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Recently it was shown that the scaling dimension of the operator φn
in λ(φ̄φ)2 theory may be computed semiclassically at the Wilson–Fisher
fixed point in d = 4 − ε, for generic values of λn, and this was verified
to two-loop order in perturbation theory at leading and subleading n. In
subsequent work, this result was generalised to operators of fixed charge
Q̄ in O(N) theory and verified up to three loops in perturbation theory at
leading and subleading Q̄. Here, we extend this verification to four loops in
O(N) theory, once again at leading and subleading Q̄. We also investigate
the strong-coupling regime.
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1. Tini Veltman (by Tim Jones)

I first encountered Tini when, as a second-year graduate student, I at-
tended a summer school in Louvain (Leuven) in the summer of 1973. The
gauge theory revolution was just beginning, and a number of lecture courses
at the school were on topics which would seem now very old-fashioned. My
interest, however, was firmly on quantum field theory (QFT), and I was
working on a paper in the area [1]. Tini’s lectures, delivered with enthusi-
asm and style, were on the Yang–Mills theory and based on the legendary
CERN yellow report DIAGRAMMAR. I cannot say I followed them com-
pletely, but the appendices of DIAGRAMMAR were a revelation. They
provided a concise summary on how to extract the Feynman rules from a
QFT, and how to calculate the diagrams using dimensional regularisation.
Little details such as an algorithm for calculation of symmetry factors were
included. On my return to Oxford, I soon embarked on the calculation for
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which I remain most well-known, the two-loop QCD β-function. Several
more senior people to whom I spoke about the calculation opined that it
was not feasible because of the issue of overlapping divergences, but thanks
to DIAGRAMMAR I encountered no technical obstacles and the calculation
was published in 1974 [2]. The calculation was also done by William Caswell
(a student of Curtis Callan), who sadly died on September 11, 2001.

From 1980 to 1983, I was a postdoc at the University of Michigan. Tini
arrived in 1981, and played a very active role in group activities. Group
lunch before a seminar was always a pleasure, and visiting speakers had
to be very much on top of their subject in the face of Tini’s penetrating
inquiries. He collaborated with Marty Einhorn and me on a project on the
nature of radiative corrections to the ρ-parameter. We were struck by the
fact that in the Standard Model (SM) the corrections have a sign which
is independent of the fermion masses. We wondered if that might be true
of an arbitrary heavy sector, and succeeded in generalising the SM case of
fermions of isospin (1

2 , 0) to (j, j± 1
2) for arbitrary j. (Such multiplets admit

a fermion mass term like the SM one). Had this held true in full generality,
it would have placed a very interesting constraint on Beyond the Standard
Model Physics. However, we were disappointed to find that in the presence
of additional scalars, contributions of the opposite sign could be obtained.
Nevertheless, I think it was a nice paper [3].

I left Michigan in 1983. Over the years I would see Tini on occasion at
conferences and CERN. The last time we really spoke was when he came to
Liverpool in 2007 to deliver a Barkla lecture, an annual event here (instituted
by Alon Faraggi). Other Barkla lecturers have included other Nobel Laure-
ates Frank Wilczek, Gerard ’t Hooft, Francois Englert and Didier Queloz.

Tini and I were never exactly friends, but I held him in the highest
respect. He was a major figure in 20th-century physics, and as I indicated
above, he had a decisive influence on my own career. I like to think he would
have approved of the calculations presented in this paper. He preferred
explicit calculations to hand-waving.

2. Introduction

Renormalizable theories with scale invariant scalar self-interactions have
been subjects of enduring interest. In particular, the study of theories with
quartic (φ4) interactions in d = 4 − ε dimensions has played a central role
in the development of the theory of critical phenomena, since the pioneer-
ing work of Wilson [4, 5] and Wilson and Fisher [6] in 1971. Study of the
renormalisation group flow of the coupling or couplings of the theories facil-
itates the determination of the order of phase transitions and the associated
critical indices. For example, the theory with a single scalar field exhibits a
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Wilson–Fisher fixed point (FP) where the coupling constant λ is O(ε), and
this infra-red (IR) attractive FP is associated with a second-order phase
transition.

