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In Veltman’s original view, the Higgs particle mass M) was naturally
large thus marking a second threshold in weak interactions, as with the
W mass and the non-renormalizable 4-fermion V — A theory. Besides, with
a large M), Spontaneous Symmetry Breaking (SSB) would essentially be
determined by the pure scalar sector regardless of the other sectors of the
theory. Surprisingly, this picture is not completely ruled out. In fact,
if SSB in $* theories is a weak first-order phase transition, as indicated
by most recent lattice simulations, in addition to the known resonance
with mass mj ~ 125 GeV, there might be a heavier excitation with mass
M? ~ m3 In(As/My), where As is the ultraviolet cutoff of the scalar sector.
The larger M) controls vacuum stability and, differently from my,, would
remain finite in units of the weak scale () ~ 246.2 GeV when As — oo.
Lattice simulations of the propagator performed in the 4D Ising limit of the
theory are consistent with this two-mass structure and lead to the estimate
Mjp, ~ 700 GeV. In spite of its large mass, however, the heavier state would
couple to longitudinal vector bosons with the same typical strength of the
low-mass state and would thus represent a relatively narrow resonance. In
this way, such hypothetical resonance would naturally fit with some excess
of 4-lepton events observed by ATLAS around 680 GeV. Analogous data
from CMS are needed to confirm or disprove this interpretation. Finally,
the effect of a two-mass structure on radiative corrections is discussed in
connection with the value of as(Mz) from ete™ — hadrons.
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1. Introduction

In principle, there were many possible scenarios for the Higgs particle

mass.

At the extremes of the mass range, one could consider two basi-

cally different options. The (minimal) supersymmetry, where the mass of
the lightest Higgs scalar is my ~ My, and Veltman’s idea [1] of a large
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My <1 TeV. In his view, incorporating the idea of Spontaneous Symmetry
Breaking (SSB) [2, 3] with a large M}, the Standard Model was the natural
completion of the non-renormalizable Glashow model [4]. In this sense, he
was speaking of a second threshold in weak interactions, just like with the
W mass and the non-renormalizable 4-fermion V — A theory. Today, after
the observation at the LHC [5, 6] of the narrow scalar resonance with mass
mp, ~ 125 GeV, Veltman’s large M}, seems to be definitely ruled out.

However, this is not necessarily true. So far, only the gauge and Yukawa
couplings of the 125 GeV resonance have been tested. The effects of a
genuine scalar self-coupling A = 3m3 /(®)? are still below the accuracy of
the measurements so that some uncertainty about the origin of SSB still
persists.

At the beginning, the driving mechanism was just a classical potential
with double-well shape. But then, after Coleman and Weinberg [7], the
classical potential was replaced by the effective potential Veg(¢) which, in
principle, includes the zero-point energy of all particles in the spectrum. Yet,
SSB could essentially be determined by the pure scalar sector if the other
contributions to the vacuum energy were negligible.

As argued in Refs. [8, 9], through some logical steps, this may become a
natural perspective. One should first follow those lattice simulations of ¢*
in 4D [10-12] indicating that SSB is a (weak) first-order phase transition.
While in the presence of gauge bosons SSB is often described as a first-order
transition, in pure ¢* this requires to replace standard perturbation theory
with some alternative scheme. A scheme where massless &* (i.e. classically
scale invariant) exhibits SSB so that the phase transition occurs earlier,
when the quanta of the symmetric phase have a tiny but still positive mass
squared. One then discovers that, in the two easily available alternative
schemes (the simple 1-loop and/or Gaussian approximation), Veg(yp) has
two distinct mass scales [8, 9]: (i) a mass m3?, defined by its quadratic shape
at the minimum, and (i) a mass M? entering the zero-point energy which
determines its depth. Always considered as being the same mass, in these
approximations, one finds instead M ,% ~ Lm% > m%, where L = In(As/M},)
and Ag is the ultraviolet cutoff of the scalar sector. Since vacuum stability
depends on the much larger M}, and not on my, SSB could originate within
the pure scalar sector regardless of the other parameters of the theory (e.g.
the vector boson and top-quark mass).

It is obvious that the quadratic shape and depth of the potential are
different quantities. For a more formal derivation, one should recall that the
derivatives of the effective potential produce (minus) the n-point functions
at zero external momentum. Therefore m?, which is V() at the mini-
mum, is directly the 2-point, self-energy function |/I(p = 0)|. On the other
hand, the zero-point energy is (one-half of) the trace of the logarithm of
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the inverse propagator G~!(p) = (p? — II(p)). Therefore, after subtracting
constant terms and quadratic divergences, matching the 1-loop zero-point
energy (“zpe”) gives the relation

pmax
1 d4p IT2 g 2 M4 A2
Zpe ~ —— / p4 ip) ~ _< (Z;)> In pr2nax ~ h2 In 52 ) (1)
4p A (2m)* p 64 Din 647> M

This shows that M,% effectively includes the contribution of all momenta
and reflects a typical average value |(II(p))| at larger p?. In this sense,
the mp—M}, two-mass structure resembles the two branches (phonons and
rotons) in the energy spectrum of superfluid He-4 which is usually considered
the non-relativistic analog of the broken phase.

Note that the non-uniform scaling of the two masses with A is crucial not
to run in contradiction with the “triviality” of $*. This implies a continuum
limit with a Gaussian set of Green’s functions and, thus, with just a massive
free-field propagator. With this constraint, a cutoff theory can either predict
my, — Mj, or a non-uniform scaling when Ay — oco. The single-mass limit
will then depend on the unit scale, my or Mj, chosen for measuring mo-
menta. Namely: (a) my, is the unit scale so that M}, and the higher branch
simply decouple, (b) M}, is the unit scale so that, when As — oo, the phase
space of the lower branch becomes smaller and smaller until ideally shrink-
ing to the zero-measure set p,, = 0 which is transformed into itself under the
Lorentz Group. This means that the lower branch merges into the vacuum
state and the only remaining excitation is the higher branch with mass M.

