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We report on the results of the computation of the order of (kFa0)2 cor-
rection, where kF = 3π2ρ is the Fermi wave vector and a0 the s-wave scat-
tering length of the repulsive interaction, to the ground-state energy of a
mixture of oppositely polarized Na spin-1/2 fermions a of masses ma and
Nb spin-1/2 fermions b of masses mb (ρ = N/V , N = Na+Nb). It is shown
that the results of the paper in which the same correction has been com-
puted entirely numerically, using a more traditional approach, can be easily
and semianalytically reproduced using the effective field theory technique.
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1. Introduction

Whether the ferromagnetic behaviour of a gas of spin-1/2 fermions (i.e.
the emergence of the so-called itinerant ferromagnetism) can be induced by
their repulsive spin-independent interaction is experimentally still an open
issue which is being studied by exploiting the upper branch of the Fesh-
bach resonance allowing to appropriately tune the interaction strength of
fermionic atoms of ultra-cold gases [2, 3]. Theoretical studies of this prob-
lem have a long history. The classic mean-field calculation [4] predicts that
the critical interaction strength above which the ground-state energy EΩ of
the polarized gas of spin-1/2 fermions is lower than that of the nonpolar-
ized one is kFa0 = π/2, where kF = 3π2N/V is the gas Fermi vector and
a0 is the s-wave scattering length characterizing the repulsive interaction.
More recently, computations of the ground-state energy going beyond the
mean-field approximation [5], also ones exploiting the quantum Monte Carlo

† chank@fuw.edu.pl
‡ wjacek@fuw.edu.pl

(1-A3.1)

https://www.actaphys.uj.edu.pl/findarticle?series=reg&vol=53&aid=1-A3


1-A3.2 P. Chankowski, J. Wojtkiewicz

simulations [6], have resulted in a lower critical value, kFa0 ≈ 0.8. This rela-
tively large critical interaction strength seems to be a source of considerable
difficulties in experimental observation of the effect [3, 7].

Among different possible ways of favouring the appearance of ferromag-
netism the use of a mixture of oppositely polarized different fermionic atomic
gases (of different masses) has been proposed. The computation of the
ground-state energy of such a mixture in the approximation going one order
beyond the simple mean-field one, i.e. up to terms of the order of (kFa0)

2

has been undertaken in [1] and a variety of possible phases of the system
has been exhibited by a detailed numerical study.

The order (kFa0)
2 correction in the perturbative expansion of the ground-

state energy EΩ of the interacting fermionic system can be computed either
more traditionally, as in [1], by the method outlined in [8] which leads to
rather complicated multiple integrals which must be evaluated numerically,
or using the effective theory [9] (see also [10, 11] for applications of this
method to many-body systems). The latter method is particularly well
suited for the case in which the interaction potential is not given explicitly
but is from the outset characterized only by the set of scattering lengths a`
and effective radii r`, ` = 0, 1, . . . It allowed to easily recover [9] the classic
order (kFa0)

2 result in the case of an unpolarized gas of identical fermions of
arbitrary spin and to extend it up to yet higher orders [9, 12]. Very recently,
we have used it [13] to obtain the order (kFa0)

2 correction to the ground-
state energy of the diluted polarized gas of identical spin-1/2 fermions, easily
numerically recovering (and thereby demonstrating its universality) the old
analytic result of Kanno [14] which has been obtained by the method of [8]
for the specific hard-core interaction potential.

It is a natural step to extend the effective theory approach to the case
of a diluted mixture of oppositely polarized fermions of different masses.
We present this extension in this paper. It turns out that it reduces to
only a small modification of the computation done in [13] and as there,
part of the computations can be done analytically; the remaining integrals
are simple (compared to the ones done in [1]) and can be easily evaluated
numerically with the help of a three-line Mathematica code using its standard
built-in integration routines. Moreover, the correctness of the computation
is partially controlled by the cancellation of ultraviolet divergences. The
computation is sketched in Section 2 and the comparison and the discussion
are given in Section 3.