Historically, the majority of work in renormalisable quantum field theo-
ries has involved the weak coupling expansion, in other words, the Feynman
diagram loop expansion. However, this expansion fails or becomes ponder-
ous at either strong coupling or (less obviously) for φn amplitudes at large n.
The latter has obviously developed in importance as collider energies have
increased. Remarkable progress [7–15] here came with the use of a semi-
classical expansion in the path integral formulation of the theory1.

In Ref. [11]. the anomalous dimension of the φn operator was considered
in the O(N)-invariant g(φ2)2 theory with an N -dimensional scalar multi-
plet φ, for large n and fixed gn2. In Ref. [12], the scaling dimension of the
same operator in the U(1)-invariant λ(φ̄φ)2 theory (corresponding to the
special case N = 2) was computed at the Wilson–Fisher fixed point λ∗ as a
semiclassical expansion in λ∗, for fixed λ∗n. Subsequently, this was gener-
alised in Ref. [13] to the case of an operator of charge Q̄ in the O(N)-invariant
theory. In Ref. [12], the U(1) result was compared with perturbation theory
up to two loops, and in Ref. [13], the check was performed for the O(N)
theory up to three loops. Here we proceed directly with the O(N) case,
since, at least for our purposes, many salient features of the analysis are
very similar in both cases; and the results for U(1) may be recovered from
those for O(N), essentially by setting N = 2. We extend the comparison
with perturbation theory up to four loops, and also discuss the large (gQ̄)
case, generalising the large λn analysis of Ref. [12].

The paper is organised as follows: In Section 3 we describe the semiclas-
sical calculation in the O(N) case, following Ref. [13]. Then in Section 4,
we compare the result of this calculation with perturbative calculations up
to and including 4 loops. This represents a significant extension of previous
calculations. In Section 5, we address the large (gQ̄) limit and compare in
detail with earlier work.

3. The O(N) case

In the O(N) case, we have a multiplet of fields φi, i = 1 . . . N , and the
Lagrangian is

L =
1

2
∂µφi∂µφi +

g

4!
(φiφi)

2 . (3.1)

1 An analogous analysis was pursued for φ6 theories for d = 3 − ε and φ3 theories for
d = 6− ε in Refs. [16–18].
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The β-function for this theory is well-known [21]

16π2β(g) = −εg +
g2

3
(N + 8)− g3

3
(3N + 14) +O

(
g4
)
, (3.2)

and leads to an infra-red conformal fixed point

g∗ =
3ε

N + 8
+

9(3N + 14)

(N + 8)3
ε2 +O

(
ε3
)
. (3.3)

As shown in Ref. [13], the fixed-charge operator of charge Q̄ may be taken
to be

TQ̄ = Ti1i2...iQ̄φi1φi2 . . . φiQ̄ , (3.4)

where Ti1i2...iQ̄ is symmetric, and traceless on any pair of indices. The scaling
dimension ∆TQ̄ is expanded as

∆TQ̄ = Q̄

(
d

2
− 1

)
+ γTQ̄ =

∑
κ=−1

gκ∆κ

(
gQ̄
)
. (3.5)

We initially work in general d. The semiclassical computation of∆−1 and∆0

is performed by mapping the theory via a Weyl transformation to a cylinder
R×Sd−1, where Sd−1 is a sphere of radius R; where the Rφ∗φ term (R being
the Ricci curvature) generates an effective m2φ∗φ mass term with m = d−2

2R .
This mapping process along with other technical simplifications [12] relies
on conformal invariance and, therefore, we now assume that we are at the
conformal fixed point in Eq. (3.3). It was shown in Ref. [12] that stationary
configurations of the action are characterised by a chemical potential µ,
related to the cylinder radius R by

Rµ∗ =

3
1
3 +

[
6g∗Q̄+

√
36
(
g∗Q̄

)2 − 3

] 2
3

3
2
3

[
6g∗Q̄+

√
36
(
g∗Q̄

)2 − 3

] 1
3

. (3.6)

The computation of the leading contribution ∆−1 is entirely analogous to
the U(1) case and is given by