The existence of this two-mass structure in the cutoff theory was checked
with lattice simulations of the Euclidean propagator [8] in the Ising limit
which is a convenient laboratory to exploit the non-perturbative aspects of
the theory. It corresponds to a ®* with an infinite bare coupling Ay = +o0,
as if one were sitting precisely at the Landau pole. For a given non-zero,
low-energy coupling A ~ 1/L, this represents the best possible definition of
the local limit with a cutoff. Then, once m,% is directly computed from the
p? — 0 limit of G(p) and M }% is extracted from its behaviour at higher p?, the
lattice data are consistent with a transition between two different regimes
and with the expected increasing logarithmic trend M }% ~ Lm,%.

If, for finite Ag, the scalar propagator really interpolates between two
vastly different scales, by increasing the energy there should be a transition
from a relatively low value, e.g. my = 125 GeV, to a much larger Mj,. At the
same time, differently from my, the larger mass M} would remain finite in
units of the weak scale (®) ~ (GFormi V2 )_1/2 ~ 246.2 GeV in the continuum
limit. Therefore, one could write a proportionality relation, say M, = K(®),
and extract the constant K from a fit to the same lattice data. By expressing
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the proportionality relation in terms of some constant cs, say
M = mj,L (c2) ™" (2)

and replacing the leading-order estimate A ~ 167%/(3L) in the relation
A = 3m2 /()2 one obtains K ~ (47/3) (c2)"1/2. Since from our lattice
propagator [8] we found (cp)~'/2 = 0.67 + 0.01 (stat.) & 0.02 (sys.) this
gives the leading-order estimate M) = 690 + 10 (stat.) & 20 (sys.) GeV.
Instead, with the next-to-leading my— (@) relation and the same ¢y, we ob-
tained M, = 750410 (stat.) =20 (sys.) GeV [8]. The two values could then
be summarized into a final estimate M), ~ 720 £ 30 GeV which accounts for
this theoretical uncertainty and updates the previous work of Refs. [13, 14].

I emphasize that, by accepting the “triviality” of the theory in 4D, the
cutoff-independent combination 3M?/(P)? = 3K? cannot represent a mea-
sure of observable interactions. This 3K? = O(10) is clearly quite distinct
from the other coupling A = 3m? /(®)? ~ 1/L but should not be viewed as
a coupling constant which produces observable interactions in the broken-
symmetry phase. Since M}, reflects the magnitude of the vacuum energy den-
sity, it would be natural to consider 3K? ~ AL as a collective self-interaction
of the vacuum condensate which persists in the Ay — oo limit. This original
view [15, 16] can intuitively be formulated in terms of a scalar condensate
whose increasing density ~ L [17] compensates for the decreasing strength
A ~ 1/L of the two-body coupling. On the other hand, A ~ 1/L remains
as the appropriate coupling to describe the individual interactions of the el-
ementary excitations of the vacuum, i.e. the Higgs field and the Goldstone
bosons. In this way, consistently with the “triviality” of ®* theory, their
interactions will become weaker and weaker for A; — oco. On this basis,
the heavier state would couple to longitudinal vector bosons with the same
typical strength A\ = 3m3 /(®)? ~ 1/L of the low-mass state and would thus
represent a relatively narrow resonance.

In the following, I will first re-discuss in Sections 2, 3 and 4 the main
theoretical and numerical arguments in favour of the my—Mj, picture. Later
on, in Sections 5 and 6, I will concentrate on more phenomenological aspects
and argue that the hypothetical, heavier M}, would naturally fit with some
excess of 4-lepton events observed by ATLAS around 680 GeV. Finally, in
the conclusive Section 7, after a short summary, I will mention a work of
van der Bij [18] where a Higgs field propagator with more than one peak
was also considered. This brings in contact with the possible effects of a
two-mass structure on radiative corrections.
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2. SSB and the effective potential

To start with, let us recall the description of SSB as a second-order
transition and follow the Particle Data Group (PDG) [19] where the scalar
potential is expressed as

Vepa(p) = —3mpae® + Appae’ . (3)

By fixing mppa ~ 88.8 GeV and Appg ~ 0.13, this has a minimum at
lp| = (@) ~ 246 GeV and quadratic shape Vi (D)) = (125 GeV)?. As a
built-in relation, the second derivative of the potential also determines its
depth, i.e. the vacuum energy Eppg

EppG=—3mppa(P)>+ 1 Apnc () = —1(125 GeV(D))? ~ —1.2x10° GeV*.

()
However, as anticipated in Introduction, recent lattice simulations of ¢* in
4D [10-12] indicate instead a (weakly) first-order transition. SSB would then
emerge as a true instability of the symmetric vacuum at ¢ = 0. Its quanta
have a tiny and still positive mass squared V/i(p = 0) = m3 > 0 but,
nevertheless, below a critical value of 0 < m% < m2, their attractive, long-
range interaction [17| can destabilize this symmetric vacuum. The lowest
energy state of the massless theory at m% = 0 would then correspond to the
broken-symmetry phase, as suggested by Coleman and Weinberg [7] in their
original 1-loop calculation.

In this interpretation of SSB, the dynamics of the symmetric phase repre-
sents the primary @* sector and its degree of locality Aj is the ultimate cutoff
scale of the theory (as with the hard-sphere core of He-4 atoms in super-
fluid helium). We are thus lead to identify Ag as the Landau pole where the
bare coupling Ao — +00. This corresponds precisely to the Ising limit and
provides the best possible definition of a local $* theory for any non-zero low-
energy coupling A ~ 1/In Ay < 1. This latter coupling is instead appropri-
ate for low-energy physics, as in the original Coleman—Weinberg calculation
of the effective potential for field values |¢| < Ag?. The Coleman—Weinberg
calculation represents the simplest scheme which is consistent with a weak

! This is true at 1-loop. Beyond 1-loop, the standard perturbation theory gives con-
tradictory indications (Landau pole in odd orders versus spurious ultraviolet fixed
points in even orders). Borel re-summation procedures [20-22], yielding a positive,
monotonically increasing S-function, support again the idea of the Landau pole.

