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In this contribution, we present analytic expressions in terms of polylog-
arithmic functions for all three families of planar two-loop five-point mas-
ter integrals with one off-shell leg, recently published in arXiv:2009.13917
[hep-ph]. The calculation is based on the Simplified Differential Equations
approach. The results are relevant to the study of many 2 → 3 scattering
processes of interest at the LHC, especially for the leading-color W +2 jets
production.
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1. Introduction

As we advance to the third decade of the 21st century, the established
Standard Model of particle physics faces serious and interesting challenges
from the domains of cosmology and astrophysics. One of those challenges for
example is the particle nature of dark matter, and whether its dynamics can
be described through the introduction of one or several new particles, thus
imposing the need to extend our understanding of particle physics. The
major experiments of particle physics however, spearheaded by the LHC
program at CERN, have yet to reveal any clear signs of new physics that
would require the extension of the established Standard Model.

To make progress in the current situation, a precision [1] program has
been initiated, in part because it is clear by now that any new physics at
the LHC data will appear in the form of small deviations from theoreti-
cal predictions, but also due to the increased precision of the accumulated
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experimental data. Thus, the need arises for equally precise theoretical pre-
dictions, in order to be able to exploit the full discovery potential of the
LHC and its future High Luminosity upgrade.

From a theoretical standpoint, it is estimated that the LHC Run 3 and
the High Luminosity Run, scheduled to commence after it, will require at
least Next-to-Next-to-Leading-Order (NNLO) corrections for the QCD dom-
inated processes [2–4]. A major ingredient of these higher-order perturba-
tive corrections is the calculation of the relevant scattering amplitudes for
specific scattering processes, and within these amplitudes, complicated two-
loop Feynman diagrams need to be computed. Through the Feynman rules
of quantum field theory, we can relate these two-loop Feynman diagrams to
two-loop Feynman integrals, which are the topic of this contribution.

The current frontier in two-loop calculations is in 2→ 3 scattering pro-
cesses. For massless external particles and massless internal propagators,
all planar [5] and non-planar Feynman integrals have been calculated [6].
First results for 2 → 3 scattering processes involving one massive external
particle for planar topologies were presented in [5] a few years ago, with the
full list of all two-loop planar Feynman integrals relevant to 2 → 3 scat-
tering processes with one off-shell leg appearing recently using a numerical
approach [7]. Recently, some results on non-planar five-point Feynman in-
tegrals with one off-shell leg have also appeared using a new approach [8].
Here, we will present analytic results for all planar two-loop Feynman in-
tegrals with one off-shell leg in terms of polylogarithmic functions up to
transcendental weight four [9].

2. Method

For a typical calculation of a two-loop Feynman integral, one starts by
defining a family of Feynman integrals, relevant to the specific scattering
process that one wants to study. In this particular case, we are interested
in 2→ 3 scattering processes, therefore we have

Fa1,...,a11({pj}, ε) =

∫ ( 2∏
r=1

ddkr

iπd/2

)
e2εγE

Da1
1 . . . Da11

11

,

Di = (cijkj + fijpj)
2 , d = 4− 2ε . (1)

To calculate this kind of integrals, we rely on the two following properties:

1. Integrals of total derivatives with respect to loop momenta vanish
within dimensional regularisation (d = 4− 2ε).

2. Feynman integrals satisfy differential equations (DE) derived with re-
spect to kinematic invariants.
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The first property allows us to derive the so-called Integration-By-Part
(IBP) identities [10–12], which give rise to linear relations among Feynman
integrals of the same family. This leads to the determination of a minimal
set of integrals, the so-called master integrals, which form the basis G of
the vector space spanned by all Feynman integrals of a specific family. So
instead of having to compute all Feynman integrals of a given family, we
only need to compute the master integrals and we can relate every other
Feynman integral to them through IBP identities.