2. Computation

We consider a mixture ofNa spin-1/2 (nonrelativistic) fermions of masses
ma (a-fermions), all having spins up and Nb spin-1/2 fermions of masses
mb having spins down (b-fermions), enclosed in a box of volume V and
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interacting with one another through a spin-independent two-body short
range repulsive potential. In the traditional language of quantum mechanics,
the Hamiltonian H of the system is of the form of

H = − ~2

2ma

Na∑
ia=1

∇2
ia −

~2

2mb

Nb∑
ib=1

∇2
ib
+
∑
ia,ib

Vpot (|ria − rib |)

+
1

2

∑
ia 6=ja

Vpot (|ria − rja |) +
1

2

∑
ib 6=jb

Vpot (|rib − rjb |) , (1)

where Vpot(|r|) is a repulsive, spin-independent interaction potential and the
wave function ψ of the system, satisfying periodic boundary conditions in
the box of volume V = L×L×L should be properly antisymmetrized in its
Na arguments (ria , sia) and in its Nb arguments (rib , sib), sia/b = ±

1
2 . In the

rest of the paper, the more convenient formalism of the second quantization
is used. Without loss of generality, we assume that Na ≥ Nb (the ratio
mb/ma can be arbitrary).

If the gas of fermions is diluted, so that the Fermi wave vector kF =
(3π2N/V )1/3 (where N = Na + Nb) is sufficiently small, its ground-state
energy EΩ can be computed using the effective theory approach [9]. As
follows from the analysis done there, to obtain EΩ up to the order (kFa0)

2,
it is sufficient to restrict oneself to the lowest dimension interaction operator,
i.e. to consider the Hamiltonian of the form of1

Heff = H0 + Vint =
∑
p

(
~2p2

2ma
a†pap +

~2p2

2mb
b†pbp

)
+
C0

V

∑
q

∑
p1,p2

a†p1+qap1
b†p2−qbp2

, (2)

(the most general effective Hamiltonian has, in principle, infinitely many
operator structures of growing dimension [9–11]). In contrast to the under-
lying “fundamental” Hamiltonian (1), the effective one, (2), is strictly local.
The zeroth and first-order contributions to EΩ

E
(0)
Ω + E

(1)
Ω =

V

6π2

3

5

~2

2

(
p5

Fa

ma
+
p5

Fb

mb

)
+ V C0

p3
Fa

6π2

p3
Fb

6π2
, (3)

1 Since in the considered system, there are no a-fermions with spin down (b-fermions
with spin up), the possible interactions of a-fermions (b-fermions) between themselves
do not play any role in determination of EΩ owing to the Pauli exclusion principle
and the nonrelativistic character of the theory (impossibility of particle–antiparticle
pair creation) and can, therefore, be omitted.
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in which pFa/b = (6π2Na/b/V )1/3 are the Fermi wave-vectors of the a- and
b-fermions, can be then immediately obtained by applying to the Hamilto-
nian (2) the ordinary Rayleigh–Schrödinger expansion in conjunction with
the standard methods of second quantization [16, 17]. The coefficient C0

has to be related to the s-wave scattering length a0 which is extracted from
the expansion (k = |k|)

f(k, θ) = −a0

[
1− ia0k +

(
1

2
a0r0 − a2

0

)
k2 + . . .

]
− a3

1k
2 cos θ + . . . (4)

of the amplitude of the elastic scattering of the a- and b-fermions with the
wave vectors ka = k and kb = −k generated by the interaction Vint of (2).
The amplitude f(k, θ) can, in turn, be obtained from the corresponding
S-matrix element Sβα computed in the second quantization formalism with
the help of the standard formula [18]

Sβα =
〈
k′a,k

′
b

∣∣Texp

− i
~

∞∫
−∞

dt V I
int(t)

 |ka,kb〉
≡ δβα −

i

~
(2π)4δ(4)

