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We present the application of the Simplified Differential Equations ap-
proach for the computation of three-loop families of master integrals. More
specifically, we apply our method to compute the ladder-box-type integrals
with up to one massive leg.
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1. Introduction

For the theoretical predictions to reach the precision of HL-LHC and
future collider experiments and to be able to indicate or not the existence
of new physics, the calculation of N3LO corrections becomes a necessity
for scattering processes with two particles in the final state. The virtual
corrections of the latter demand the calculation of three-loop Feynman inte-
grals (FI). Within this direction, the 9 families of FI for all the internal and
external massless particles (relevant for di-jet and di-photon productions)
have been recently calculated [1–5], while from the families with one exter-
nal massive particle (relevant for Higgs-jet production) only one has been
computed [5, 6]. Currently, none of the families with two external massive
particles, relevant for di-boson productions, has been computed.

Most of the aforementioned calculations have been done working within
the framework of dimensional regularization (d = 4 − 2ε) and using the
method of differential equations (DE) [7], which utilizes the integration-by-
parts relations (IBP) [8] that relate any FI of a family to a minimal finite
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basis of integrals, called master integrals (MI). The DE method combined
with the method of properly choosing the basis of MI so that it consists
only pure functions (UT basis) [9], has been proven to be a powerful tool for
this kind of calculations. The latter leads to a DE of the so-called canoni-
cal form [9], which allows for an iterative solution of the DE in a Laurent
expansion of the basis elements on ε.

In the following, we use a variant of the DE method, the so-called Sim-
plified Differential Equations approach (SDE) [10–12], combined with the
method of canonical form [5, 13, 14]. One can solve a family of FI using the
SDE approach by applying the following steps:

— Parametrize the external momenta in terms of a dimensional parame-
ter, x, in a way that captures the off-shellness of an external leg. The
parametrization is not unique, x can be introduced to more than one
of the external momenta, and different parametrizations are optimal
for different problems.

— Take derivatives of MI with respect to x and derive a system of DE
on x, using IBP relations.

— Find the boundaries of MI for x→ 0 and use them to solve the DE.

This method has plenty of advantages compared to the standard DE method.
Some of them are:

— The quick derivation of DE, due to the fact that from the differentia-
tion fewer FI are produced for reduction to MI.

— The existence of only one DE to solve.

— The rationalization of some of the square roots with respect to x.

— When a UT basis is provided and an analytic reduction is a bottleneck,
a semi-numerical reduction can be applied by putting prime numbers
to all the invariants except from x, and afterwards determine the letters
of the DE using other methods1.

2. Three-loop ladder-box with one external massive leg

2.1. The family

The family of the three-loop ladder-box with one external massive leg,
Fig. 1, was first studied in [6]. In our computation, we adopt the notation for
the kinematics and the UT basis presented therein. Performing the reduction

1 For example, studying the maximally cut DE.
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Fig. 1. The Feynman graph of the three-loop ladder-box family with one external
massive leg, assuming all the external particles as incoming.

to MI using Kira 2.0 [15] and FIRE6 [16], we found a set of 83 MI. Any FI of
this family can be expressed via a proper choice of the integer indices a in
the following expression:

Ga1,...,a15 ({qj}, ε) =
∫ ( 3∏

r=1

ddlr

iπd/2

)
e3εγE

Da1
1 . . . Da15

15

with d = 4− 2ε , (1)

where D11, . . . , D15 are propagators coming from irreducible scalar products
({a11, a12, a13, a14, a15} ≤ 0), and the chosen parametrization for the propa-
gators is2

D1 = l21 , D2 = l22 , D3 = l23 , D4 = (l1−l2)2 , D5 = (l2−l3)2 ,
D6 = (l3+q2)

2 , D7 = (l1+q23)
2 , D8 = (l2+q23)

2 , D9 = (l3+q23)
2 ,

D10 = (l1+q123)
2 , D11 = (l1+q2)

2 , D12 = (l2+q2)
2 ,

D13 = (l2+q123)
2 , D14 = (l3+q123)

2 , D15 = (l1−l3)2 . (2)

The external momenta (q21 = q22 = q23 = 0 and q24 = m2) are expressed in
terms of Mandelstam variables using the notation

q2 · q3 = s/2 , q1 · q3 = t/2 , q1 · q2 =
(
m2 − s− t

)
/2 . (3)