4∆−1

(
g∗Q̄

)
g∗Q̄

=
3

2
3

[
x+
√
x2 − 3

] 1
3

3
1
3 +

[
x+
√
x2 − 3

] 2
3

+

3
1
3

{
3

1
3 +

[
x+
√
x2 − 3

] 2
3

}
[
x+
√
x2 − 3

] 1
3

, (3.7)
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where x = 6g∗Q̄. Its expansion for small g∗Q̄ takes the form

∆−1

(
g∗Q̄

)
g∗

= Q̄

[
1 +

1

3
g∗Q̄−

2

9

(
g∗Q̄

)2
+

8

27

(
g∗Q̄

)3
−14

27

(
g∗Q̄

)4
+O

{(
g∗Q̄

)5}]
. (3.8)

As in the U(1) case, for simplicity, we give in Eq. (3.6) the result for d = 3.
The non-leading corrections ∆0 are once more given by the determinant
of small fluctuations. There are two modes corresponding to those in the
Abelian case, with the dispersion relation

ω2
±(l) = J2

l + 3µ2 −m2 ±
√

4J2
l µ

2 + (3µ2 −m2)2 , (3.9)

where
J2
l =

l(l + d− 2)

R2
(3.10)

is the eigenvalue of the Laplacian on the sphere. In addition there are N
2 −1

“Type II” (non-relativistic) [19] Goldstone modes and N
2 − 1 massive states

with dispersion relation

ω±±(l) =
√
J2
l + µ2 ± µ , (3.11)

with Jl as defined in Eq. (3.10). We then find that ∆0 is given by

∆0

(
g∗Q̄

)
=

1

2

∞∑
l=0

σl , (3.12)

where

σl = Rnl

{
ω∗+(l) + ω∗−(l) +

(
N

2
− 1

)
[ω∗++(l) + ω∗−−(l)]

}
. (3.13)

Here
nl =

(2l + d− 2)Γ (l + d− 2)

Γ (l + 1)Γ (d− 1)
(3.14)

is the multiplicity of the Laplacian on the d-dimensional sphere, and ω∗±,
ω∗++, ω∗−− are defined as in Eqs. (3.9), (3.11), respectively, evaluated at the
fixed point with R, µ∗ related by Eq. (3.6). For the small (g∗Q̄) computation,
we need to isolate the divergent contribution in the sum in Eq. (3.12). We
use the large-l expansion of σl

σl =
∞∑
n=1

cnl
d−n (3.15)

with
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c1 = N , c2 = 3N ,

c3 =
1

2

[
5N − 2 + (N + 2)(Rµ∗)

2
]
,

c4 =
1

2

[
N − 2 + (N + 2)(Rµ∗)

2
]
,

c5 =
N + 8

8

(
R2µ2

∗ − 1
)2 [−1 +

(
γ − 3

2

)
ε

]
−29

12

(
R2µ2

∗ − 1
)
ε−

(
11

24
R2µ2

∗ −
1

5

)
Nε . (3.16)

We can write

∆0

(
g∗Q̄

)
= −15µ4

∗R
4 + 6µ2

∗R
2 − 5

16
+

1

2

∞∑
l=1

σ̄l +

√
3µ2
∗R

2 − 1

2

− 1

16

(
N

2
− 1

)[
7− 16Rµ∗ + 6R2µ2

∗ + 3R4µ4
∗
]
, (3.17)

where
σ̄l = σl − c1l

3 − c2l
2 − c3l − c4 − c5

1

l
. (3.18)

Here, the divergent parts have been isolated and the sums over l performed,
as explained in Refs. [12] and [13]. The sum over 1

ld−n
for n = 5 leads to

a pole in ε which cancels against the pole in the bare coupling. The sum
over σl is then finite and setting d = 4, and expanding in small g∗Q̄ can be
performed analytically. We obtain

∆0 = −1

6
(10 +N)g∗Q̄+

1

18
(6−N)

(
g∗Q̄

)2
+

1

27
[N − 36 + 2(14 +N)ζ3]

(
g∗Q̄

)3
− 1

81
[4(N − 73) + 2(6N + 65)ζ3 + 5(N + 30)ζ5]

(
g∗Q̄

)4
+ . . . (3.19)

Adding Eqs. (3.8) and (3.19), we find [13]

∆−1

(
g∗Q̄

)
g∗

+∆0

(
g∗Q̄

)
= Q̄+

1

6

[
2Q̄− (N + 10)