(
k′a + k′a − ka − kb

)
A , (5)

in which V I
int(t) is the interaction picture counterpart of the interaction term

of (2) written in the continuum normalization

V I
int(t) = C0

∫
d3xψ†a(t,x)ψa(t,x)ψ

†
b(t,x)ψb(t,x) ,

ψa(t,x) =

∫
d3k

(2π)3
e−iω

a
k
t+ik·xa(k) , (6)

etc., and T is the symbol of the chronological ordering; employed is also the
“four-vector” notation in which k0

a/b = ω
a/b
k ≡ ~k2/2ma/b. The necessary

rule is
f(k, θ) = −mred

2π~2
A(k, θ) , (7)

where mred ≡ mamb/(ma + mb) is the reduced mass of the interacting
fermions. In the lowest order of the Dyson expansion of (5), one readily
finds (see e.g. [9, 10]) that C0 = (2π~2/mred)a0. This allows to express (3)
— the first nontrivial approximation to the ground-state energy — in terms
of a physical quantity a0.
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The local character of the interaction term of the Hamiltonian (2) results
in ultraviolet divergences in higher-order corrections, both to the scattering
amplitude A extracted from (5) and to EΩ; the corrections to the result (3)
can be most conveniently computed using the formula2

lim
T→∞

exp

(
−iT (EΩ − EΩ0)

~

)
= lim

T→∞
〈Ω0|Texp

− i~
T/2∫
−T/2

dt V I
int(t)

 |Ω0〉

(8)
according to which (EΩ − EΩ0)/V is directly given by i~ times the sum
of the momentum space connected vacuum Feynman diagrams (the factor
(2π)4δ(4)(0) arising in evaluating connected vacuum diagrams in the position
space is interpreted as V T ). The divergences, if regularized in the same way
in evaluating formulae (5) and (8), disappear from the result for EΩ when
C0 and coefficients of other operator structures of the effective Hamiltonian
are in it consistently, order by order, traded for the scattering lengths a` and
the effective ranges r` extracted from the computed scattering amplitude.

Here, we regularize the divergences by cutting off all integrals over the
wave vectors k at the scale Λ. The limit Λ→∞ will be taken after express-
ing EΩ computed in terms of a` and r`s (as in [13], the cancellation of the
terms diverging as Λ → ∞ will serve as a partial check of the correctness
of the calculation). Thus, to obtain the complete correction E(2)

Ω to the re-
sult (3), C0 in E

(1)
Ω has to be expressed through a0 up to one-loop order.

The interaction (6) leads to two one-loop diagrams shown in Figs. 1 (a) and
1 (b), representing scattering of a-fermions on b-fermions. The second one
vanishes, however, owing to the absence of antiparticles; moreover, it is easy
to see that this interaction generates a whole class of diagrams shown in
Fig. 1 (c) which can be easily taken into account. Evaluating them using the
standard Feynman rules [16] with the propagators

〈void|Tψa/b(t,x)ψ
†
a/b

(
t′,x′

)
|void〉 =

∫
d3k

(2π)3
eik·(x−x

′)

∫
dω

2π

i e−iω(t−t′)

ω − ωa/bk + i0
,

one obtains for the scattering amplitude the expression3

f(k, θ) = −mred

2π~2
C0

{
1 +

(
C0

i~

)(
2mred

i~
I0

)
+

(
C0

i~

)2(2mred

i~
I0

)2

+ . . .

}
,

(9)
2 The symbol T of the chronological ordering should not be confused with T denoting
time.

3 Upon integrating over frequencies with the help of the residue method, the denomi-
nators of the propagators neatly combine so that the result depends only on mred.
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where

I0 =

∫
d3q

(2π)3
1

q2 − k2 − i0
. (10)

The amplitude (9), supplemented in general with (k-dependent) terms which
come from diagrams generated by the other interactions (omitted in (2)) of
the effective Hamiltonian should be matched onto the expansion (4).

(a) (b) (c)

Fig. 1. Two one-loop Feynman diagrams representing the elastic scattering ampli-
tude of the a-fermion (solid lines) on the b-fermion (dashed lines); the diagram (b)
vanishes. The “sausage”-type diagrams (c) originating in higher orders from the
interaction term proportional to C0. Time flows from the left to the right.

The integral I0 is divergent and requires regularization. Imposing the
UV cut-off Λ on q = |q|, one obtains (k = |k|)

I0(k, Λ) =
1

4π2

Λ∫
0

dq q

[
1

q − k − i0
+

1

q + k + i0

]

=
i

4π
k +

1

2π2
Λ− 1

2π2

k2

Λ
+ . . . , (11)

upon using the standard Sochocki formula 1/(x ± i0) = P (1/x) ∓ iπδ(x)
(P stands for principal value). Inserting this into formula (9) matched onto
the expansion (4) and solving for C0, one finds

C0 =
2π~2

mred
a0

(
1 +

2

π
a0Λ+ . . .