Moving on to the SDE approach, we chose a one-x parametrization

q1 → xp1 , q2 → p3 , q3 → p4 , q4 → p12 − xp1 with p21 = p22 = p23 = p24 = 0 ,

where the Mandelstam variables and the mass of (3) are rephrased in terms
of x and the Mandelstam variables of the light-like momenta (s12 = p212 and
s23 = p223)

s = s12 , t = xs23 , m2 = (1− x)s12 . (4)

2 From now on, we use the abbreviation qi...j = qi + · · ·+ qj and pi...j = pi + · · ·+ pj .
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As regards the propagators in (2), after making the transformations (l1 →
k1 − q23, l2 → −k2 − q23, l3 → k3 − q23) and applying the SDE approach,
they take the form of

D1 = (k1+p12)
2 , D2 = (k2−p12)2 , D3= (k3+p12)

2 , D4= (k1+k2)
2 ,

D5 = (k2+k3)
2 , D6 = (k3+p123)

2 , D7 = k21 , D8 = k22 , D9 = k23 ,

D10 = (k1+xp1)
2 , D11 = (k1+p123)

2 , D12 = (k2−p123)2 ,
D13 = (k2−xp1)2 , D14 = (k3+xp1)

2 , D15 = (k1−k3)2 .

It is worth commenting here on the fact that in this parametrization, x is
introduced in 3 propagators. Taking derivatives of the MI to create the DE,
we obtain around 160 FI for reduction, while on the other hand, if we had
used a two-x parametrization, we would had 6 x-dependent propagators and
around 800 FI to reduce. Thus, in this case, the one-x parametrization is
better than the two-x one3.

Having a UT basis, we obtained a DE which is of canonical form

∂xg = ε

(
4∑
i=1

Mi

x− li

)
g , (5)

with li = {0, 1, s12/(s12 + s23),−s12/s23} the letters of the alphabet and
Mi being purely numerical matrices. We solved the DE up to weight six
on ε and in the Euclidean region {0 < x < 1, s12 < 0, s12 < s23 < 0}. The
solution has the form of

g = ε0b(0)
0 + ε

(∑
GiMib

(0)
0 + b(1)

0

)
+ε2

(∑
GijMiMjb

(0)
0 +

∑
GiMib

(1)
0 + b(2)

0

)
+ . . .

+ε6
(
b(6)
0 +

∑
GijklmnMiMjMkMlMmMnb

(0)
0

+
∑
GijklmMiMjMkMlMmb(1)

0

+
∑
GijklMiMjMkMlb

(2)
0 +

∑
GijkMiMjMkb

(3)
0

+
∑
GijMiMjb

(4)
0 +

∑
GiMib

(5)
0

)
,

where the matrices b(i)
0 are the boundaries and Gi, . . . ,Gijklmn are the Gon-

charov poly-logarithms [17] of weight 1, . . . , 6, respectively, with argument
x and letters from the set li. Our results were crossed-checked numerically
with the results from [6] and perfect agreement was found in all cases.

3 In problems where roots appear, like in [11–13], the two-x parametrization is optimal
for their rationalization with respect to x.
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2.2. Calculation of boundaries

As a starting point, we have some boundaries that are already known
because some of the MI appearing in this family are known in close form.
Thus, we can directly obtain boundary conditions for

{gb1, gb2, gb3, gb4, gb5, gb6, gb7, gb17, gb18, gb19, gb44} . (6)

Afterwards, we take advantage of the fact that if for a basis element its
leading regions contributing to its asymptotic limit x → 0 are of the form
of xα+βε with α ≥ 1, then its boundary term should vanish. Using this
observation, we set the following boundaries to zero:

{gb10, gb11, gb14, gb15, gb21, gb22, gb23, gb24, gb25, gb26, gb28,
gb31, gb37, gb38, gb45, gb46, gb47, gb48, gb50, gb53, gb55, gb58,

gb59, gb63, gb64, gb66, gb68, gb70, gb80, gb82, gb83} = 0 . (7)

Being left with 41 unknown boundaries, we used a method [5, 13] that
finds relations between the boundaries of a family of FI. More specifically,
through the Jordan-decomposition of M0 = S0D0S−10 , we define the resum-
mation matrix at x = 0, R0 = S0e

εD0 log(x)S−10 , which correctly resumms the
logarithms of x from the basis elements. Thus, we can write g = R0greg0,
where greg0 is the regular part of the basis element at x = 0, via which are
defined the asymptotic boundaries gbound = greg0

