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This article presents preliminary results for the calculation of quark-
to-quark N3LO beam function. To this end, we employ the techniques of
sector decomposition and selector functions, along with other techniques
to supplement the calculation. Our results show agreement with available
predictions from the renormalization group.
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1. Introduction

The beam function B(z, x2
T) is an object which appears in the small-qT

factorization of cross sections of processes such as Drell–Yan production of
a particle with invariant mass Q. In the small transverse momenta region
(ΛQCD � qT � Q), the cross section can be factorized in the form [1–3] of

σ ' Bq/N
(
z1, x

2
T

)
⊗ B̄q/N

(
z2, x

2
T

)
⊗H

(
Q2
)
, (1)

in whichQ and qT dependences are separated. The beam function Bq/N (z, x2
T)

describes initial collinear emissions from a parton q of hadron N , which goes
into the hard process with fraction z of the collinear momentum.

In soft-collinear effective theory (SCET), cf. [4, 5], the beam function is
defined as

Bq/N
(
z, x2

T

)
=

1

2π

∫
dt e−iztn̄·p

∑
X

〈N(p)|χ̄(tn̄+ x⊥)|X〉
/̄n

2
〈X|χ(0)|N(p)〉 ,

(2)
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where χ is a collinear quark field of SCET, and n ≡ p̂ and n̄ are two unit,
light-like vectors, which satisfy n · n̄ = 2. The anti-collinear beam function
B̄q/N (z, x2

T) is defined similarly except for n̄ and p replaced with n and p̄.
Using n and n̄, one expresses momenta in light-cone coordinates as follows:

l =

(
n · l

2
,
n̄ · l

2
, l⊥

)
= (l+, l−, l⊥) , (3)

where n · l⊥ = n̄ · l⊥ = 0 and l2T ≡ −l2⊥.
The hadron-to-parton beam function is not a perturbatively calculable

object. The parton-to-parton beam function, however, can be calculated
perturbatively, and hence can be given as a series with respect to the strong
coupling constant αS

1. One, then, matches the parton-to-parton beam func-
tions with collinear PDFs to obtain the hadron-to-parton beam function [6].

For the real emission case, the evaluation of Eq. (2) involves the phase
space integral

∞∫
0

ddk

 n∏
i=1

∞∫
0

ddli

(2π)d−1
δ+
(
l2i
)

×δd
k − n∑

j

lj

 δ(n̄ · (k − (1− z)p))e−ik⊥·x⊥
∣∣M (

q → q′ +X
)∣∣2 . (4)

One obstacle in the evaluation of Eq. (4) is the Fourier transform e−ik⊥·x⊥ ,
which we replace in our calculation by e−k2

Tk2
T. The consequent integral

differs from the original integral by a simple factor. The collinear matrix
element M(q → q′ +X) contains singularities which have to be regularized.
The main interest of this paper is the infrared divergences which can be
classified into collinear, anti-collinear and soft divergences. On top of them,
the integration of Eq. (4) contains additional divergences called “rapidity
divergences” [1, 2], which correspond to the region where the emissions scale
like ( 1

λ , λ, 1) in the light-cone coordinates (Eq. (3)), where λ � 1. These
unphysical divergences are not regularized by dimensional regularization,
and hence additional regulator is required. In our calculation, we choose
the prescription of [7], and include the factor

(
ν
li+

)α
for a momentum li of

every unresolved final state particle2. This regulator breaks the symmetry
p↔ p̄, n̄↔ n between B(z, x2

T) and B̄(z, x2
T). Nonetheless, such unphysical

divergences vanish in the product B(z1, x
2
T)B̄(z2, x

2
T) [2]. This product, in

1 Throughout this paper, we refer to the coefficient of α3
S as N3LO beam function and

denote it by B(3)(z, x2
T).

2 The scale ν plays similar role to µ in dimensional regularization.
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fact, contains the dependence on the invariant mass Q, which means that
the factorization of the collinear and hard degrees of freedom is not fully
achieved. However, the dependence on Q can be factorized into the simple
form

lim
α→0

[
Bi/j

(
z1, x

2
T

)
B̄ī/k

(
z2, x

2
T

)]
Q

=

(
x2

TQ
2

4e−2γE

)Fb
īi(x

2
T)
Bb
i/j

(
z1, x

2
T

)
Bb
ī/k

(
z2, x

2
T

)
.

(5)
This procedure, called “refactorization”, produces the beam function

Bb
i/j(z, x

2
T) which is truly independent of Q [2]. The refactorized beam

function of Eq. (5) contains UV and IR divergences (hence the superscript
b for bare).