2 By assuming a Landau pole, the X in the effective potential is naturally interpreted as
the small coupling at a scale p ~ |p| < As. However, rejecting the Landau pole, from
the resulting trend A ~ 1/1In As, this A could also be interpreted as an infinitesimal
“asymptotically free” bare coupling. In the more general context of the e-expansion,
the two points of view might reflect the existence of two separate * theories living
in D = 4 + € space-time dimensions [23, 24].
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first-order picture. We will first reproduce below this well-known computa-
tion and discuss afterward its general validity. After subtraction of constant
terms and quadratic divergences, the effective potential is

Ay A2 4 Ly 9/ 0 1
i = In{ =\ Az ) — = 5
Verr(9) = 19"+ 556,27 [n<2 S0/ s) 79 (5)
and its first few derivatives are
A A2 1
1 _ N3 3 Ly 9 /42
() = c¢" + g9 In <2Np //15) (6)
and \ 2 2,2
3 1 %
" _ N2 2 - 2 2
eff(ga) - 290 + 6471'2()0 In <2)‘S0 /As> + 3972 " (7)

By introducing the mass squared parameter M?(p) = %A@Q, the same po-
tential can be expressed as a classical background + zero-point energy of a
particle with mass M (p), i.e.

Aot MA(p),  AlVe
Vert () = 2 ~ a2 M 22(0)

(®)
Thus, non-trivial minima of Veg(p) occur at those points ¢ = +v, where

Av? 3272
M}%:Z:Agexp(— 3N > (9)

with a quadratic shape

M2 A, M

2 _ xu _ _ 2
my = ‘éﬁ'(i’l}) = 327‘(2 = 1671'2Mh I, < Mh y (10)
where L = In J\/}Sh Notice that the energy density depends on M}, and not
on my,, because
M}
£ = Vir(ckv) = — s ()

therefore, the critical temperature at which symmetry is restored, kg7, ~
My, and the stability of the broken phase depends on the larger M} and not
on the smaller my,.

Now, one may object to the above straightforward minimization proce-
dure that the 1-loop calculation is just the first term of an infinite series and
should be further “improved”. As it is well known, in this conventional view,
the 1-loop minimum disappears and one would again predict a second-order
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transition, just the result that we know to be in contrast with most recent
lattice simulations. Therefore, one should look at the calculation in the dif-
ferent perspective of Eq. (8). This has the qualitatively different meaning of
a classical background + zero-point energy with a (-dependent mass and,
as such, is consistent by itself without any need of being further improved.

To confirm the validity of this interpretation, one can compare with other
approximation schemes, for instance the Gaussian approximation [25, 26|
which has a variational nature and explores the Hamiltonian in the class of
the Gaussian functional states. It also represents a very natural alternative
because, at least in the continuum limit, a Gaussian structure of Green’s
functions fits with the generally accepted “triviality” of the theory in 4D.
This other calculation produces a result in agreement with the one-loop
potential [15, 16]. This is not because there are no non-vanishing corrections
beyond 1-loop; there is actually an infinite resummation of terms. The point,
however, is that those additional terms do not alter the functional form of
the result which is the same as in Eq. (8)

At 2(p), AZJe
G s
= — 1 12
with .
A= x A . and  02(p) = 22 (13)

This explains why the one-loop potential can also admit a non-perturbative
interpretation. It is the prototype of the Gaussian and of the infinite number
of “post-Gaussian” calculations [27, 28| where higher-order contributions are
effectively reabsorbed into the same basic structure: classical background +
zero-point energy with a ¢-dependent mass.

3. Eliminating Ag in the M},—(®) relation

The effective potential of Section 2 provides a different path to renormal-
ization. Since, for any non-zero A, there is a finite Landau pole, one could,
in fact, consider the whole set of pairs (Ag,\),(ALN), (AZ,\7). .. with differ-
ent Landau poles and corresponding low-energy couplings. By considering
this whole set of parameters, and imposing some symmetry principle, one
can minimize the influence of the cutoff on observable quantities and even
consider the Ay — oo limit.
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The basic constraint on the equivalent (Ag,\) pairs, consists in requiring
the same vacuum energy Eq. (11) or, equivalently, the same mass scale
Eq. (9), namely

0 ox 0
With the definition
oN 32 3
ASaTS =B\ = 162 T o (X, (15)

this gives || ~ Z{, where T is the first RG-invariant®

A

dz 1672
I]_ = Mh = AS exXp % ~ AS exp <—3)\> . (16)

The above relations derive from the more general invariance of the effective
potential in the three-dimensional space (@, A, As)

S Asii e ’ 7As =
oA, T aman T 8/158g0> Vett (2, A As) = 0

0 oX 0 dy 0
(/1 L4 (17)
In fact, at the minima ¢ = 4wv, where (OVeg/dp) = 0, Eq. (14) is a di-
rect consequence of Eq. (17). Another consequence of this analysis is that,
besides a first invariant mass scale Z; = My, by introducing an anomalous
dimension for the vacuum field

A =, (18)

there is a second invariant, namely

To(p) = pexp /dxi (19)

which introduces a particular normalization of ¢. This had to be expected
because from Eq. (9) the cutoff-independent combination is Av? ~ M? = T?
and not v? itself implying v = 3/(2\). This particular definition of the

3 Note the minus sign in the definition of the S-function. This is because, in our
coupling constant A = A(u, As), at p ~ ¢, we are differentiating with respect to the
cutoff and not with respect to . Thus, at fixed p, A has to decrease by increasing As.
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average vacuum field* is then the natural candidate to represent the weak
scale [8]
To(v) = (D) ~ 246.2 GeV (20)

so that the minimization of the effective potential can be expressed as a
proportionality relation of the two invariants Z; and Z, through some con-
stant K, i.e.