]
g∗Q̄

− 1

18

[
4Q̄+ (N − 6)

] (
g∗Q̄

)2
+

1

27

[
8Q̄+N − 36 + 2(N + 14)ζ3

] (
g∗Q̄

)3
+
{
−14

27
Q̄− 1

81
[4(N − 73) + 2(6N + 65)ζ3

+5(N + 30)ζ5]
}(
g∗Q̄

)4
+ . . . (3.20)
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4. The diagrammatic calculation

In this section, we carry out the perturbative calculation to confirm the
semiclassical result at leading and next-to-leading order in Q̄ up to four-loop
level, as displayed in Eq. (3.20).

The one-loop contribution to γTQ̄ comes solely from the diagram depicted
in Fig. 1 (a) and is given by

γ
(1)
TQ̄

= −1
3gQ̄

(
1− Q̄

)
. (4.1)

As mentioned before, the derivation of the semiclassical result relied on
working at the conformal fixed point g∗. However, surprisingly, at two, three
and four loops we will see that the functional forms of the semiclassical and
perturbative results agree for general g and not just on substitution of g = g∗
with g∗ as given in Eq. (3.3). It is only at one loop where the agreement
only holds at the fixed point. Specifically, the leading terms Q̄

(
d
2 − 1

)
+γ

(1)
TQ̄

on the left-hand side of Eq. (3.5) (as given in Eq. (4.1)) only agree with
the O(g0) and O(g) terms in ∆−1(gQ̄)

g + ∆0(gQ̄) on the right-hand side of
Eq. (3.5) (as obtained from Eq. (3.20)) after substituting g = g∗ ≈ 3ε

N+8 . In
this case, specialising to the fixed point has induced a mixing between the
classical and one-loop O(Q̄) terms.

Fig. 1. One- and two-loop diagrams for γTQ̄
contributing at leading n.

The leading O(Q̄3) two-loop contribution to γTQ̄ comes purely from the
diagram depicted in Fig. 1 (b) (with three lines emerging from the TQ̄ ver-
tex), while the next-to-leading O(Q̄2) contributions are generated by this
diagram together with those in Fig. 1 (c) (with two lines emerging from the
TQ̄ vertex). The contributions are given by

γ
(2)
(b) = −2

9g
2Q̄
(
Q̄− 1

) (
Q̄− 2

)
, (4.2)

γ
(2)
(c) = −1

9g
2
(
3 + 1

2N
)
Q̄
(
Q̄− 1

)
, (4.3)

producing leading and next-to-leading terms given by

γ
(2)
TQ̄

= − 1
18

(
gQ̄
)2 (

4Q̄− 6 +N
)
, (4.4)
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in accord with the semiclassical results in Eq. (3.20). As emphasised earlier,
this agreement holds for general g and not just at the conformal fixed point.
This is because at two and higher loops, in contrast to what we saw at one
loop, specialising to the fixed point g = g∗ as given in Eq. (3.3) does not
induce any mixing between leading or next-to-leading terms at different loop
orders. Therefore, if Eq. (3.5) holds at the fixed point, it must also hold in
general. In fact, the agreement was already checked at the fixed point in
Ref. [13] in the general O(N) case, and in the U(1) case in Ref. [12].

The leading O(Q̄4) three-loop contributions to γTQ̄ come purely from the
diagrams depicted in Fig. 2 (with four lines emerging from the TQ̄ vertex),
while the next-to-leading O(Q̄3) contributions are generated by these dia-
grams together with those in Fig. 3 (with three lines emerging from the TQ̄
vertex).

Fig. 2. Three-loop diagrams for γTQ̄
contributing at leading n.

Fig. 3. Three-loop diagrams for γTQ̄
contributing at next-to-leading n.

The simple pole contributions from individual three-loop diagrams may
be extracted from Ref. [20] and are listed in Table I, together with the
corresponding symmetry factor. A factor of g3 is understood in each case.
The N -dependent factors A and B are given by

A = 1
8(N + 6) , B = 1

16(N + 14) . (4.5)

When added and multiplied by a loop factor of 3, the leading and non-leading
three-loop contributions to γTQ̄ are found to be
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γ
(3)
TQ̄

= 1
27

(
gQ̄
)3 [

8Q̄+N − 36 + 2(14 +N)ζ3

]
, (4.6)

once again in accord with the semiclassical results in Eqs. (3.20), for gen-
eral g. Equivalently, this agreement was already checked at the fixed point
in Ref. [13].

