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SOLITARY WAVE TRANSITION
FROM LOW TO HIGH ENERGY

IN THE FERMI–PASTA–ULAM LATTICE
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In this paper, we study analytically and numerically the solitary wave
transition from low to high energy in localization, the relation between
energy and velocity, propagation and scattering property in the Fermi–
Pasta–Ulam lattice . When the energy of solitary wave increases to the
threshold, the properties transform such as the width of solitary wave, the
fluctuation of kinetic energy, the scattering effect after the head-on collision
of two solitary waves, and the energy fluctuation after the scattering of a
solitary wave and a discrete breather. The transition could help to under-
stand the different chaotic dynamics of the Fermi–Pasta–Ulam lattice at
low- and high-energy density.
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1. Introduction

The history of solitary waves can be traced back to 1834, when they
were first discovered by Russell on the Union Canal in Scotland [1]. Sev-
eral decades later, the Korteweg–de Vries equation was provided which ex-
plained the phenomenon mathematically [2]. More than a century later,
Fermi, Pasta and Ulam (FPU) investigated the fundamental problem of en-
ergy equipartition and ergodicity in nonlinear systems and discovered FPU
recurrence [3], which has led eventually to the soliton concept [4]. Since
then, solitary waves have been studied in various different fields of physics
such as solid-state physics, quantum theory, nonlinear optics, fluid dynamics,
biophysics, etc. [5–13].

The transition of solitary waves from low to high energy is important
in studies on energy transport. In the long-wavelength approximation, the
FPU-α and FPU-β lattices lead to the KdV and modified KdV equations,
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respectively, in which the soliton solutions exist. Solitary waves are deformed
and energy exchange may occur when solitary waves interact with each other
[14], and then make attribution to heat conduction [15, 16]. Up to now, very
little work has been done on the study of transition and threshold of solitary
waves in the FPU lattice, which may play a key role in heat conduction and
diffusion process at temperatures varying from low to high.

In this work, we focus on the solitary wave transition from low to high
energy in the FPU lattice. If the solitary wave, energy increases to the
threshold, the transition takes place in the solitary wave localization, the
fluctuation of kinetic energy, the energy loss rate after the head-on collision
of two solitary waves, and the energy fluctuation after the scattering of a
solitary wave and a discrete breather. The solitary wave properties become
similar to those in the pure anharmonic lattice when energy tends to infinity.
Finally the different chaotic dynamics of the FPU lattice at low- and high-
energy density is discussed with the concept of solitary wave scattering.

2. Analysis in the weakly nonlinear limit

We consider the Hamiltonian for the FPU lattice

H =
∑
n

Hn, Hn =
p2n
2

+ V (qn+1 − qn) , (1)

V (q) = αq2/2 + βq4/4 , (2)

where pn denotes the momentum and qn denotes the displacement from
equilibrium position for the nth atom. Dimensionless units are used, such
that the masses, the linear and nonlinear force constants, and the lattice
constant are all chosen to be unity. The parameters α and β are the harmonic
and anharmonic force constants, respectively. Here, α = 1 and β = 1 for
the FPU lattice throughout the paper.

The equations of motion of the FPU system are

q̈n = (qn+1 − qn) + (qn−1 − qn) + (qn+1 − qn)3 + (qn−1 − qn)3 . (3)

In the long-wavelength limit, the continuum approximation should be appli-
cable. The displacement qn±1 of the (n± 1)th lattice is expanded as

qn±1 = q ± qx +
1

2
qxx ±

1

6
qxxx +

1

24
qxxxx + . . . , (4)

where q(x, t) = qn(t), and x = n. Substituting Eq. (4) into Eq. (3) and ne-
glecting higher-order terms, we obtain the continuous counterparts of Eq. (3)

qtt =
(
1 + 3q2x

)
qxx +

1

12
qxxxx . (5)
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We shall be interested in right-going waves, and introduce the new slow
variables

ξ = 2ε (x− t) , τ = ε3t , (6)

and define
q (x, t) = ϕ (ξ, τ) , (7)

where ε is a formal small parameter. Substituting Eqs. (6) and (7) into
Eq. (5) and keeping terms in the order of ε4, we obtain the following evolution
equation for the ψ = ∂ϕ/∂ξ function:

ψτ +
3

2
ψ2ψξ +

1

24
ψξξξ = 0 (8)

which is the well-known modified Korteweg–de Vries equation. Equation (8)
is derived from the FPU chain [17, 18] and it results in the soliton solutions
[19–21]

qn = ϕ = −
√

2/3 arctan
{
eA
√
6[n−t−(A/2)2t]