My, = K (). (21)

On the other hand, the second derivative at the minima, m? = (0?Veg/0¢?)
at ¢ = v, remains as a cutoff-dependent quantity.

With such a guiding principle from the effective potential, one deduces
that Mj, and (@) scale uniformly with Ag. The constant K could then be
extracted from a lattice simulation of the propagator, by combining the
measured My /my, ratio with a theoretical mj—(®) relation. The main in-
gredients of this analysis will be reported in Section 4.

4. Lattice simulation of the propagator

To show that the existence of two mass scales in the broken phase is
not just speculation, let us now compare with lattice simulations of the
propagator. These were performed [8] in the 4D Ising limit of the theory
which has always been considered a convenient laboratory to exploit the
non-perturbative aspects of the theory. As anticipated, it corresponds to a
&* with an infinite bare coupling A9 = 400, as if one were sitting precisely
at the Landau pole. In this sense, for any finite cutoff Ag, it provides the
best definition of the local limit for a given non-zero, low-energy coupling
A~ 1/L (where L = In(Ag/Mp)).

Let us start from the traditional Euclidean lattice action of @* theory

4
1 1 A
§=2 |52 (0u0) + 5midi(a) + () | | (22)
T p=1

where 0,99 = ®o(x + f1) — Po(x) and the lattice spacing is taken a = 1.
Analogously, all masses are given in units of 1/a and the cutoff is Ag = 7/a.
In this action, let us perform the following changes of variables [29] &y =
V26®, mE = (1 —2g)/rk — 8 and \g = 6g/k? so that we obtain

4
S=3" |26 3 bz + p)D(x) + P (a) + g (P2(x) - 1)*| . (23)

4 This somewhat resembles the definition of the physical gluon condensate in QCD
which is (¢°Ff, F“*) and not just (Fj, F*").
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Then, for Ay — +o0, the lattice field can only take the values &(z) = +1
and one gets the Ising limit

4
Stsing = —26 Y > _ D (z + 1) D(x) (24)

r p=1

the broken-symmetry phase corresponding to k > k¢, with k. = 0.0748474(3)
[10, 11]. With this lattice action, we computed the lattice field vacuum ex-
pectation value

v= (o), &= 12245(33) (25)
and the connected propagator
G(z) = (2(2)P(0)) —v*, (26)

where (...) denotes averaging over the lattice configurations.

By computing the Fourier transformed connected propagator as a func-
tion of the lattice momentum p, = 2sinp,/2, the extraction of m}% is
straightforward because its inverse is just the zero-momentum propagator
or susceptibility x

2kx =2kG(p=0) = LQ . (27)
My,

Instead, to extract My, the propagator data were first fitted to the 2-param-

eter form 7
Gh(p) = 55— 28
a(P) P2+ M 2%)
in terms of the squared lattice momentum $?. The data were then re-scaled
by (p? +m12att) so that deviations from a flat plateau are immediately visible.
This defines the standard single-particle mass and the difference from unity
of the height of the plateau, which is Z.p, measures the residual coupling

to multi-particle states.

The results in Fig. 1 for k = 0.074, i.e. close to the critical point but
still in the symmetric phase, show that, there, a single lattice mass works
remarkably well in the whole range of momentum down to p = 0. Thus,
single-particle states and multi-particle states are very weakly coupled in
the whole momentum range. At least with a lattice mass of about 0.2, one
is then close enough to the “trivial” continuum limit of ¢ in 4D.

According to the standard point of view, in the broken phase, there
should be no particular difference. However, it was already observed in
Refs. [30] and [29] that, in this case, the mass from the higher-momentum
fit cannot describe the data in the p — 0 limit where the deviations from
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Fig.1. The lattice data of Ref. [8] for the re-scaled propagator in the symmetric
phase at £ = 0.074 as a function of the square lattice momentum p?. The fitted
mass from high p2, mia = 0.2141(28), describes well the data down to p = 0.
The dashed line indicates the value of Z,,,, = 0.9682(23) and the p = 0 point is
2kxmi, = 0.9702(91).

constancy become highly significant. As a further check, one more simulation
was performed in Ref. [8] on a large 76 lattice for x = 0.0749, which is even
closer to the critical point. As one can see from Fig. 2, the mass parameter
Miaty = My, obtained from the fit to the propagator for 2 > 0.1, cannot
reproduce the data for p? < 0.1. In this low-momentum range, in fact, the
data select a smaller mass, which is very close to the inverse susceptibility
mp, = (2kx) Y2 = 0.0769(8), see Fig. 3.

The difference between my, and M), determines zero-momentum peaks,
see Fig. 2, which increase for k — k.. The observed values, M,% /m,% =
1.24(5), 1.31(5), 1.47(9), respectively for k = 0.0751, 0.07504, 0.0749 [8], are
consistent with the expected logarithmic trend M? = Lm?(cz) ™! in Eq. (2),
so that, as anticipated in Introduction, one can fit these data and obtain
(ca)™1/? = 0.67+0.01 (stat.)£0.02 (sys.). With this value, and the leading-
order estimate A\ = 1672/(3L) in the relation A = 3m?/(®)?, one finds
My, = 690 £ 10 (stat.) & 20 (sys.) GeV. Instead, with the next-to-leading
mp—(P) relation and the same co, we obtained M, = 750 + 10 (stat.) £
20 (sys.) GeV [8]. The two values were then summarized into a final estimate
My, ~ 720 £ 30 GeV which accounts for the theoretical uncertainty and
updates the previous work of Refs. [13, 14].
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Fig.2. The propagator data of Ref. [8], for k = 0.0749, rescaled with the lattice
mass M}, = My, = 0.0933(28) obtained from the fit to all data with p? > 0.1.
The peak at p = 0 is M?/m? = 1.47(9) as computed from the fitted M}, and
mp = (2rx) Y2 = 0.0769(8).
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Fig. 3. The propagator data of Ref. [8] at x = 0.0749 for * < 0.1. The lattice mass
used here for the rescaling was fixed at the value m;, = (2kx) /2 = 0.0769(8).

