
Vol. 52 (2021) Acta Physica Polonica B No 8

Key4hep — TURNKEY SOFTWARE
FOR FUTURE COLLIDERS∗

Placido Fernandez Declara, Gerardo Ganis
Benedikt Hegner, Clement Helsens, Marko Petric

Andre Sailer, Valentin Volkl

CERN, Geneva, Switzerland

Frank Gaede, Thomas Madlener

DESY, Hamburg, Germany

Wenxing Fang, Weidong Li, Tao Lin, Xiaomei Zhang
Jiaheng Zou

IHEP, Bejing, China

Xingtao Huang, Teng Li

Shandong University, Qindao, Shandong, China

Sang Hyun Ko

Seoul National University, Seoul, Republic of Korea

Joseph Wang

Bitquant Digital Services, Hong Kong

(Received March 31, 2021; accepted May 4, 2021)

Future collider experiments rely on a well-maintained software for their
physics performance studies and detector optimisation. The Key4hep project
aims to design and provide a common set of software tools that can be used
by future or even present-day high-energy physics projects. It unites the
communities of all current future collider projects. These proceedings give

∗ Presented at XXVII Cracow Epiphany Conference on Future of Particle Physics,
Cracow, Poland, January 7–10, 2021.

(1031)



1032 P. Fernandez Declara et al.

an overview of the goals of the Key4hep project and briefly describe the main
components that are currently under development: the common event data
model, EDM4hep, the detector description toolkit, DD4hep, the interfaces
to Delphes, a brief description of the core framework and, finally, the infras-
tructure to deploy and build the whole software stack using spack. They
also include some details about how different communities plan to adapt
their software stacks to the Key4hep project. Overall, they show that the
Key4hep software stack can be used already for first physics studies and
highlight its potential as a baseline for future high-energy physics experi-
ments.

DOI:10.5506/APhysPolB.52.1031

1. Introduction

High-energy physics (HEP) experiments rely on a well-maintained soft-
ware for their successful operation. Providing this software and its integra-
tion with the experiment comes with significant challenges. Some of these
challenges are related to the long lifetimes of HEP experiments, which can
span decades. Others are related to the inherent complexity and size of the
software stack of an experiment that is comprised of many different soft-
ware packages and components. The Key4hep project aims at providing a
complete, so-called, turnkey software stack for future collider projects. To
achieve this goal, the project tries to connect and extend already available
packages, and to develop a new software where it was necessary to provide a
complete data processing framework from event generation and simulation
through event reconstruction. While this framework provides the basic func-
tionality, it should be easily extendable and adaptable with other software in
the Key4hep software stack to support the different use cases of the different
experiments.

The Key4hep project is community driven and unites collaborators from
the different future collider projects that are currently under consideration:
ILC, CLIC, FCC-ee, FCC-hh and CEPC. All software that is developed as
a part of the Key4hep project is open source and hosted on GitHub [1].
Additionally, documentation on how to start using the available software is
available [2] and aimed at helping users getting started quickly. It includes
instructions for setting up existing environments, building the entire software
stack as well as some examples for running simulation and reconstruction
steps. There is a set of alternating bi-weekly meetings to discuss the progress
as well as current issues of the Key4hep project and its event data model
(EDM), EDM4hep, which we will also discuss briefly here in Section 2.

We continue with a brief description of the DD4hep toolkit for detector
description in Section 3, before we briefly discuss the currently available
possibilities to simulate first physics events in Section 4. The core framework



Key4hep — Turnkey Software for Future Colliders 1033

and the available software infrastructure are described in Sections 5 and 6
respectively. Finally, we describe the usage of the spack package manager
that is used to build the Key4hep stack (Section 7), before we conclude with
a summary and outlook in Section 8.

2. EDM4hep

At the core of every HEP experiment, the software framework is the event
data model (EDM). It defines the interface and communication channels of
the different components of the framework and, even more importantly, also
the language that physicists use to express their ideas. The common EDM
for the Key4hep project, EDM4hep [3], is based on experience that has been
gathered with the LCIO EDM [4], which has been very successfully shared
by the linear collider community for almost two decades, and FCC-edm [5].
EDM4hep is implemented using the podio EDM toolkit [6–8], which has al-
ready been used for FCC-edm. It aims at providing an efficient and easy-to-
use implementation of different EDMs starting from a high-level description
of the data types.