TABLE I

Three-loop results from Figs. 2 and 3.

Graph Symmetry factor Simple pole

2(a) 1
54

Q̄!

(Q̄−4)!
− 2

3

2(b) 2
27

Q̄!

(Q̄−4)!

4
3

2(c) 1
54

Q̄!

(Q̄−4)!

2
3

3(a) 1
27

Q̄!

(Q̄−3)!
− 2

3

3(b) 4
27

Q̄!

(Q̄−3)!
A − 2

3

3(c) 2
27

Q̄!

(Q̄−3)!

4
3

3(d) 4
27

Q̄!

(Q̄−3)!
A 4

3

3(e) 8
27

Q̄!

(Q̄−3)!
B 4ζ3

The leading O(Q̄5) four-loop contributions to γTQ̄ come purely from the
diagrams depicted in Fig. 4 (with five lines emerging from the TQ̄ vertex),
while the next-to-leading O(Q̄4) contributions are generated by these dia-
grams together with those in Figs. 5 and 6 (with four lines emerging from
the TQ̄ vertex).

Fig. 4. Four-loop diagrams for γTQ̄
contributing at leading n.
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Fig. 5. Four-loop diagrams for γTQ̄
contributing at next-to-leading n.

Fig. 6. Four-loop diagrams for γTQ̄
contributing at next-to-leading n (continued).
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The simple pole contributions from the four-loop diagrams in Fig. 4 were
readily evaluated using standard techniques (see, for instance, Ref. [21]).
Those from Figs. 5, 6 may be extracted from Ref. [20]. The contributions
from each four-loop diagram are listed in Tables II, III and IV, respectively,
together with the corresponding symmetry factor. A factor of g4 is under-
stood in each case, and the N -dependent factor C is given by

C = 1
32(N + 30) . (4.7)

When added and multiplied by a loop factor of 4, the leading and non-leading
four-loop contributions to γTQ̄ are found to be

γ
(4)
TQ̄

=− 1
81

(
gQ̄
)4 [

42Q̄+ 4(N−73) + 2(6N + 65)ζ3 + 5(N + 30)ζ5

]
, (4.8)

once again in accord with the semiclassical results in Eqs. (3.20), for gen-
eral g.

TABLE II

Four-loop results from Fig. 4.

Graph Symmetry factor Simple pole

4(a) 4
81

Q̄!

(Q̄−5)!

5
2

4(b) 2
81

Q̄!

(Q̄−5)!
− 2

3

4(c) 1
81

Q̄!

(Q̄−5)!
− 5

6

4(d) 1
81

Q̄!

(Q̄−5)!

11
6

4(e) 2
81

Q̄!

(Q̄−5)!

2
3

4(f) 1
81

Q̄!

(Q̄−5)!
− 1

2
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TABLE III

Four-loop results from Fig. 5.

Graph Symmetry factor Simple pole

5(a) 2
81

Q̄!

(Q̄−4)!

1
6 (11− 6ζ3)

5(b) 2
81

Q̄!

(Q̄−4)!
A 1

6 (11− 6ζ3)

5(c) 4
81

Q̄!

(Q̄−4)!
A − 1

2

5(d) 16
81

Q̄!

(Q̄−4)!
C 10ζ5

5(e) 8
81

Q̄!

(Q̄−4)!
B 3

2 (2ζ3 − ζ4)

5(f) 8
81

Q̄!

(Q̄−4)!
A − 2

3

5(g) 2
81

Q̄!

(Q̄−4)!
A 1

2 (1− 2ζ3)

5(h) 1
324

Q̄!

(Q̄−4)!
−2(1− ζ3)

5(i) 1
162

Q̄!

(Q̄−4)!
−2(1− ζ3)

5(j) 2
81

Q̄!

(Q̄−4)!
−(1− 2ζ3)

5(k) 1
81

Q̄!

(Q̄−4)!

1
2 (1− 2ζ3)

TABLE IV

Four-loop results from Fig. 6.