The second property means that instead of performing a direct integra-
tion of the loop momenta, we may derive and solve differential equations
for the basis G. In the standard approach [13, 14], these differential equa-
tions are derived in terms of all kinematic variables that are involved in the
scattering processes that we are studying

∂

∂sij
G = A({sij}, ε)G . (2)

In general, the resulting differential equations can be quite complicated.
In recent years, several ideas have been proposed to simplify the derivation
and solution of these equations. In [15], the Simplified Differential Equations
(SDE) approach was proposed, which introduces an external dimensionless
parameter x through a re-parametrisation of the external momenta, and
derives the differential equations by differentiating only with respect to that
parameter, regardless of the number of kinematic scales involved

∂xG = A({sij}, x, ε)G . (3)

In [16], it was proposed that instead of working directly with the basis G,
one can find a special basis of master integrals, g, which can be related to
the original basis through the transformation matrix T, g = TG and that
satisfies a so-called canonical differential equation. Combining these two
ideas yields a canonical SDE of the following form:

∂xg = εM({sij}, x)g . (4)

The resulting canonical differential equation has two very important features
which greatly simplify its solution. First of all, the ε dependence is fully fac-
torised out of the differential equation matrix and secondly, the differential
equation matrix M({sij}, x) is Fuchsian, i.e. it has only simple poles in x
(for the cases considered here)1. These properties allow us to solve these dif-
ferential equations in terms of a class of iterated integrals, known as Multiple

1 In general, more complicated structures may arise leading to solutions in terms of
more complicated functions, e.g. elliptic integrals.
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or Goncharov Polylogarithms (GPLs) [17]

G(a1, a2, . . . , an;x) =

x∫
0

dt

t− a1
G (a2, . . . , an; t) , (5)

G(0, . . . , 0;x) =
1

n!
logn(x) . (6)

3. Results

The top-sector diagrams for the three planar two-loop families of master
integrals that we solved in [9] are presented in Fig. 1, where in parenthe-
sis we indicate the number of master integrals for each individual family.
With single solid lines, we represent the massless propagators, as well as the
massless external momenta, whereas the double line depicts the off-shell leg.

Fig. 1. The two-loop diagrams representing the top-sector of the planar pentabox
family P1(74 MI), P2(75 MI) and P3(86 MI). All external momenta are incoming.

The kinematic configuration for this scattering process can be described
through four independent external momenta due to momentum conservation,∑5

1 qi = 0, one of which is massive, q21 ≡ p1s. Thus, we have six independent
kinematic variables, ~s = {q21, s12, s23, s34, s45, s15}, with sij := (qi + qj)

2.
In [7], pure bases for the three planar families were constructed and

canonical differential equations were derived using the standard approach
of differentiating with respect to all kinematic variables ~s. The resulting
differential equations are of the form of

dg = ε
∑
a

d log (Wa) M̃ag . (7)

Note that (7) is understood as a multi-variable differential equation, with
Wa being functions of the kinematics and M̃a matrices independent of the
kinematic variables. In this particular case, the algebraic structure of Wa

is such that a direct integration and solution of (7) in terms of GPLs is an
insurmountable task and, indeed, in [7], a numerical method was used to
provide solutions.



Analytic Representation of All Planar Two-loop Five-point . . . 1095

The situation can be substantially simplified if one utilises the SDE ap-
proach, as was recently presented in [9]. In this approach, we re-parametrize
external momenta in terms of a dimensionless parameter x

q1 → p123 − xp12 , q2 → p4 , q3 → −p1234 , q4 → xp1 . (8)

The top-sector diagrams using the new momentum parametrization (8) are
presented in Fig. 2. Due to (8), the kinematic configuration now consists of
five new external momenta, pi, i = 1 . . . 5, four of which are independent,∑5

1 pi = 0, and all of which are now massless, p2i = 0, i = 1 . . . 5, with
pi...j := pi+· · ·+pj . Thus, we have six new independent kinematic variables,
{S12, S23, S34, S45, S51, x}, with Sij := (pi + pj)

2. The canonical SDE now
reads

∂xg = ε
∑
b

1

x− lb
Mb g , (9)

where again, Mb are rational matrices independent of the kinematics, and
lb are the so-called letters, which depend only on the five Mandelstam invari-
ants {S12, S23, S34, S45, S51}. Notice that in general the number of letters in
(9) is smaller than the number of letters in (7). The structure of (9) is that
of a Fuchsian system of ordinary differential equations, thus a fully analytic
solution in terms of GPLs can be realised, once appropriate boundary terms
at x→ 0 are provided.

xp1

xp2

−p1234

p123 − xp12

p4

xp1 xp2

−p1234

p123 − xp12

p4

xp2

p123 − xp12

xp1

p4

−p1234

Fig. 2. Top-sector diagrams in SDE parametrisation.