}
+ c , (9)

pn = q̇n = A
[
1 + (A/2)2

]
sech

{
A
√
6
[
n− t− (A/2)2 t

]}
, (10)

where c is constant. Equations (9) and (10) are valid if the higher derivatives
are neglected. It can be achieved if the following is fulfilled:

6A2 � 1 . (11)

The solutions for qn and pn are kink- and bell-shaped solitons, respec-
tively, and the following soliton velocity is achieved:

v = 1 + (A/2)2 . (12)

The soliton energy is

E =
∑
n

p2n
2

+
∑
n

[
(qn+1 − qn)2/2 + (qn+1 − qn)4/4

]
. (13)

The first term of Eq. (13) denotes the kinetic energy of soliton and the second
term is its potential energy. In the long-wavelength limit, the potential
energy is very close to the kinetic energy for soliton at low energy, so soliton
energy can be expressed as follows:

E = 2
∑
n

p2n
2
. (14)
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Since the soliton energy is unchanged as soliton propagates, substituting
Eq. (10) at the time t = 0, we obtain

E =
∑
n

{
A
[
1 + (A/2)2

]
sech

(
A
√
6n
)}2

. (15)

Replacing the sum by an integral in Eq. (15) due to continuum approxima-
tion and using Eq. (11), we finally arrive to

E =
2√
6
A . (16)

Then we can get the relation between soliton energy and velocity from
Eqs. (12) and (16) in the case of soliton energy E � 1

3

v = 1 +
3

8
E2 . (17)

So the soliton velocity is close to the acoustic velocity due to the small
energy.

3. Harmonic limit and anharmonic limit

We obtain the harmonic lattice in the absence of the quartic term, i.e.,
α = 1 and β = 0 for Eqs. (1) and (2). The system is integrable and can be
analytically solved. Here, the acoustic velocity is 1.

It is the pure anharmonic lattice with α = 0 and β = 1. In this case, the
excitation, propagation and interaction of solitary waves have been studied
in Refs. [16, 22, 23]. The system has an excellent scaling property, from
which we can obtain the relation between energy E and velocity v of a
solitary wave

v = aE1/4 , (18)

where a = 0.68198 from numerical simulations [16].

4. Solitary wave transition from
low to high energy in the FPU lattice

Solitary waves can be excited by momentum kicks on the lattice. We
apply a kick p1 on the first lattice at t = 0 for a static system under the
free boundary condition. In Fig. 1, we plot pi versus i after a short time
(t = 500) for three kinds of lattices: the harmonic chain at p1 = 0.7 (a), the
pure anharmonic chain at p1 = 0.7 (b), the FPU chain at p1 = 1.5 (c) and
the FPU chain at p1 = 0.7 (d). In the harmonic chain, the amplitude of
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the wave profile decreases, while the width increases with time continuously.
In the pure anharmonic chain, a solitary wave is excited accompanied by
the tail, which is made of several small solitary waves shown in the inset of
Fig. 1 (b) [16]. In the FPU chain, at first, the wave front is connected with
the other low amplitude excitations. If the imparted kick is large enough,
after a certain short time, the wave front separates from the tail, because
it moves faster. It propagates forward and becomes a solitary wave, just
like that in Fig. 1 (c). The velocity v and energy E of the solitary wave
excited by p = 1.5 are calculated numerically: v = 1.139072, E = 1.040022,
and the relation of v and E does not satisfy Eq. (17). The solitary wave is
localized on 9 lattices and the long-wavelength limit is not satisfied, so it is
not consistent with the analytical results of Eqs. (17) and (9).

Fig. 1. The momentum pi versus lattice position i. (a) the harmonic chain at
p1 = 0.7 and t = 500. (b) the pure anharmonic chain at p1 = 0.7 and t = 500.
(c) the FPU chain at p1 = 1.5 and t = 500. (d), (e) and (f) represent the FPU
chain at p1 = 0.7 with t = 500, t = 104 and t = 2× 105, respectively.