Graph Symmetry factor Simple pole

6(a) 4
81

Q̄!

(Q̄−4)!
A − 1

6 (5− 6ζ3)

6(b) 8
81

Q̄!

(Q̄−4)!
B 3

2 (2ζ3 + ζ4)

6(c) 4
81

Q̄!

(Q̄−4)!
A − 5

6

6(d) 2
81

Q̄!

(Q̄−4)!
− 2

3

6(e) 4
81

Q̄!

(Q̄−4)!
A − 2

3

6(f) 2
81

Q̄!

(Q̄−4)!
− 1

6 (5− 6ζ3)

6(g) 2
81

Q̄!

(Q̄−4)!
− 1

6 (5− 6ζ3)

6(h) 4
81

Q̄!

(Q̄−4)!
− 1

2 (5− 4ζ3)

6(i) 4
81

Q̄!

(Q̄−4)!
− 1

2 (5− 4ζ3)

6(j) 8
81

Q̄!

(Q̄−4)!
A − 5

2

6(k) 4
81

Q̄!

(Q̄−4)!
− 5

2
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5. The large g∗Q̄ calculation

In this section, we discuss the large g∗Q̄ limit of ∆TQ̄ . The large g∗Q̄
limit of ∆−1 as given by Eq. (3.7) is readily obtained as

∆−1

g∗
=

3

4g∗

[
3

4

(
4g∗Q̄

3

) 4
3

+
1

2

(
4g∗Q̄

3

) 2
3

+O(1)

]
. (5.1)

We follow the procedure described in Ref. [12] for evaluating ∆0 by means
of an approximation to the sum over l followed by a numerical fit. The
procedure involves selecting integers N1, N2 and picking A ≥ 1 such that
ARµ∗ is an integer (this represents a cut-off in the summation, beyond which
we approximate it by an integral). The accuracy may be made as great as
desired by increasing N1, N2 and A. We obtain

∆0 =
N + 8

16

(
R2µ∗2 − 1

)2
ln(ARµ∗) + F (Rµ∗) , (5.2)

where

F (Rµ∗) = fN2,A(Rµ∗)−
1

4
σARµ∗ +

1

2

ARµ∗∑
l=0

σl −
1

2

N1∑
k=1

B2k

(2k)!
σ

(2k−1)
ARµ∗

, (5.3)

and here

fN2,A(Rµ∗) =
1

2
(ARµ∗)

4
N2∑

n=1,n6=5

cn
(ARµ∗)n−1(n− 5)

+
N + 8

16

(
R2µ∗2 − 1

)2(
γ − 3

2

)
− 29

24

(
R2µ∗2 − 1

)
−
(

11

48
R2µ∗2 − 1

10

)
N .

(5.4)

With some help from one of the authors [22], we have corrected some typos
in the corresponding equations in Ref. [12], which were not reflected in their
final results. The function fN2,A(Rµ∗) derives from replacing the sum over l
for l ≥ ARµ∗ in Eq. (3.12) by an integral over l. It is then appropriate to use
the large l expansion in Eq. (3.15). The integral over 1

l1+ε corresponding to
the c5 term leads to a pole term in ε. The potential pole in ∆0 is cancelled
by the pole in the bare coupling, but the O(ε) term in c5 in Eq. (3.16) leads
to the terms in the last line of Eq. (5.4). The details of the procedure may
be found in Ref. [12]. In Eq. (5.3), we can set d = 4. We now evaluate
F (Rµ∗) in Eq. (5.3) numerically. We take N1 = 4, N2 = 10 and A = 10,
using the same numbers as Ref. [12] for comparison purposes. The result
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is then fitted with an expansion in (Rµ∗)
−2, starting from (Rµ∗)

4, with 4
parameters. We find that F (Rµ∗) is given by

F (Rµ∗) ∼ −(1.5559 + 0.2293N)(Rµ∗)
4 + (1.8536 + 0.3231N)(Rµ∗)

2

−(0.4467 + 0.0826N) +O
(
(Rµ∗)

−2
)
, (5.5)

and this may be inserted into Eq. (5.2) to give the full result for ∆0. Ex-
panding Rµ∗ as given by Eq. (3.6) in terms of large g∗Q̄, we find