In order to obtain the necessary boundary terms, we employ the Expan-
sion-By-Regions method [18] which allows us to find the asymptotic be-
haviour of Feynman integrals for the x → 0 limit. It is convenient for the
calculation of boundary terms to cast the pure bases, g, in terms of a specific
basis of master integrals, G. Via IBP reduction using FIRE6 [19], we can
relate the two bases through g = TG. Having done that, we can relate the
x → 0 limit of the basis G to that of g and obtain the relevant boundary
terms2.

2 We gratefully acknowledge the help of Chris Wever and Adam Kardos in this step,
especially for the use of A. Kardos’ Mathematica package Gsuite.
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Now that all necessary ingredients are in place, we can write the solution
of (9) in the following compact, pure and universally transcendental form:

g = ε0b(0)
0 + ε

(∑
GaMab

(0)
0 + b(1)

0

)
+ε2

(∑
GabMaMbb

(0)
0 +

∑
GaMab

(1)
0 + b(2)

0

)
+ε3

(∑
GabcMaMbMcb

(0)
0 +

∑
GabMaMbb

(1)
0 +

∑
GaMab

(2)
0 +b(3)

0

)
+ε4

(∑
GabcdMaMbMcMdb

(0)
0 +

∑
GabcMaMbMcb

(1)
0

+
∑
GabMaMbb

(2)
0 +

∑
GaMab

(3)
0 + b(4)

0

)
, (10)

where M are the residue matrices coming from (9) and b(i)
0 are the boundary

terms from the x → 0 limit. The terms Gab... are a shorthand notation for
the GPLs G(la, lb, . . . ;x).

Having the solution in this form allows us to obtain numerical values in
a straightforward way using the public program Ginac [20]. For a Euclidean
point, we can obtain numerical values with 32 significant digits for each
of the three non-zero top-sector basis elements within a few seconds (1.9,
3.3, 2 sec respectively), as presented in Table I. We refer to Section 4 of [9]
for a more detailed discussion on numerical results for physical regions and
timings.

TABLE I

Numerical results for the non-zero top sector element of each family with 32 sig-
nificant digits.

P1 g72

ε0 : 3/2
ε1 : −2.2514604753379400332169314784961
ε2 : −17.910593443812320786572184851867
ε3 : −26.429770706459534336624681550003
ε4 : 21.437938934510558345847354772412

P2 g73

ε1 : 2.8124788185742741402751457351382
ε2 : 5.4813042746593704203645729908938
ε3 : 11.590234540689191439870956817546
ε4 : −5.9962816226829136730734255754596

P3 g84

ε0 : 1/2
ε1 : 3.2780415861887284967738281876762
ε2 : 0.11455863130537720411162743574627
ε3 : −16.979642659429606120982671925458
ε4 : −48.101985355625914648042310964575
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4. Summary and future work

During the last decade, we have witnessed an explosion in our ability to
compute multi-loop multi-scale Feynman integrals, allowing us to perform
high precision phenomenological studies for scattering processes relevant to
the LHC physics. These advances have been facilitated mainly by our better
understanding of the mathematical properties of Feynman integrals, as well
as the class of special functions in which we express them.

The current frontier in two-loop Feynman integral calculations is marked
by 2 → 3 master integrals involving one massive external leg. Recently,
results for all planar families using a numerical approach were presented
in [7]. In this contribution, we described the analytic calculation of the
aforementioned planar families, which were presented in [9]. As a next step,
we see the extension of this work to the remaining non-planar families. First
results have recently appeared for the top-row left family of Fig. 3 using a
numerical approach [8], but it is hoped that the goal of obtaining fully
analytical results for all five-point non-planar families with one off-shell leg
will be realised in the near future.

Fig. 3. The two-loop diagrams representing the top-sector of the non-planar
pentabox families.

This research is co-financed by Greece and the European Union (Euro-
pean Social Fund- ESF) through the Operational Program Human Resources
Development, Education and Lifelong Learning 2014–2020 in the context of
the project “Higher order corrections in QCD with applications to High En-
ergy experiments at LHC” — MIS 5047812.
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