)
. (12)

The right-hand side of formula (8) can be evaluated using the standard
rules of the many-body quantum field theory (see e.g. [16]). Because |Ω0〉 is
the lowest energy state of Na free a-fermions and Nb free b-fermions, in the
momentum space lines of Feynman diagrams correspond to the propagators

iG̃
(0)
a/b(ω,k) = i

[
θ(|k| − pFa/b)

ω − ωa/bk + i0
+
θ(pFa/b − |k|)

ω − ωa/bk − i0

]
(13)
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and, to account for the normal ordered form of the interaction term in (2),
one has only to add the rule [16] that if a line originates from and ends up
in one and the same vertex, the propagator (13) corresponding to this line
has to be multiplied by eiωη with the limit of η → 0+ taken at the end.

In the first order in C0, there is only one connected vacuum graph shown
in Fig. 2 which (evaluated in the position space) immediately gives (iG(0)

a/b(0)

are the propagators (13) written in the position space)

TE
(1)
Ω = C0V TiG

(0)
a (0)iG(0)

a (0) = C0V T
p3

Fa

6π2

p3
Fb

6π2
,

which reproduces the result (3).

Fig. 2. The effective theory connected vacuum diagram of the order of C0 repro-
ducing the first-order correction E(1)

Ω . Solid and dashed lines represent propagators
of a- and b-fermions, respectively.

As explained in [9], the only nonzero contribution to the second-order
correction E

(2)
Ω comes from the Feynman diagram shown in Fig. 3. Per-

forming the same steps as in the analogous computation [13] of the second-
order correction to the ground-state energy of a polarized system of spin-1/2
fermions (to which the present computation reduces in the limit ofma = mb),
one arrives at the expression

E
(2)
Ω

V
=

C2
0

~

∫
d3q

(2π)3

∫
d3p

(2π)3

×
∫

d3k

(2π)3
θ(pFa − |k|)θ(pFb − |p|)θ(|k+q| − pFa)θ(|p−q| − pFb)

ωak + ωbp − ωak+q − ωbp−q + i0
.

The next step is passing to the integrations over the variables s, t and u
defined by the relations (the Jacobian equals 8)

k = m̃as− t , p = m̃bs+ t , q = t− u ,

which are the appropriate modification of those used in [9, 13], where

m̃a/b =
2ma/b

ma +mb
, m̃a + m̃b = 2 .



1-A3.8 P. Chankowski, J. Wojtkiewicz

kpk+q p−q

Fig. 3. The only nonvanishing three-loop connected vacuum diagram contributing
the order (kfa0)

2 correction to the ground-state energy of the diluted gas of the
mixture of (spin-1/2) a- and b-fermions. The two kinds of propagators differ by
the values of the Fermi momenta; for definiteness, it is assumed that pFa ≥ pFb.

The denominator of the integrand then becomes equal ~(t2−u2+i0)/2mred

and the first- and second-order corrections to the ground-state energy can
be, after using (12), written together in the form of

E
(1)
Ω + E

(2)
Ω

V
=
p3

Fb p
3
Fa

9π3

~2

2mred
a0 +

2p3
Fb p

3
Fa

9π4

~2

2mred
a2

0Λ+
~2

2mred
256a2

0

J̃

(2π)4
,

(14)
where (m̃b = 2− m̃a)

J̃ (pFa, pFb, m̃a) =

smax∫
0

ds s2 1

4π

×
∫

d3tθ (pFb − |t+ m̃bs|) θ (pFa − |t− m̃as|) g̃(t, s) ,

g̃(t, s) ≡ g̃(|t|, s) =
1

4π

∫
d3u

θ(|u+ m̃bs| − pFb)θ(|u− m̃as| − pFa)

t2 − u2 + i0
. (15)

The regions of the integrations over d3u and over d3t are determined by the
intersections of two Fermi spheres of unequal radii, pFb and pFa, the centers
of which are displaced from the origin of the u (of the t) space by the vectors
−m̃bs (s will be taken to determine the z-axes of the u and t spaces in the
integrals over d3u and d3t) and m̃as, respectively (the distance between the
centers is 2|s|). This is the only modification compared to the computation
done in [13]. The integral over u runs over the infinite exterior of these
spheres and is, therefore, divergent; the integration over t covers the interior
of their intersection. For this reason, the outermost integration over s ≡ |s|
is restricted to s ≤ smax = 1

2(pFa+pFb) because if s > smax, the two spheres
which determine the region of the integration over t become disjoint.

