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Unfolding in high energy physics represents the correction of measured
spectra in data for the finite detector efficiency, acceptance, and resolution
from the detector to particle level. Recent machine learning approaches
provide unfolding on an event-by-event basis allowing to simultaneously
unfold a large number of variables and thus to cover a wider region of the
features that affect detector response. This study focuses on a simple com-
parison of commonly used methods in RooUnfold package to the machine
learning package OmniFold.
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1. Introduction

The equation of unfolding can be written as

p =
1

ε
M−1 η (D −B) , [1] (1)

where D is the data spectrum from which the background spectrum B is
subtracted followed by multiplication of acceptance correction η, so the main
input to the unfolded procedure is prepared. The unfolding is here schemat-
ically given by a so-called migration matrix M−1 which maps one-to-one
events from the detector to particle level. Behind the symbol M−1, one
could also imagine not necessarily the algebraic matrix inversion, but rather
different unfolding methods, because the treatment of unfolding input dif-
fers. However, the aim of this study is not to fully describe all the methods
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separately, but rather to make a comparison between them. The result of
unfolding has to be corrected by the detector efficiency ε to obtain the un-
folded “truth” spectrum p ideally close to the truth (particle) level. The
background B is not considerated in this study. Figure 1 provides insight
to the ingredients on the example of the transverse momentum spectrum of
the hadronically decaying top quark in the pp→ tt̄ process [1].
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Fig. 1. (Colour on-line) Unfolding inputs. (a) Unfolding procedure diagram.
(b) Detector-level (black/blue) and particle-level (grey/red) spectra. (c) Migra-
tion matrix between particle and detector levels. (d) Efficiency (black/blue) and
acceptance (grey/red) corrections as a function of the transverse momentum of the
hadronically decaying top quark [2].

2. Machine learning approach

The machine learning unfolding is similar to e.g. face recognition prob-
lem. The idea is to take all the possible information from the detector in
a similar way as a photo, and train some neural network to classify what
process returns such a signature in the detector as the photo of the face is
classified to one particular person.

In both cases, machine learning needs the truth information to train the
neural network, e.g. the face on the photo belonging to a particular person
or the detector signature belonging to the pp → tt̄ process. The model
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describing the physics is still necessary. Authors of OmniFold [3] call the
truth process and truth detector signature natural and the model is called
synthetic, see figure 2.

Fig. 2. An illustration of the OmniFold method applied to a set of synthetic and
natural data. As a first step, starting from prior weights ν0, the detector-level
synthetic data (“simulation”) is reweighted to match the detector-level natural data
(simply “data”). These weights ω1 are pulled back to induce weights on the particle-
level synthetic data (“generation”). As a second step, the initial generation is
reweighted to match the new weighted generation. The resulting weights ν1 are
pushed forward to induce a new simulation, and the process is iterated [3].

The authors extended the idea of Iterative Bayes unfolding to continuous
form and with machine learning concept enabled to perform unfolding event-
by-event, so the trained network returns a set of weights for each event or a
function which can be applied to measured data. The detailed description
of the algorithm can be found in Appendix of [3].

3. Performing closure test

The closure test of the unfolding method is to unfold not the measured
data, but rather the generated particle-level spectrum. If the method is
consistent, their ratio should be close to unity. To avoid other systematical
uncertainties from efficiency and acceptance corrections, the events are cho-
sen only from the overlap of the particle and detector-level phase spaces, see
the intersection of the circles in figure 1.

As the process of study, the process of top-quark pair production in
proton–proton collisions pp→ tt̄ in `+ jets channel was chosen, see figure 3,
simulated using MadGraph [4] software with a generation of events using
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PYTHIA 8 [5] with the detector-level and the pseudo-data simulated using
Delphes [6] with ATLAS detector card. The basic selection and cuts were ap-
plied to obtain spectra with a similar shape to those measured at the Large
Hadron Collider (LHC) in the real ATLAS experiment, although compari-
son of unfolding methods could be performed with an arbitrary measured
process.
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Fig. 3. (a) Final-state diagram of the process pp→ tt̄; (b) Top-quark pair produc-
tion branching ratios.

The input data set was divided into two statistically-independent sets, so
the classical unfolding methods were using migration matrix built of one set
and the input to unfolding procedure from the other set. The same exclusive
sets were used for training the neural network and to perform the machine
learning unfolding.

4. Results

The following spectra of interest were chosen: the transverse momentum,
mass, energy, and pseudo-rapidity of the hadronically-, leptonically-decaying
top quark, and also the tt̄ system. The distribution φ was omitted due to its
flat shape. In total, 4×3 = 12 binned spectra were unfolded classically using
the RooUnfold package [7] with Bayes (3 iterations) [8], SVD (k = 5) [9],
and Ids (k = 1) [10] methods. The variables were used event-by-event in the
neural network with 100 epochs to later perform simultaneous unfolding.

Even though results from the machine learning approach could be shown
as continuous spectra, for comparison purposes, particular fine binning was
chosen.

Particle-level spectra as the input into the unfolding procedure were cho-
sen to perform the closure test. Thus, the ratio between input particle-level
spectrum and unfolded spectrum should be ideally close to unity as it was
already discussed in Section 3.
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The metric of comparison is χ2 divided by the number of degrees of
freedom NDF which is equal to the number of bins in the spectrum [1].
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Fig. 4. Closure test of the spectra of the hadronically- (left), leptonically- (mid-
dle) decaying top quark and of the tt̄ system (right) of the pT, mass, energy and
pseudo-rapidity with the lower pads showing the ratio of the unfolded to the truth
spectrum.
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5. Conclusion

Table I summarizes the χ2/NDF results and proves that machine learning
approach at this particular study performed the best results compared to
values in Tables II, III and IV.

The study aimed to demonstrate the possible potential of the machine
learning methods on four typical spectra used in high-energy physics. A slight
disadvantage of the machine learning method might be its initial CPU time
needed to train the neural network. Although more complex tests of Om-
niFold unfolding need to be performed in the future, the χ2/NDF presents
promising results.

TABLE I

Results of the closure test, χ2/NDF between the truth and unfolded spectra using
the OmniFold method.

Tr. momentum Mass Energy Pseudo-rapidity

Hadronic top 0.20 0.17 0.17 0.18
Leptonic top 0.20 0.17 0.17 0.18
tt̄ system 0.23 0.18 0.18 0.11

TABLE II

Results of the closure test, χ2/NDF between the truth and unfolded spectra using
the Bayes RooUnfold method.

Tr. momentum Mass Energy Pseudo-rapidity

Hadronic top 0.40 1.00 0.71 1.32
Leptonic top 1.54 0.68 1.09 3.87
tt̄ system 0.56 1.14 1.55 24.71

TABLE III

Results of the closure test, χ2/NDF between the truth and unfolded spectra using
the Svd RooUnfold method.

Tr. momentum Mass Energy Pseudo-rapidity

Hadronic top 1.41 2.03 1.99 2.54
Leptonic top 2.46 1.35 2.12 3.71
tt̄ system 1.14 1.92 2.03 20.48
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TABLE IV

Results of the closure test, χ2/NDF between the truth and unfolded spectra using
the Ids RooUnfold method.

Tr. momentum Mass Energy Pseudo-rapidity

Hadronic top 0.56 1.07 0.86 0.32
Leptonic top 1.73 0.68 1.02 1.64
tt̄ system 0.54 1.05 1.13 1.62
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