∣∣
x=0

. Multiplying R0 from
the right with gbound and from the left with T−1 (the transformation matrix
that takes us from the UT basis to the MI), we obtain the asymptotic limit
at x→ 0 of the MI

Fx→0 = T−1R0gbound . (8)

This should be equal to the asymptotic limit found for the MI by expansion-
by-regions [18] found by asy [19]. Thus, by comparing the regions found by
asy with that found by the resummation matrix method, we obtain relations
between different boundaries. In fact, we obtain two kinds of relations. We
call the first of them pure relations because they contain only boundaries of
the basis elements, e.g.

gb71 = (−12gb2 + 4gb13 + 32gb16 + 48gb41 + 36gb42 − 45gb43) /30 ,

while the second of them we call impure due to the fact that there are
relations between boundaries and asymptotic limits, e.g.

gb41 = F s
41s12ε

5 + gb2/9− gb13/12− 2gb16/3 .
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By applying this method, we obtained 28 pure relations and we were left
with 13 asymptotic regions{

F h
8 , F

h
9 , F

h
12, F

h
13, F

h
16, F

h
20, F

h
27, F

h
29, F

s
32, F

s
39, F

s
41, F

h
51, F

h
56

}
,

where with F h
i we denote the x0 region and with F s

i the x−3ε. For the
calculation of the F h

i limits, we used the method of expansion-by-regions
in the momentum space and IBP reduction. The F s

i limits were calculated
using their Feynman-parameter representation provided by asy, together
with a technique of integrating out bubble subintegrals inspired by [2].

3. Three-loop massless ladder-box

Having the solution for the family of the three-loop ladder-box with one
external massive leg, it is easy within the SDE approach to obtain also the
solution for a UT basis of the massless three-loop ladder-box family, Fig. 2
taking the x → 1 limit. For one to obtain the solution taking the x → 1
limit [5, 12], one needs to apply the following steps:

1. Rewrite the solution as an expansion in log(1− x):

g =
∑
n≥0

εn
n∑
i=0

1

i!
c(n)i logi(1− x) .

2. Define the regular part of g at x = 1 and from it the truncated part:

greg =
∑

εnc(n)0 and gtrunc = greg

∣∣
x=1

.

3. Define the resummation matrix R1 and the numerical matrix R10:

R1 = eεM1 log(1−x) = S1e
εD1 log(1−x)S−11 and R1

(1−x)aiε→0−−−−−−−→ R10 .

p3p2

p1 p4

p2 p3

p1 p4

Fig. 2. The Feynman graph of the three-loop massless ladder-box family.
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4. Find the x→ 1 limit by acting R10 to gtrunc:

gx→1 = R10gtrunc .

5. Reduce the number of the basis elements to that of the MI of the
massless problem using the property R2

10 = R10 and/or IBP.

For the FI of this family, we have chosen the following normalization:

Ga1,...,a15 ({pj} , ε) = (−s12)3ε
∫ ( 3∏

l=1

ddkl
iπd/2

)
e3εγE

Da1
1 . . . Da15

15

, (9)

where the propagators are obtained by setting x = 1 to the propagators of
the massive family. We compared analytically our results for the three top
sector basis elements with the ones given by [2] and numerically for all basis
elements with pySecDec [20] in the Euclidean region. In both cases, perfect
agreement was found.

4. Discussion and outlook

We have presented the application of the SDE approach combined with
the method of canonical form in order to calculate two families of FI, which
have been solved in the past using the standard DE method.

Encouraged by the simplicity of the SDE approach at three-loop prob-
lems and the phenomenological interest of them, we are currently working
with our collaborators4 for the calculation of the rest of the planar four-
point three-loop families with one external off-shell leg. These are the two
tennis-court families of Fig. 3. The first of them contains 117 MI, while the
q2 q1

q3 q4

q1 q4

q2 q3

q2 q1

q3 q4

q1 q4

q2 q3

Fig. 3. The Feynman graphs of the two tennis-court families.

4 Federico Gasparotto and Luca Mattiazzi.
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second 166. Our methods together with the tools [4, 21], which we are using
to find a UT basis for these families, seem to make this goal feasible in the
near future.

We want to thank the organizers of XXVII Epiphany Conference for
the very interesting conference. The research work was supported by the
Hellenic Foundation for Research and Innovation (HFRI) under the HFRI
Ph.D. Fellowship grant (Fellowship Number: 554).
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