If the kick is small, the excited wave packet looks like that in the har-
monic chain in a short time (Fig. 1 (d), p = 0.7). However actually, it will
show the essential difference after a long time. Consider the lattice which is
so long that the wave packet will not reach the other end of the lattice in
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the long observing time. As the first wave pulse travels, its width becomes
wider and its peak becomes lower, as shown in Fig. 1 (e) at the time of
t = 104, still like that in the harmonic chain. The speed of the first pulse
is calculated and it is a little larger than the acoustic velocity of 1, and so
it is not a linear wave. The first pulse travels a little faster than the second
pulse, so as long as time is long enough, the first pulse will separate from the
second one. Figure 1 (f) displays the separation of the first pulse from the
others at t = 2×105, and from then on its shape and energy do not changed
any more, and it becomes a solitary wave. We obtain the numerical results:
v = 1.000743, E = 0.044664, which satisfy the relation of Eq. (17). We
present this solitary wave in the momentum space and configuration space
in Fig. 2, which shows the solitary wave fits the Eqs. (10) and (9) excel-
lently. A can be obtained from Eq. (12) (Eq. (16)) with v (E). The solitary
wave is localized on about 72 lattices and the continuum approximation is
applicable, so it satisfies the analytical results.

Fig. 2. Dots represent the solitary wave in Fig. 1 (f) in the momentum space (a)
and configuration space (b). Solid lines in (a) and (b) stand for fitted curves of
Eq. (10) and Eq. (9), respectively.

We present the width of solitary waves at different energy in Fig. 3 (a).
The energy of solitary wave is determined by the kick strength and can be
calculated with Eq. (13), where the sum is computed over the lattices on
which the solitary wave is localized. At the energy E smaller than about
0.4, the width of solitary wave is relatively wide and exhibits a power-law
decay with energy. At E larger than about 0.4, the decay of width becomes
slower and the localization of the solitary wave becomes strong as energy
increases. At E > 50, the solitary wave is always localized on the 4 lattices,
the same as that in the pure anharmonic lattice.
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Fig. 3. The width (a) and velocity (b) versus the energy of solitary waves in log–log
scale (dots). (a) x axis is the energy of solitary wave E and y axis is the number N
of lattices where the solitary wave is localized. (b) The solid line is a fit of Eq. (17),
and the dashed line is a fit of Eq. (18). The inset enlarges the region indicated by
the dotted-line rectangle.

Figure 3 (b) shows the relation between energy and velocity of solitary
waves in the FPU lattice. The critical value Ec ∼ 0.4 is clearly seen in the
figure. If the energy E < Ec, the width of solitary wave is large and the
continuum approximation is applicable, so the relation is consistent with
Eq. (17) [see the inset in Fig. 3 (b)]. According to Eq. (17), the velocity is
only a little larger than the acoustic velocity because its energy is so small.
With the increase of energy, the nonlinear part in the interaction potential
of Eq. (2) becomes more and more obvious. If E > Ec, the solitary wave
is localized on a few lattices and the long-wavelength limit is not satisfied.
This leads to the deviation from the fitted curve of Eq. (17). If E > 50,
the velocity increases with energy as a power-law function, asymptotic to
v = aE1/4 of Eq. (18) in the pure anharmonic lattice. In this case, the linear
part in Eq. (2) is negligible, while the nonlinear part is significant, and the
property of solitary wave becomes similar to that in the pure anharmonic
lattice.

The energy of a solitary wave is the sum of kinetic energy and potential
energy. A solitary wave is localized on finite lattices in the FPU model.
So due to the discrete nature of the lattice, when a solitary wave is trav-
elling on the lattice, its total energy is unchanged while its kinetic energy
and potential energy vary with time periodically, as presented in Fig. 4 (a)
and (b). The variation period T is the time that the solitary wave spends
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on moving the distance of one lattice constant. Here, the lattice constant is
unity, and then T = 1/v. The solitary wave with E = 4.00 is localized on
fewer lattices and its kinetic (potential) energy has higher fluctuation than
that of E = 1.00. To explore the fluctuations, we calculate the standard
deviation σ of kinetic energy, as shown in Fig. 4 (c), which presents the
transition at about Ec ∼ 0.4. If E < Ec, the width of solitary wave decays
with energy as a power law, and σ ∼ E10. If E > Ec, the decay of width
and the increase of σ with E become slow. If E is large enough, the solitary
wave is localized on 4 lattices, and σ increases linearly with E as σ ∼ E,
exactly like that in the pure anharmonic lattice.