As far as the integral giving g̃(t, s) is concerned, the range of the vari-
able s splits into two domains: 0 ≤ s ≤ s0 = 1

2(pFa−pFb) and s0 ≤ s ≤ smax.
Correspondingly, the integral J̃ splits into J̃1 + J̃2.
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If 0 ≤ s ≤ s0, the smaller sphere of radius pFb is entirely contained
inside the one of radius pFa and plays no role in determining the domain
of integration over u: this domain is then just the (infinite) exterior of the
sphere of radius pFa the center of which is at uz = 0, when s = 0 and moves
to the right as s increases. The computation of g̃(t, s) for 0 ≤ s ≤ s0 and
of J̃1 proceeds, therefore, exactly as in the case of equal masses discussed in
[13] and one readily finds that

g̃(t, s) = g(t, m̃as) , 0 ≤ s ≤ s0 , (16)

where

g(t, s) = −Λ+
1

2
pFa +

t

4
ln

(pFa − t)2 − s2

(pFa + t)2 − s2
+
p2

Fa − s2 − t2

8s

× ln
(pFa + s)2 − t2

(pFa − s)2 − t2
(17)

is the function obtained in [13] in the case of ma = mb.
Since J̃1 is obtained by integrating the function g̃(t, s) first over the

interior of the sphere of radius pFb, the center of which is shifted by −m̃bs
from the origin of the t space, and then, with the weight s2, over s from 0
to s0, it is straightforward to obtain the divergent part J̃div

1 of J̃1

J̃div
1 = −1

9
Λs3

0 p
3
Fb = −

1

72
Λ (pFa − pFb)

3 p3
Fb . (18)

The finite part of J̃1 can be easily obtained by numerical integration. This
can be done either by writing t = t′ − m̃bs and introducing the spherical
coordinate system in the t′ space with the t′z axis taken in the direction of
the vector s

J̃1 =
1

2

s0∫
0

ds s2

1∫
−1

dη

pFb∫
0

dt′ t′2 g

(√
t′2 − 2t′m̃bsη + m̃2

bs
2, m̃as

)
,

or just by using the Mathematica instruction 0.5NIntegrate[s2t2g[t, m̃as]
Boole[t2 + 2tm̃bsx+ m̃2

bs
2 < p2

Fb], {s, 0, s0}, {x,−1, 1}, {t, 0,∞}].
We now compute the function g̃(t, s) for s0 ≤ s ≤ smax and the corre-

sponding contribution J̃2 to the integral (15). In this regime, the two Fermi
spheres which determine the ranges of integrations over u and over t inter-
sect one another. In the u space, the z coordinate u0

z of the intersection and
its distance u0 from the origin are determined by solving the equations

u2
⊥ + (uz − m̃as)

2 = p2
Fa ,

u2
⊥ + (uz + m̃bs)

2 = p2
Fb ,
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which give (recall that m̃a + m̃b = 2)

u0
z = − 1

4s

(
p2

Fa − p2
Fb

)
+

1

2
(m̃a − m̃b) s ,

u2
0 =

1

2

(
m̃bp

2
Fa + m̃ap

2
Fb

)
− m̃am̃b s

2 . (19)

In the spherical system, the “critical” angles ϑ0 corresponding to the inter-
section of the spheres (marked in Fig. 4) are given by

cosϑ0 = ξ0 =
u0
z

u0
. (20)