5. The role of mj and Mj in the observable interactions

The lattice simulations in the previous section, supporting the idea of
a scalar propagator which interpolates between a mass scale mj; and a
larger Mj, with Mg ~ Lm,%, are consistent with the picture deduced from



A Hidden, Heavier Resonance of the Higgs Field 775

the effective potential. To understand the interplay of the two masses and
their role in the observable processes, it is convenient to first follow Ref. [31]
where the phenomenology of a heavy but weakly interacting Higgs resonance
was first considered.

Differently from here, where m; and M} are assumed to coexist, in
Ref. [31], there was adopted the ideal single-mass limit (b) of Introduction
which (with the exception of the Lorentz-invariant, zero-measure set p,, = 0)
effectively reproduces a standard propagator with mass Mj. However, the
problem was the same as considered here: a Ag-independent scaling law
My, = K(®). This opens a corner of parameter space, namely large K
but M < Ag, that does not exist in the conventional view. However, for
this reason, the constant 3K? is now basically different from the coupling A
defined through the S-function

A

R
a7 B 2

Ao

For B(x) = 322/(167%) + O(x3), whatever the contact coupling Ao at the
asymptotically large Ag, at finite scales u ~ Mj, this gives A ~ 1672/(3L)
with L = In(Ag/Mjy). As anticipated, this A (and not the Ag-independent
3K?) is the appropriate coupling to describe the infinitesimal interactions
of the fluctuations of the broken phase.

Defining Mw = ggauge (P)/2 and with the notations of 32|, a convenient
parametrization [31] of these residual interactions in the scalar potential is
(7’ - M}%/4MI%V - KQ/ggauge)

Uscalar = %MﬁhQ + €17 ggange Mwh (XX + h?) + éEQngauge (x*x* +h?)* .
(30)
The two parameters €; and €9, which are usually set to unity, account for

\#3K2, i.e.
~1/L. (31)

€1 = €2 = W
But what about the full gauge theory? At first sight, the original calculation
[33] in the unitary gauge could give the impression that Wy, Wi, scattering
is indeed governed by the large coupling 3K? = 3M7?/(®)%. To find the
answer, let us recall the basics of the calculation. One starts from a tree-
level amplitude A which is formally O(géauge) but ends up with

2.2
Mng? (32)

AO(WLWL — WLWL) ~ 4M2
W
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Here, the factor g2, . comes from the vertices. The 1/Mg, derives from the

external longitudinal polarizations EELL) ~ (ku/Myw) and M? emerges after
expanding the propagator

1 1 M?
o1+ =L+ ). 33
s— M? 5( * 5 * ) (33)

While the leading 1/s contribution cancels against a similar term from the
other diagrams (which otherwise would give an amplitude growing with s),
the M, ,% from the 2"d-order term is effectively “promoted” to coupling con-
stant reproducing the same result of a pure A@* with contact coupling
Ao = 3K? at some large scale As.

However, in @*, this is just the tree approximation with the same cou-
pling at all momentum scale. To find the xx — xx amplitude at some
scale p, we should instead use Eq. (29) and let the coupling evolve, from A
to A, as previously done in Eq. (30), i.e.

) 1
Jgauge=0 In (AS/N) .
Thus, recalling that the Equivalence Theorem is valid to all orders in the

scalar self-interactions but to the lowest order in ggauge [34-36|, we obtain
the result anticipated in Introduction

Alxx = xx) (34)

A(WLWL — WLWL) = [1 +0 (ggauge)] A(XX — XX) = O()‘) .

Jgauge=0
(35)
This analysis, from our present perspective where mj; and M}, coexist and
could be experimentally determined, shows that at u ~ Mj, the supposed
strong interactions proportional to Ay = 3K? are actually controlled by the
much smaller coupling

3m? m?
A= "D —3K2 L 1/L. (36)
(0)? M,

Analogously, the conventional very large width into longitudinal vector bosons
computed with g = 3K?, say I"°°™(M;, — WL,Wy,) ~ M} /()?, should in-
stead be rescaled by €} = (\/3K?) = m3 /M. This gives
m%L COIY m,2'L
I'(Mp - Wi W) ~ —2% (M, — WL WL) ~ My, —%
(Mp, LWL) 2 (Mp, LWL) h gy
where M), indicates the available phase space in the decay and mj /(®)?
the interaction strength. Through the decays of the heavier state, the cou-
pling A = 3m3 /(@)? could thus become visible confirming that my, and Mj
represent excitations of the same field.

(37)
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6. Comparison with 4-lepton data

Suppose to take seriously the idea of a second heavier excitation of the
Higgs field with mass My ~ 700 GeV. Are there experimental indications
for such resonance? Furthermore, what kind of phenomenology should we
expect? Finally, what about the identification mj ~ 125 GeV, implicitly
assumed for our lower mass scale? In the following, I will summarize the
results of Ref. [37], where these questions were addressed in connection with
a certain excess of 4-lepton events observed by ATLAS [38, 39| for invariant
mass ftq; ~ 700 GeV (I = e, p).

Of course, the 4-lepton channel is just one possible decay channel and,
for a comprehensive analysis, one should also look at the other final states.
For instance, at the 2-photon channel that, in the past, has been show-
ing some intriguing signal for the close energy of 750 GeV. However, the
4-lepton channel is experimentally clean and, for this reason, is considered
the “golden” channel for a heavy Higgs resonance. Moreover, the bulk of the
effect can be analysed at an elementary level. Thus, it makes sense to start
from here.