Fig. 4. (a) and (b) kinetic energy and potential energy versus time. Solitary wave
energy E = 1.00 in (a) and E = 4.00 in (b). (c) σ versus E. σ is the standard
deviation of kinetic energy. Dashed line is the reference to power law E10.
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In the following, we discuss solitary wave scattering dynamics. The soli-
tary wave scattering is inelastic. Figure 5 shows the process of the head-on
collision of a pair of solitary wave a and b. The energy of a is one half of that
of b, i.e., Ea/Eb = 1/2. Before the collision, each solitary wave maintains
the shape and energy, as shown in Fig. 5 (a) and (c). After the collision,
the two solitary waves, denoted as a′ and b′, pass through each other and
the scattering behaviors are different in the following two cases. In Fig. 5
(b), both solitary waves a and b with Ea = 0.1 and Eb = 0.2 are scattered.
They are scattered to a′ and b′ with tapered tails respectively. The energy
of a and b decreases. Ea = Ea′ +Ea′t and Eb = Eb′ +Eb′t, Ea′t is the energy
of the tail of a′. In Fig. 5 (d), the scattering behavior of solitary waves with
Ea = 0.5 and Eb = 1.0 is quite different from that in Fig. 5 (b). Energy
exchange takes place and the scattering effect is enhanced. The large soli-
tary wave, b, loses energy and the small one, a, gains energy, and extra wave
packets are excited. Thus, the scattering effect becomes stronger with the
increase of the energy of solitary wave.
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Fig. 5. Head-on collision processes of a pair of solitary wave a and b. (a) and (b)
Ea = 0.1 and Eb = 0.2. (c) and (d) Ea = 1.0 and Eb = 2.0. (a) and (c) show the
situation before the collision, and (b) and (d) after the collision. Insets in (b) and
(d) are enlargement of rectangle.
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Next, we calculate the energy fluctuation and energy loss rate of a soli-
tary wave to describe the scattering behavior quantitatively. Due to the
localization, the kinetic (potential) energy of solitary wave changes peri-
odically with time. Then, after the collision, the scattering results vary
periodically with time delay of the two solitary waves, labeled as phase δ,
[16, 23] [see Fig. 6 (a)]. To show the fluctuation, in Fig. 6 (b), we calculate
the standard deviation σ of Eb′ , the energy of the scattered solitary wave b′,
with the increase of energy of b when Ea/Eb is fixed as 1/2. It is similar to
the kinetic energy fluctuation. When E < Ec, σ ∼ E10; when E > Ec, σ
increases slowly with E; when E is large, σ varies linearly with E as σ ∼ E,
identical with that in the pure anharmonic lattice. For practical application,
statistical properties are more significant than the prompt values. Then, we
investigate the average energy loss rates, 〈Ea − Ea′〉/Ea and 〈Eb − Eb′〉/Eb
with E as Ea/Eb = 1/2, shown in Fig. 6 (c) and (d).

Fig. 6. (a) Ea′ and Eb′ , the energy of scattered solitary wave a′ and b′ versus
phase δ. Ea = 1.0. and Eb = 2.0. (b) σ of Eb′ versus Eb. Dashed line is the refer-
ence to power law E10. (c) and (d) the average energy loss rates at Ea/Eb = 1/2.
(c) 〈Ea − E′

a〉/Ea versus Ea on a semilogarithmic scale. Inset is the enlargement
of rectangle. (d) 〈Eb−E′

b〉/Eb versus Eb on a log–log scale. The dot and star rep-
resent the results of solitary waves in the FPU lattice and in the pure anharmonic
lattice, respectively.



Solitary Wave Transition from Low to High Energy in the FPU Lattice 1157

The scattering results show the critical value is also Ec ∼ 0.4. When
E < Ec, the energy loss rates of a and b are more than 0, i.e., both a and
b lose energy. The scattering process can be approximately shown by Fig.
5 (a) and (b). Both of the two solitary waves are scattered into smaller
ones with tapered tails and there is no energy exchange between them. The
scattering effect is quite weak as the loss rate is quite small. In Fig. 6 (d), the
energy loss rate of b indicates a power-law increase with E. When E > Ec,
the energy loss rate is less than 0 for the small solitary wave a and is more
than 0 for the large solitary wave b. The scattering process is similar to that
in Fig. 5 (c) and (d). There is an energy exchange between the two solitary
waves, i.e., large solitary wave b loses energy and small one, a, obtains energy
on average, and extra wave packets are excited. With the increase of energy,
solitary wave localization is more robust, and the energy loss rate of large
solitary wave b increases more slowly, see Fig. 6 (d). The stars in Fig. 6 are
the scattering results for the pure anharmonic lattice. Any pair of solitary
waves with the same ratio Ea/Eb has the same loss rates due to the scaling
property [16]. In the FPU lattice, the scattering results approach those in
the pure anharmonic lattice when E →∞.

