonal; 2 matrices, ŶN,−N+1 and ŶN−1,−N+1, with non-vanishing
elements in the N − 2 lower diagonal; 3 matrices, ŶN,−N+2, ŶN−1,−N+2

and ŶN−2,−N+2, with non-vanishing elements in the N − 3 lower diag-
onal; . . . ; N − 1 matrices with non-vanishing elements in the 1st lower
diagonal.

— Ŷl,m with positive m have non-vanishing elements in the upper diagonals.
The same numbers as above.

— Ŷl,0 is diagonal. There are N − 1 such matrices, i.e. Ŷl,0 with l =
1, . . . , N − 1.

This makes : 2× (1 + 2 + · · ·+N − 1) +N − 1 = N2 − 1 matrices.

— The first qualitative result is that the matrices Ŷl,m, which are the natural
candidates to give a sphere at the large-N limit, fill upper and lower
diagonals.

We can go further and obtain more quantitative results because we know also
the values of the matrix elements. At large N , the matrices Ŷl,m become
the spherical harmonics Yl,m(cos θ, φ). For finite N , they should give an
approximation of the surface for discrete values of the coordinates θ and φ.
Therefore, we obtain a lattice which, as N grows, forms the surface of a
sphere.
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4.2. A fuzzy torus

The case of the fuzzy torus is even simpler. For the sphere, we had iso-
lated inside SU(N) an SU(2) subgroup and express all the SU(N) generators
in terms of the three generators of SU(2). For the torus, we isolate a quan-
tum U(1)×U(1). Let us take first N odd (a similar construction applies to
N even) and let ω be the N th root of unity: ω = e4πi/N . We define the two
matrices

g =



1 0 0 . . . 0
0 ω 0 . . . 0
0 0 ω2 . . . 0
. . . . 0
. . . . 0
. . . . 0
0 0 0 . . . ωN−1


; h =



0 1 0 . . . 0
0 0 1 . . . 0
. . . . .
. . . . .
. . . . .
0 0 0 . . . 1
1 0 0 . . . 0


. (23)

They satisfy quantum group commutation relations

gN = hN = 1 ; hg = ωgh . (24)

We can use the integer modN powers of these matrices to express the SU(N)
generators

Sm1,m2 = ωm1m2/2gm1hm2 ; S†m1,m2
= S−m1,−m2 , (25)

[Sm, Sn] = 2i sin

(
2π

N
m× n

)
Sm+n (26)

with n = (n1, n2) and n ×m = n1m2 − m1n2. We can show [39] that
algebra (26) is indeed equivalent to that of SU(N) and at the limit N →
∞ it becomes the algebra of the area-preserving diffeomorphisms of a 2-
dimensional torus. This connection between SU(N) and [SDiff(T2)] can
be made explicit by choosing a pair of variables forming local symplectic
coordinates on the torus, for example, the angles z1 and z2 of the two circles,
and expanding all functions on the torus on the basis of the eigenfunctions
of the Laplacian

hn1,n2 = exp(in1z1 + 2πin2z2) , n1, n2 ∈ Z . (27)

Here, we are interested in the fuzzy torus, so we endow z1 and z2 with
the commutation relations of the Heisenberg algebra (10). If we define the
corresponding group elements h and g by

h = eiz1 , g = e−2iπz2 , (28)
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we can prove again the equivalence

[z1, z2] =
2i

N
⇔ hg = ωgh (29)

for the set of group elements hn1 and gn2 with n1 and n2 integers modN .
Note that the latter imply the algebra of SU(N). The generators of the
Heisenberg algebra zi and the group elements h and g are infinite-dimensional
operators, but we can represent the SU(N) algebra by the finite-dimensional
ones (23) and (25). They form a discrete subgroup of the Heisenberg group
and they have been used to construct quantum mechanics on a discrete
phase space [40]. In this case, we can define two new operators q̂ and p̂,
the first being the position operator on the discrete configuration space and
the second its finite Fourier transform. They can be represented by N ×N
matrices, but, obviously, they do not satisfy anymore the Heisenberg algebra
[41].

The Moyal bracket can be defined by symmetrising in z1 and z2, in which
case only odd powers of 1/N appear. The *-product can be written as

f(z) ∗ g(z) = exp
(
iξεij∂

i
z∂

j
w

)
f(z)g(w)|w=z (30)

with z = (z1, z2) and ξ = 2/N . The Yang–Mills action can be written again
in the form of equations (11) and (13) and, as before for the sphere, this
equivalence is exact at any order in the 1/N expansion.

Using matrices (25), we can construct again a lattice which, as N grows,
forms the surface of a torus. For surfaces of higher genus, we could guess
the form of the corresponding matrices. This way, we expect to gain some
insight into the geometrical and topological properties of the surfaces which
are associated with gauge theories.
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