The main new aspect is the strong reduction of the conventional width in
Eq. (37). For My, =700 GeV, where I'°™ (M), — ZZ) ~ 56.7 GeV [40, 41],
fixing my, = 125 GeV gives

2

M,

Afterward, by maintaining the other contributions for M, = 700 GeV [40, 41]
I'(M}, — fermions + gluons + photons...) ~ 28 GeV (39)

and with the same ratio I'(My, — WW)/I'(M;, — ZZ) ~ 2.03, we find a
total width

(M), — all) ~ 28 GeV +3.03 I'(M), — ZZ) ~ 33.5 GeV  (40)

and a fraction B(M), — ZZ) ~ (1.8 / 33.5) ~ 0.054.

Now, the production cross section o(pp — Mp,). Here, the main contri-
butions are the basic Gluon-Gluon Fusion (GGF) and Vector-Boson Fusion
(VBF) processes, where two gluons or two vector bosons VV (WW or ZZ)
fuse to produce the heavy state My, i.e.

o(pp = My) ~ o(pp = Mp)ccr + o(pp — Mp)ver - (41)
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For the GGF term, I will consider two estimates: o(pp — Mp)eer =
800(80) fb from Ref. [40] and o (pp — Mp)cer = 1078(150) fb from Ref. [41].
These refer to /s = 14 TeV and should be rescaled by about —12% for
Vs =13 TeV.

About VBF, I observe that the VV — M) process is the inverse of
the M}, — V'V decay so that o(pp — Mj)ypr can be expressed [42] as
a convolution with the parton densities of the same Higgs resonance de-
cay width. Thus, with a large 3K? coupling to longitudinal W’s and Z’s
and conventional width '™ (M), — WW + ZZ) ~ 172 GeV, the VBF
mechanism would become sizeable. However, this coupling is not present
in our picture, where instead I'(M, — WW + ZZ) ~ 5.5 GeV. Therefore,
the VBF will correspondingly be reduced from its conventional estimate
o™ (pp — Mp)yer = 250 = 300 fb by the small ratio (5.5/172)~ 0.032.
This gives o(pp — Mp)ver < 10 fb and can be neglected.

In the end, for a relatively narrow resonance, the effects of its virtuality
should be small. Thus, one can approximate the resonance cross section by
on-shell branching ratios as

or(pp — 4l) ~ o(pp — M) B(M), — ZZ)4B* (Z = 1717) . (42)

Altogether, for B(M), — ZZ) ~ 0.054 and 4B*(Z — 1T17) ~ 0.0045, the
expected peak cross section and numbers of events (for efficiency ~ 0.98)
are reported in Table I.

TABLE I

For My = 700 GeV and mj = 125 GeV, we report our predictions for the peak
cross section og (pp — 41) and the number of events at two values of the luminosity.
The two total cross sections are our extrapolation to /s = 13 TeV of the values in
[40] and [41] for v/s = 14 TeV. As explained in the text, only the GGF mechanism
is relevant in our model.

O’(pp — Mh) (TR(pp — 4l) N4l (361 fb_l) N4l (139 fb_l)

700(70) fb  0.17(2) fb 6.0+0.6 232423
950(150) b 0.23(4) fb 81413 31.5+5.0

For the smaller statistics of 36.1 fb~!, see Fig. 4a of [38], these predictions
can be directly compared, and are well consistent with the measured value
ng ~ (6+3) for py = 700 GeV. Instead, to compare with the larger ATLAS
sample [39] of 139 fb=! a different treatment is needed. In fact, in their
Fig. 2d there are now three points in the relevant energy region: at py ~
635 GeV, where ngy ~ 7.0 & 3.0, at pg ~ 665 GeV, where ny ~ 16.5 £ 4.0,
and at pg ~ 695 GeV, where ngy ~ 9.03:3. Therefore, by defining puy = F
and s = E?, we have assumed that these 4-lepton events derive from the
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interference of a resonating amplitude AR(s) ~ 1/(s — M%) and a slowly
varying background AB(s). For positive interference below the peak, setting
MIQ% = M}f — iMp I}, this gives a total cross section
2 (s — M?) IuMjy
2
(S — M}%) + (Fth)g

(IhMp,)?
(S - M}%)2 + (Fth)

\/OBOR +

oT = OB — 50R

(43)
where, in principle, both the average background o and the resonating og
could be treated as free parameters. By converting event numbers into cross
sections, the best fit is at M} = 682 GeV, see Fig. 4. Since in our model,
for small changes of the mass, I}, varies linearly with M}, the width was
constrained by the relation (I',/M},) = (33.5/700). ATLAS estimate of the
background is also shown as a dashed line.

0-2\\\\‘\\\\‘\\\\‘\\\\\\\\\\\\\\\\

i M, = 682 GeV 1

i I, =326 GeV
0.15

0.05

0\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\
630 640 650 660 670 680 690 700

E [GeV]
Fig.4. For M), = 682 GeV and I}, = 32.6 GeV, a fit (in solid red) with Eq. (43)
to the ATLAS data converted into cross sections in fb (the black dots). The fitted
parameters are og = 0.154 + 0.054 fb and op = 0.0091‘8:8(1); fb, or total fitted
background Ni* = 477, Errors from fit give x? = 2.41 with x2; = 0. The dashed
line is ATLAS background estimate.