A schematic view is shown in Fig. 1. It features the typical data types
that are used in HEP experiments to represent simulated as well as measure-
ment data at different levels. It also allows to define relations among these
types to build up object hierarchies, like the ReconstructedParticle that can
comprise low-level measurements but can also be used to express short-lived
decaying particles. Similar means are available for simulated data with a
strict separation to the reconstruction side. To connect the two worlds,
dedicated association data types are provided.

EDM4hep DataModel Overview (v0.3)

Monte Carlo DigitizationRaw Data
Reconstruction &

Analysis

MCRecoParticleAssociation

MCRecoTrackerAssociation

MCRecoCaloAssociation

Fig. 1. Schematic view of the contents of EDM4hep and the relations among the
different data types that it defines.



1034 P. Fernandez Declara et al.

The current definition of EDM4hep is inspired by the requirements for
precision physics at future lepton colliders, following a Particle Flow ap-
proach, where the aim is to reconstruct every individual particle emerging
from the collision. Since Key4hep is also aimed at future hadron collider
projects, EDM4hep also has to support the much more convoluted hadron
collision environments. So far, it seems to be up to this challenge, but more
testing is still necessary.

3. DD4hep

A second core part of every experiment framework is the description of
the detector. For this purpose, Key4hep uses the DD4hep [9, 10] toolkit.
It has originally been developed for the linear collider community, but had
the whole HEP community in mind from the beginning. Full integration of
Geant4 [11] full detector simulations using the DD4hep detector descriptions
is ongoing. Nevertheless, it is now already possible to simulate the detector
response with the ddsim executable [12] and the EDM4hep output plugin
that has been developed for Key4hep. This allows for a seamless integration
with other tools that use EDM4hep information.

4. k4SimDelphes

A slightly different approach that allows for first physics studies within
Key4hep is the integration of the Delphes fast simulation framework [13]. It
can be used to simulate the parameterized response of the detector consisting
of a tracking system, embedded in a magnetic field, calorimeters, and a muon
system. The framework offers executables to read different standard file
formats (e.g. Les Houches Event Files or HepMC) and produces different
output types such as isolated leptons, jets or missing transverse energy,
which can be used for dedicated analyses. The k4SimDelphes package [14]
wraps the Delphes simulation and converts its output into EDM4hep format.

At its current stage, k4SimDelphes offers the same executables as Delphes,
and adds an additional one that also allows to use the EvtGen [15] plugin with
PYTHIA 8. The contents of k4SimDelphes are configurable at run-time via a
configuration file, which steers which Delphes branches should be converted
and also how different branches should be combined into different EDM4hep
collections. A default configuration that should cover the majority of use
cases and can be used without changes with the default Delphes cards is
shipped with k4SimDelphes.

The k4SimDelphes converter is also part of a general approach to sim-
ulation interfaces in Key4hep, where it should be possible to transparently
replace different simulation modules that all produce more or less identical
output. The full integration of k4SimDelphes into the core framework and
an interface to different generators is currently under development.



Key4hep — Turnkey Software for Future Colliders 1035

5. Core framework

The core framework of Key4hep will be based on the Gaudi framework [16],
which has been successfully used by the LHCb, ATLAS, the FCC software
and smaller experiments. The Key4hep project contributes to the devel-
opment of Gaudi where it is necessary in order to have all the required
features. The k4FWCore [17] package provides the core functionality of the
Key4hep framework, most importantly it has the functionality to read and
write EDMs that have been generated via podio. Additionally, it also comes
with tools for background overlaying and other fundamental functionality.

Other core functionality is currently being ported from FCCSW and is
organized into different packages according to the different aspects that are
covered by these packages, e.g.,

— k4Gen [18]: Framework components for interfacing to different gener-
ators and particle guns.

— k4SimGeant4 [19]: Framework components that deal with Geant4 sim-
ulations.

— k4SimDelphes: see Section 4.

— k4RecCalorimeter [20]: Framework components for calorimeter recon-
struction.

Further components can be integrated in a similar fashion. The approach of
separating the concerns of the different packages as well as possible should
allow to pick and combine only the necessary components later on.

The linear collider community has been using the Marlin [21] event pro-
cessing framework for more than 15 years. Hence, a lot of dedicated recon-
struction and analysis software is already available for this framework. In
order to ease the transition to the Gaudi based framework of Key4hep, a wrap-
per around these Marlin processors has been developed: k4MarlinWrapper
[22]. It allows to run them using the Gaudi framework; it provides the neces-
sary components and converters to interface between Marlin processors and
other components of Key4hep. Further work that will ease the transition to
the Key4hep software stack is ongoing.