2. The strategy of calculation

In order to extract the aforementioned divergences, one needs to factorize
them into simple monomials. Our strategy is to divide the phase space into
sectors such that in each sector, a subset of divergences are all factorized as
monomials and the remaining divergences are dealt with in other sectors.

We extend the method of [8–12] which consists of two key elements,
namely “selector function” and “sector decomposition”.

2.1. Selector functions

A selector function is a function which “selects” certain singular points
and suppresses the rest of divergences. A maximal set of divergent limits3 Ci
and the corresponding selector function Si satisfies the following conditions:

∑
i

Si = 1 , Si

∣∣∣
Cj

=

{
1 if i = j

0 if i 6= j
. (6)

Therefore, the integral is decomposed as∫
dx1dx2 . . . I(x1, x2, . . . ) =

∫
dx1dx2 . . . S1(x1, x2, . . . )I(x1, x2, . . . )

+

∫
dx1dx2 . . . S2(x1, x2, . . . )I(x1, x2, . . . ) + . . . , (7)

where each term has only a subset of divergences. We refer to the terms in
such decomposition as “primary sectors”.

3 Defined such that addition of another divergent limit to such a set does not contribute
to the divergence due to the exponent or the δ function in Eq. (4).
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A set of selectors can be constructed as

Si =
1

di

(∑
j

1
dj

) , where di

∣∣∣
c

{
6= 0, if c ∈ Ci
= 0, if c /∈ Ci

. (8)

Hence, di can, for example, be a product of functions 1 − cos θ and E for
a relative angle θ and an energy E. A crucial modification of the selector
function for our scheme is inclusion of the transverse momenta liT, which is
necessary in order to handle the rapidity divergences.

2.2. Sector decomposition

The integrals in each primary sectors have a complicated structure of
“overlapping singularities”, which require sector decomposition.

Consider a toy model

Itoy =

1∫
0

dx1

1∫
0

dx2x
−1+ε
1 xε2

1

(x1 + x2)
. (9)

The integral of Eq. (9) contains an overlap, namely the denominator x1 +x2,
which diverges only when both x1 and x2 vanish. By multiplying Eq. (9) by
1 = θ(x1−x2)+θ(x2−x1), one divides the space into two sectors. Applying
the change of variables x1 → x1x2 and x2 → x1x2, respectively, restores the
unit cube and yields

Itoy =

1∫
0

dx1

1∫
0

dx2x
−1+2ε
1 xε2

1

(1 + x2)
+

1∫
0

dx1

1∫
0

dx2x
−1+ε
1 x−1+2ε

2

1

(x1 + 1)
.

(10)
Hence, the divergences factorize and the above integrals can be evaluated
with help of Laurent expansion

1∫
0

dx x−1+εf(x) =
1

ε
f(0) +

1∫
0

f(x)− f(0)

x1−ε , (11)

where lim
x→0

f(x) is well defined. Thus, the coefficients in the expansions in ε
can be integrated numerically.

3. Numerical results

The algorithm described above has been implemented for the NNLO case
whose results have shown a good agreement with [6]. At N3LO, the quark-
to-quark beam function with a colour factor nfC2

FTF has been calculated.
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The cancellation of α poles mentioned earlier serves as a test for the method.
From our direct calculation, we obtain

B(3)

q/q, nfC
2
FTF

(
1

2
, x2

T

)
=

1

α

(
−20

ε3
− 23

ε2
− 97

ε
+O

(
ε0
))

+O
(
α0
)
, (12)

B̄(3)

q/q, nfC
2
FTF

(
1

2
, x2

T

)
=

1

α

(
20

ε3
+

23

ε2
+

97

ε
+O

(
ε0
))

+O
(
α0
)
, (13)

where the numerical values are obtained up to ∼ ±1% accuracy.
The cancellations of the α poles happen order by order in αS in the

product B(z1, x
2
T)B̄(z2, x

2
T). Thus, the N3LO term satisfies

B(3)
(
z1, x

2
T, µ

)
B̄(0)

(
z2, x

2
T, µ

)
+ B(0)

(
z1, x

2
T, µ

)
B̄(3)

(
z2, x

2
T, µ

)
+B(2)

(
z1, x

2
T, µ

)
B̄(1)

(
z2, x

2
T, µ

)
+ B(1)

(
z1, x

2
T, µ

)
B̄(2)

(
z2, x

2
T, µ

)
= 0 +O

(
α0
)
. (14)

The cancellation of the α poles among Eqs. (12) and (13) and the com-
ponents from lower order quark-to-quark beam functions has been verified
explicitly for the nfC2

FTF term.
Higher order terms in ε and α, and terms with other colour factors can

be calculated in the same manner.
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