With this theoretical input the fit yields a small average background
op = 0.009f8:85§ fb, equivalent to total background events Ngt = 4171, and
a o consistent with Table I. Therefore, if the observed number of events
Nops ~ 3217 is expressed as Nops = Ng + Vg, the fit would give a minimum
number of extra non-background events Ngt ~ 21 £ 7, i.e. a genuine non-

zero signal at the 3-sigma level. To better understand the relation between
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the strength of the signal and resonance width, I have performed other fits
by first decreasing the width. This can give a background closer to ATLAS
estimate Np(ATLAS) ~ 22. In fact, an acceptable fit is still obtained with
I, = 14 GeV, M), = 689 GeV and a larger fitted background Nt = 16f112,
see Fig. 5. At the opposite side, a good fit can also be obtained for I}, =
50 GeV and Mj, = 677 GeV, see Fig. 6, but, in this case, the fitted number
of background events N]gt = 11“;’ is much, much lower than the ATLAS
estimate.

i M, = 689 GeV
0.25 -

[, =14 GeV

02f

0.1

0.05

0
630 640 650 660 670 680 690 700

E [GeV]
Fig.5. As in Fig. 4 for M} = 689 GeV and I}, = 14 GeV. Fitted parameters are
or = 0.197015 b and op = 0.047) 53 fb, or total fitted background Nf* = 1671,.
Errors give x? = 2.41 with x2,, = 1. The dashed line is ATLAS background
estimate.

Conclusion: with Eq. (43) and the average background as a free parame-
ter, we find an excellent fit of the ATLAS data, see Fig. 4, with our reference
I, /My, ratio, a or as in Table I and a small background. Acceptable fits
can however be obtained with smaller widths and a background closer to the
ATLAS value, see Fig. 5. Altogether, the observed range of the various pa-
rameters can be approximated as: M), ~ (680+10) GeV, I, ~ (32+£18) GeV,
or ~ (0.15+0.05) fb, op ~ 0.017007 fb. In particular, M}, stays in the theo-
retical band M), = 690+ 10 (stat.)+20 (sys.) GeV obtained when our lattice
data [8] are combined with the leading-order mj—(®) relation.

Therefore, for the special role of the 4-lepton channel, further checks of
the background and further statistical tests are needed. For instance, with
the 36.1 fb~! luminosity, the deep diving of the local py at the 3.6 sigma level
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[43] was already suggesting a new narrow resonance at 700 GeV. It remains
to be seen if an unambiguous answer could still be obtained with the present
LHC configuration® or must be postponed to the high-luminosity phase.

0-2\\\\‘\\\\‘\\\\‘\\\\ T 1T T 1T T 1T
- M, =677 GeV 1
L T, =50 GeV i
015
bH 0.1
0.05 T ———___
T T N DT B

(()530 640 650 660 670 680 690 700

E [GeV]

Fig.6. As in Fig. 4 for M), = 677 GeV and I}, = 50 GeV. Fitted parameters
are op = 0.131 £ 0.036 fb and o = 0.0027) 05 fb, or total fitted background
Nft = 119, Errors give x? = 2.41 with x2,,, = 0.1. The dashed line is ATLAS
background estimate.

7. Summary and outlook

After the observation of the narrow scalar resonance at 125 GeV, Velt-
man’s original idea of a naturally large Higgs particle mass seems to be ruled
out. Yet, perhaps, the last word has not been said. If SSB in ¢* theories is
really a weak first-order phase transition, as indicated by most recent lattice
simulations, one should consider approximations to the effective potential
which are consistent with this scenario. Then, by combining analytic cal-

5 To this end, 4-lepton data from CMS would be crucial. At present, there are no
data with the full statistics of 139 fb~! but partial results are given in previous
reports. For instance, for 12.9 fb™! in Fig. 3 (right) of CMS PAS HIG-16-033 of
2016/08/04, at py = 660 GeV, the event number ny = 475 is much larger than
the estimated background of 0.4 <+ 0.5 events. This would give a rough estimate
or(pp — 41) ~ (0.3£0.2) fb, consistently with our Table I. More extensive data were
also reported in CMS PAS HIG-18-001 of 2018/06/03. However, the very compressed
scale, see Figs. 2 (left) and 9, prevents to extract the numerical values in the relevant
region around 680 GeV. Finally, in Fig. 6 of CMS PAS HIG-19-001 of 2019/03/22,
the data stop at pa = 500 GeV.
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culations and lattice simulations, it becomes conceivable that, besides the
known resonance with mass my; ~ 125 GeV, a new excitation with mass
My, ~ 700 GeV might show up. The peculiarity, though, is that the heav-
ier state should couple to longitudinal vector bosons with the same typical
strength of the low-mass state and would thus represent a relatively narrow
resonance. In this case, such hypothetical new resonance would naturally fit
with some excess of 4-lepton events observed by ATLAS around 680 GeV.
Analogous data from CMS are needed to definitely confirm or disprove this
interpretation.

However, before concluding, I will discuss the possible implications that a
two-mass structure of the Higgs field may have for radiative corrections. Our
lattice simulations in Section 4 indicate two regimes of the inverse propagator
G~1(p). This behaves as (p?>+m2) in the low-p? limit, see Fig. 3 for p? < 0.1,
and as (p? + M?) at larger p?, see Fig. 2 for p* > 0.1. Extrapolating the
observed scaling M? ~ m3 In(As/M},) to very large values of A gives the
idea, in Minkowski space, of two vastly different mass-shell regions, as when
the spectral density has not the standard single-peak structure.

By expressing G~!(p) = p?> —II(p), the observed my, — M, difference con-
firms the point of view of Introduction that, in the broken-symmetry phase,
the self-energy function II(p) exhibits a non-trivial momentum dependence.
This can be interpreted as the coexistence, in the cutoff theory, of two kinds
of quasi-particles associated respectively with the quadratic shape and depth
of the effective potential. The analogy with superfluid He-4, where the ob-
served energy spectrum arises by combining the two quasi-particle spectra
of phonons and rotons, would then suggest a model propagator