Discrete breathers are time-periodic and spatially localized nonlinear ex-
citations in nonlinear systems, and have been experimentally observed and
investigated in different media such as granular crystals, electrical lattices,
optical waveguides and photonic crystals, the Bose–Einstein condensation,
and so on [24–28]. On the FPU lattice, the discrete breathers can be ex-
cited by applying a displacement kick to the middle lattice for a static sys-
tem. Then we discuss the scattering dynamics of solitary wave and discrete
breather quantitatively.

Figures 7 (a) and (b) show the collision process of a solitary wave a and
a discrete breather b. Ea = 0.89 and Eb = 0.51. The solitary wave travels
towards the discrete breather and the discrete breather is immobile. After
the collision, the solitary wave passes through the discrete breather, and the
position of the discrete breather shifts a little. Both solitary wave a and
discrete breather b are scattered. Solitary wave a and discrete breather b
are scattered to a′ and b′ and both energies of a and b decrease. Since the
lattice is discrete and the solitary wave and discrete breather are localized,
the scattering results vary periodically with phase δ as well. Then, we calcu-
late the energy fluctuation, the standard deviation σ of energy of scattered
solitary wave a′, Ea′ , and the average energy loss rate of solitary wave a,
〈Ea − Ea′〉/Ea. Figures 7 (c) and (d) show the interaction results between
discrete breather b and solitary wave a with different energies, and the two
lines represent the energy of discrete breather Eb = 0.51 and Eb = 1.05,
respectively. The curve of σ of Ea′ in Fig. 7 (c) indicates the transitional
zone of solitary wave at Ec as well. When E < Ec, σ increases as power law
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with E; when E > Ec, σ varies slowly with E. This reflects the transition of
localization of solitary wave at Ec. In Fig. 7 (d), the energy loss rate of soli-
tary wave first increases and then decreases with E and the transition is not
Ec anymore. The interaction between solitary wave and discrete breather is
more complicated, which is determined by the properties of not only solitary
wave but also discrete breather.

Fig. 7. (a) and (b) the collision process of a solitary wave a and a discrete breather b.
Ea = 0.89 and Eb = 0.51. (a) and (b) show the situation before and after collision.
(c) the standard deviation σ of Ea′ versus Ea on a log–log scale. (d) the average
energy loss rate of solitary wave a, 〈Ea−E′

a〉/Ea versus Ea on a log–log scale. The
dot and star represent the energy of discrete breather Eb = 0.51 and Eb = 1.05,
respectively.
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5. Conclusion and discussion

In summary, we explore the solitary wave transition from low to high
energy in the FPU lattice. If energy is smaller than the energy threshold
Ec ∼ 0.4, the continuum approximation is applicable, so the relation of
energy and velocity of a solitary wave is consistent with analytical results.
The width of solitary wave decays as power law as energy increases. When
a solitary wave propagates, kinetic energy and potential energy are varying
periodically, while the total energy does not change. The fluctuation of
kinetic (potential) energy increases with energy as power law. After a head-
on collision of two solitary waves, the energy loss rate of large solitary wave
shows a power-law increase with energy. After scattering of a solitary wave
and a discrete breather, the energy fluctuation of the solitary wave increases
as power law with energy. If energy is larger than the threshold Ec, analytical
solutions are not applicable anymore. The properties mentioned above vary
more slowly. If the energy is large enough, the properties of solitary waves
tend to those in the pure anharmonic lattice.

The chaotic dynamics of the FPU lattice are quite different between be-
low and above a critical value εc of energy density ε. The degree of chaotic-
ity of the dynamics can be quantified by the largest Lyapunov exponent λ,
which is a measure of the average rate of local exponential separation be-
tween nearby trajectories in phase space. λ ∼ ε2 for ε < εc and λ ∼ ε2/3 for
ε > εc [29, 30]. This reflects the transition of solitary wave from a low to
high energy since solitary waves are the dominant excitations. We discuss it
with the concept of solitary wave scattering. If E > Ec, the scattering effect
increases with energy as power law, while for E < Ec it slowly increases.
This is in agreement with the chaotic behavior.

This work is supported by the National Natural Science Foundation of
China under grant No. 10805034.
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