For FCC, the transition is much easier since the experiment framework
is already Gaudi-based in this case. Additionally, the FCC-edm is generated
via podio so the major changes in the migration here are related to the
slightly different definition of the data types in EDM4hep.



1036 P. Fernandez Declara et al.

6. Software infrastructure

Building and deploying software for a HEP experiment is usually a time-
consuming and challenging task. The main challenges are related to a large
number of different systems and packages that have to be integrated, the
fact that the developments of these components often happen on partially
very different time scales and the fact that the whole stack should still be
easily extendable to add new functionality. Sharing approaches and expe-
riences as well as using common, community-wide installations and tooling
can significantly increase the efficiency of these processes. Additional bene-
fits can be reaped by using tools from the open-source community and from
outside HEP.

To facilitate all of this, the Key4hep project tries to use modern software
development practices. These include the usage of automated builds and
continuous integration (CI) wherever possible to increase the probability of
detecting problems before they are released to a wider audience. For the
C++ parts, the project aims at using modern CMake [23] features, which
allow for easier handling of dependent projects. To build the complete soft-
ware stack, the spack package manager is used (see the next section). The
distribution of the software stack is achieved via CVMFS, and the most re-
cent release is available at /cvmfs/sw.hsf.org/key4hep. In order to gather
as much feedback as possible at the early stages of the project, releases
follow the “release early and release often” paradigm. This also allows to
discover problems that slipped through automated tests and nightly builds
to be discovered early.

7. Spack

The spack package manager [24], originally developed by the high-perfor-
mance computing (HPC) community, makes it possible to deal with multiple
different configurations of the same package in a software stack. It does
not depend on the operating system and builds software packages from the
source. It builds on top of the usual build tools like CMake or Autotools and
integrating a new software package into the spack ecosystem can be done
by defining an appropriate package definition using Python. Spack will then
take care of resolving all the stated dependencies and making sure that they
are built and available when a given package should be built. The Key4hep
project offers a repository of package definitions for software packages that
are not yet available via the central spack repository and which can be
used to build these packages alongside the ones which are already available
centrally. This makes it possible to use spack to build the central installation
of the Key4hep software stack that is deployed via CVMFS.



Key4hep — Turnkey Software for Future Colliders 1037

8. Conclusions

The Key4hep project aims to provide a well-maintained and complete
software stack for future collider experiment studies. All of the major groups
— CEPC, CLIC, FCC and ILC — are actively contributing to Key4hep and
have either already started the migration to the new software stacks or have
developed migration strategies. Since its start in mid 2019 significant work
has been put into defining a first version of the common EDM4hep and to
provide some first tools for physics studies. Additionally, central pieces for
deploying, building and testing the software have been put in place. The
group is actively working on developing the Key4hep software ecosystem
further and is welcoming new collaborators and users to this exciting project.

REFERENCES

[1] GitHub Organization, https://github.com/key4hep
[2] V. Volkl et al., «key4hep/key4hep-doc: Initial Release, Documentation for the

Key4hep Turnkey Software», 2021,
https://doi.org/10.5281/zenodo.4564650

[3] V. Volkl et al., key4hep/EDM4hep: v00-03-02 GitHub Repository,
https://doi.org/10.5281/zenodo.4785063

[4] F. Gaede, T. Behnke, N. Graf, T. Johnson, «LCIO — A Persistency
framework for linear collider simulation studies», eConf C0303241,
TUKT001 (2003), arXiv:physics/0306114.

[5] FCC-edm GitHub Repository, https://github.com/HEP-FCC/fcc-edm
[6] F. Gaede, B. Hegner, P. Mato, «podio: An Event-Data-Model Toolkit for

High Energy Physics Experiments», J. Phys.: Conf. Ser. 898, 072039 (2017).
[7] podio GitHub Repository, https://github.com/AIDASoft/podio
[8] F. Gaede, B. Hegner, G.A. Stewart, «podio: recent developments in the

Plain Old Data EDM toolkit», EPJ Web Conf. 245, 05024 (2020).
[9] M. Frank, F. Gaede, C. Grefe, P. Mato, «DD4hep: A Detector Description

Toolkit for High Energy Physics Experiments», J. Phys.: Conf. Ser. 513,
022010 (2013).