_1-Ip) 4 1+1(p) 2
2 p*+mi 2 p?+ M

G(p) (44)

where the interpolating function I(p) depends on an intermediate momen-
tum scale pg and tends to +1 for large p? > p% and to —1 when p?> — 0.
For instance, by fixing sharply the central values of Section 4, Z; = 0.945,
myp, = 0.0769, Zy = 0.966, M}, = 0.0933, the form I(p) = tanh(p® — p3)/r
gives a good fit to the lattice data, x* = 29/(40-6), for p2 = 0.087 and
r = 0.0043. Moreover, small changes of the Z’s and of the masses can in-
duce sizeable changes of pg and r indicating that the crossover region may be
wider than with a simple step function. Moreover, any trial form for I(p) in
Eq. (44) introduces a model dependence that could obscure the significance
of the results. Thus, while the lattice data indicate that, in Minkowski space,
the spectral density has not the standard single-peak structure, in practice,
performing the analytic continuation in a non-perturbative regime, and in
a numerical simulation where only a discrete set of data is available, is a

difficult task [44].
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Therefore, to get an intuitive insight on the possible effects on radiative
corrections, I will refer to a work of van der Bij [18], where a propagator
which resembles Eq. (44) was also considered. To this end, he starts from
two observations. First, renormalizability, by itself, does not mean a single-
particle peak but only a spectral density which falls off sufficiently fast at
infinity. Second, the Higgs field fixes the vacuum state of the theory which
determines the masses of all other particles. Therefore, while Goldstone
bosons are well understood, the Higgs field itself remains different and it is
not unreasonable to expect a spectral density which is not a single d-function.
Here, he does not mention the two-branch spectrum of superfluid He-4 but
the idea of the SSB vacuum as some kind of medium seems implicit in this
remark. With a definite example [45], he then considers the possibility that
the physical Higgs boson is actually a mixture of two states with a spectral
density approximated by two J-function peaks. The resulting propagator
structure can be written as (-1 <7 <1)

1-n 1 1+n 1

G(p) ~ 45
() 2 102—1-771}%+ 2 p?+ M} (4)

and could be used in the analysis of the p-parameter |46, 47]. Since the
two-loop correction [48] is completely negligible for masses below 1 TeV,
one can restrict to the one-loop level, where the two branches Eq. (45) do
not mix, as when replacing in the main logarithmic term an effective mass
Meg ~ Vmp My, (Mh/mh)n/z. In our case, this would be between m; =
125 GeV and My, ~ 700 GeV so that it becomes important to understand
how well the mass parameter obtained indirectly from radiative corrections
agrees with the my = 125 GeV, measured directly at the LHC.

Here, after the (partial) reassessment of the NuTeV anomaly [49, 50], only
two measurements give sharp indications. Namely, App(b) which favours a
large effective mass and Ay from SLD which goes in the opposite direction.
This is well illustrated in the PDG review [19]. In fact, from the experimental
set (Apr, Mz, 'z, my), one would predict the pair [meg = 38f§(1] GeV,
as(Mz) = 0.1182(47)]. While, from the set (Arp(b,c), Mz, I'z, m;), the
other pair [meg = 3487157 GeV, as(Myz) = 0.1278(50)].

These two extreme cases show that, at this level of precision, we should
try to evaluate the uncertainty induced by strong interactions. This enters
indirectly, for instance in the Myy—Myz interdependence, through the con-
tribution of the hadronic vacuum polarization to Aa(Mz), but also directly
through the value of as(Myz). More precisely, in the two examples consid-
ered above, this uncertainty enters through r(My), the strong-interaction
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correction to the quark—parton model in o(e+ e~ — hadrons) at the center-
of-mass energy Q = Mz. Through the total W and Z widths, and the LEP1
peak cross sections, this affects all quantities, even the pure leptonic widths
and asymmetries.

Since a small coupling does not guarantee, by itself, a good convergence
of the perturbative expansion, one should seriously consider that, even at
large center-of-mass energies, the experimental quantity 7#XF(Q) obtained
from the data can sizeably differ from its theoretical prediction r™(Q) =
14+ a5(Q)/m+ ... computed from the first few terms. In this case, for a real
precision test, instead of treating as(My) as a free parameter, one could
extrapolate r™XF (Q) toward Q = Mz and use this value to extract the EW
corrections from experiments.

As pointed out in Ref. [51], in fact, there is some excess in the data
so that, to extrapolate correctly from PETRA, PEP and TRISTAN to-
ward the Z peak, one should replace in rTH (34 GeV) a considerably larger
as(34 GeV)~ 0.17 instead of the canonical 0.14 predicted from the deep in-
elastic scattering. This Aag = +0.03 is a small +1% effect in the QCD cor-
rection but is visible in the slope of the v—Z interference. On the Z peak, the
effect is smaller because we are now speaking of a shift from as(Mz) = 0.118
to as(Mz) = 0.128 which is just a +0.3% effect in rTH(My). Nevertheless,
the Higgs mass parameter extracted from the LEP1 data would be consid-
erably increased [52, 53].

Later on, some excess in the total hadronic cross section had also been
observed at LEP2 [54-56] so that the whole issue of o(e + e~ — hadrons)
was reconsidered by Schmitt [57] in a thorough analysis of all data in the
range of 20 GeV < @ < 209 GeV. His conclusion was that, individually, none
of the measurements shows a significant discrepancy. However, when taken
together, there is an overall excess at the 4-sigma level. If translated into
the QCD correction, this corresponds to replacing the higher range of values
as(Myz) 2 0.128 in r™H(My) and, if used to evaluate the EW corrections,
would increase the value of meg obtained from many experimental quantities.
For instance, from the set (Apr, Arp(b,c), Mz, Iz, my).

In this sense, the present view that the Higgs mass parameter extracted
indirectly from radiative corrections agrees perfectly with the mj = 125 GeV
measured directly at the LHC, is not free of ambiguities and one could in the
end discover other motivations for a new resonance, quite independently of
the effective potential and/or of lattice simulations of the propagator. This
emphasizes once more the importance of new, combined LHC measurements,
starting from the “golden” 4-lepton channel around 700 GeV.
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Dedication

This paper is dedicated to the memory of Professor M.J.G. Veltman. Per-
haps now, that he is no longer with us, we can better realize how much his
moral legacy has transcended the purely scientific.
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