Rµ∗ =

(
4g∗Q̄

3

) 1
3

+
1

3

(
4g∗Q̄

3

)− 1
3

+ . . . , (5.6)

and then we obtain from Eq. (5.2)

∆0 =

[
α+

N + 8

48
ln

(
4g∗Q̄

3

)](
4g∗Q̄

3

) 4
3

+

[
β − N + 8

72
ln

(
4g∗Q̄

3

)](
4g∗Q̄

3

) 2
3

+O(1) , (5.7)

where

α = −0.4046− 0.0854N ,

β = −0.8218− 0.0577N . (5.8)

The results for U(1) should be recovered by setting N = 2; and indeed for
N = 2 we find Eqs. (5.5), (5.7), (5.8) agree with the corresponding results
given in Ref. [12].

Following Ref. [12] and combining Eqs. (3.3), (3.5), (5.1) and (5.7), we
may write the full scaling dimension in the form of

∆TQ̄ =
1

ε

(
4εQ̄

N + 8

) d
d−1
[

3(N + 8)

16
+ ε

(
α+

3(3N + 14)

16(N + 8)

)
+O

(
ε2
)]

+
1

ε

(
4εQ̄

N + 8

) d−2
d−1
[
N + 8

8
+ ε

(
β − 3N + 14

8(N + 8)

)
+O

(
ε2
)]

+O
[(
εQ̄
)0]

.

(5.9)

In Ref. [18], we found that we could reproduce the coefficients in the large
Rµ∗ expansion of the N -dependent part of ∆0 (the terms involving ω∗++ and
ω∗−− in Eq. (3.13)) by an analytic computation. This fails to work here; an
analytic large-Rµ∗ expansion of ω∗++ and ω∗−− as given by Eq. (3.11) leads to
odd negative powers of Rµ∗, whereas our numeric computation in Eq. (5.5)
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only contains even powers of Rµ∗. It appears that the simple properties of
ω∗++ and ω∗−− identified in Ref. [18], in particular their expansion in powers

of J2
l

R2µ2
∗
, are not enough for our analytic computation to work in the d = 4

case. A little trial and error indicates that the fact that in d = 3, nl ∝ d
dlJ

2
l ,

may also be crucial; but further insight is required.

6. Conclusions

Approaches that extend the reach of (or even transcend the need for)
perturbation theory have always been challenging, and are all the more
interesting now due to the increased importance attached to multi-leg am-
plitudes, which can present formidable calculational obstacles at higher loop
orders. In this paper, we have followed Refs. [11–13] in the application of
semi-classical methods to the calculation of φn amplitudes in d = 4 renor-
malisable scalar theories with quartic interactions. Reference [13] generalises
this calculation of Ref. [12] from U(1) to an O(N) invariant interaction. An-
other motivation for studying this class of theories is their (classical) scale
invariance (CSI). As remarked in Ref. [13], the Standard Model (SM) is “al-
most” CSI. Indeed, in 1973, Coleman and Weinberg (CW) [23] had hoped
to argue that the SM might indeed be viable with the omission of the Higgs
(wrong-sign) (mass)2 term. This attractive idea failed. Neglecting Yukawa
couplings (which seemed reasonable at the time) led to a Higgs mass pre-
diction which was too small; but including the top quark Yukawa coupling
destabilised the Higgs vacuum altogether2. CW introduced the idea of di-
mensional transmutation as a means of generating a physical mass scale in
a CSI theory. The same phenomenon has been pursued [25–27] in the CSI
form of quantum gravity [28–33].

Our purpose here has been to compare the results of Ref. [13] with
straightforward (albeit intricate) perturbation theory. Generally, the re-
sults have supported the validity of the semi-classical approximation in its
domain of validity.

Future work might include the application of the semi-classical methods
and perturbative methods used here to the remaining class of CSI theories
with scalar self-interactions; that is φ3 theories in d = 6; or even perhaps
the case of CSI quantum gravity mentioned above.

We are grateful to Gabriel Cuomo for helpful correspondence. D.R.T.J.
thanks the Leverhulme Trust for the award of an Emeritus Fellowship. This
research was supported by the Leverhulme Trust, STFC and by the Univer-
sity of Liverpool.

2 For a review of some controversy over this development, see Ref. [24].
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