[10] M. Frank, F. Gaede, M. Petric, A. Sailer, Andre, «AIDASoft/DD4hep:
v01-16-01», https://doi.org/10.5281/zenodo.592244

[11] S. Agostinelli et al., «Geant4 — a simulation toolkit», Nucl. Instrum.
Methods Phys. Res A 506, 250 (2003).

[12] M. Petrić et al., «Detector Simulations with DD4hep», J. Phys.: Conf. Ser.
898, 042015 (2016).

[13] DELPHES 3 Collaboration (J. de Favereau et al.), «Delphes 3: a modular
framework for fast simulation of a generic collider experiment», J. High
Energy Phys. 1402, 057 (2014), arXiv:1307.6346 [hep-ex].

https://github.com/key4hep
https://doi.org/10.5281/zenodo.4564650
https://doi.org/10.5281/zenodo.4785063
http://arxiv.org/abs/physics/0306114
https://github.com/HEP-FCC/fcc-edm
http://dx.doi.org/10.1088/1742-6596/898/7/072039
https://github.com/AIDASoft/podio
http://dx.doi.org/10.1051/epjconf/202024505024
http://dx.doi.org/10.1088/1742-6596/513/2/022010
http://dx.doi.org/10.1088/1742-6596/513/2/022010
https://doi.org/10.5281/zenodo.592244
http://dx.doi.org/10.1016/S0168-9002(03)01368-8
http://dx.doi.org/10.1016/S0168-9002(03)01368-8
http://dx.doi.org/10.1088/1742-6596/898/4/042015
http://dx.doi.org/10.1088/1742-6596/898/4/042015
http://dx.doi.org/10.1007/JHEP02(2014)057
http://dx.doi.org/10.1007/JHEP02(2014)057
http://arxiv.org/abs/arXiv:1307.6346


1038 P. Fernandez Declara et al.

[14] V. Volkl et al., k4SimDelphes Delphes Integration in the Key4hep Framework,
https://doi.org/10.5281/zenodo.4564683

[15] https://evtgen.hepforge.org/
[16] G. Barrand et al., «Gaudi — A software architecture and framework for

building HEP data processing applications», Comput. Phys. Commun. 140,
45 (2001).

[17] V. Volkl et al., «k4FWCore: Preliminary Initial Release: Core Components
for the Gaudi-based Key4hep Framework»,
https://doi.org/10.5281/zenodo.4564605

[18] V. Volkl et al., «k4Gen: Preliminary Initial Release»,
https://doi.org/10.5281/zenodo.4564609

[19] V. Volkl et al., «k4SimGeant4: v0.1.0pre02 Initial Release; Gaudi Components
for Geant4 Simulation in the Key4hep software framework.»,
https://doi.org/10.5281/zenodo.4564574

[20] V. Volkl et al., «k4RecCalorimeter: Preliminary Initial Release»,
https://doi.org/10.5281/zenodo.4564669

[21] F. Gaede, «Marlin and LCCD — Software tools for the ILC», Nucl. Instrum.
Methods Phys. Res. A 559, 177 (2006).

[22] Key4hep GitHub Repository, «k4MarlinWrapper»,
https://github.com/key4hep/k4MarlinWrapper

[23] https://cmake.org/
[24] T. Gamblin et al., «The Spack package manager: bringing order to HPC

software chaos», in: «SC15: International Conference for High-Performance
Computing, Networking, Storage and Analysis», IEEE Computer Society,
Los Alamitos, CA, USA 2015, pp. 1–12.

https://doi.org/10.5281/zenodo.4564683
https://evtgen.hepforge.org/
http://dx.doi.org/10.1016/S0010-4655(01)00254-5
http://dx.doi.org/10.1016/S0010-4655(01)00254-5
https://doi.org/10.5281/zenodo.4564605
https://doi.org/10.5281/zenodo.4564609
https://doi.org/10.5281/zenodo.4564574
https://doi.org/10.5281/zenodo.4564669
http://dx.doi.org/10.1016/j.nima.2005.11.138
http://dx.doi.org/10.1016/j.nima.2005.11.138
https://github.com/key4hep/k4MarlinWrapper
https://cmake.org/
http://dx.doi.org/10.1145/2807591.2807623
http://dx.doi.org/10.1145/2807591.2807623

	1 Introduction
	2 EDM4hep
	3 DD4hep
	4 k4SimDelphes
	5 Core framework
	6 Software infrastructure
	7 Spack
	8 Conclusions