Therefore, if s0 ≤ s ≤ smax (i.e. when the two Fermi spheres intersect), the
function g̃(t, s) is given by4

g̃(t, s) =
1

2

ξ0∫
−1

dξ

Λ∫
ub(ξ,s)

du
u2

t2 − u2 + i0
+
1

2

1∫
ξ0

dξ

Λ∫
ua(ξ,s)

du
u2

t2 − u2 + i0
, (21)

where

ub(ξ, s) = −m̃bsξ +
√
p2

Fb − m̃2
bs

2 (1− ξ2) ,

ua(ξ, s) = m̃asξ +
√
p2

Fa − m̃2
as

2 (1− ξ2) ;

of course ub(ξ0, s) = ua(ξ0, s) ≡ u0. After extracting the terms diverging
with Λ → ∞ as in [9, 13] (they combine to −2π2I0, where I0 is given in
(11)), one gets

g̃(t, s) = −Λ− iπ
2
t+

1

2

ξ0∫
−1

dξ

ub(ξ,s)∫
0

du
u2

u2 − t2 − i0

+
1

2

1∫
ξ0

dξ

ua(ξ,s)∫
0

du
u2

u2 − t2 − i0
.

4 Actually, this way of computing g̃(t, s) in this regime (s0 < s < smax) is justified
geometrically only for s not greater than some critical value (depending on the ratios
pFb/pFa and mb/ma) which is smaller than smax. For s greater than critical, the
dashed lines in Fig. 4 pass through the interiors of the smaller spheres and formula
(21) may seem to be unjustified. We have checked, however, by integrating numer-
ically functions over the domain formed by the exterior of the intersecting spheres
lying inside a large sphere of radius R > 2pFa that formula (21) always gives the
correct answer.



On the Ground-state Energy of a Mixture of Two Different . . . 1-A3.11

(a)

ϑ0

(b)

ϑ0

Fig. 4. Intersecting Fermi spheres for (pFa−pFb)/2 < s < (pFa+pFb)/2. Dots mark
their centers shifted by −m̃bs and m̃as from the origin of the space. (a) ma > mb,
(b) ma < mb. Marked are the “critical” polar angles ϑ0.

It is now straightforward to compute J̃div
2 and to check the cancellation of Λ.

Indeed, the integral

1

4π

∫
d3tθ (pFb − |t+ m̃bs|) θ (pFa − |t− m̃as|) (−Λ)

can be done by shifting the origin of the t space so that the intersection of
the two Fermi spheres occurs at t′z = 0. The integration over d3t is then
easy and its result is

−Λ
2

{[
1

3
p3

Fb −
1

2
p2

Fb

(
s+ u0

z

)
+

1

6

(
s+ u0

z

)3]
+

[
1

3
p3

Fa −
1

2
p2

Fa

(
s− u0

z

)
+

1

6

(
s− u0

z

)3]}
,

where u0
z is given by (19). This should be integrated from s0 = 1

2(pFa− pFb)

to smax = 1
2(pFa+pFb) with the weight s2. Mathematica does the integration

readily with the expected result

J̃div
2 = −Λ

(
p2

Fap
4
Fb

24
−
pFap

5
Fb

24
+
p6

Fb

72

)
.

Combining this with the divergent part (18) of J̃1, one gets

J̃div
1 + J̃div

2 = −Λ
p3

Fbp
3
Fa

72
,

which is precisely what is needed to cancel in (14) the term explicitly pro-
portional to Λ which comes from expressing C0 in terms of the scattering
length in the first order result.
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The remaining integrals in g̃(t, s) can be worked out exactly as in [13]
using the trick given in Appendix C of [15], that is by taking the integrals
over ξ by parts after inserting into them 1 = dξ/dξ. The integrals have
imaginary parts which together precisely cancel the imaginary part which
arose from the divergent integral I0 and the final result for s0 ≤ s ≤ smax is

g̃(t, s) = −Λ+1

4
(pFb + pFa + 2s) +

t

4
ln
pFb + m̃bs− t
pFb + m̃bs+ t

+
t

4
ln
pFa + m̃as− t
pFa + m̃as+ t

+
p2

Fb − t2 − m̃2
bs

2

8m̃bs
ln

(pFb + m̃bs)
2 − t2

u2
0 − t2

+
p2

Fa − t2 − m̃2
as

2

8m̃as
ln

(pFa + m̃as)
2 − t2

u2
0 − t2

, (22)

where u2
0 is given in (19). In the limit of ma = mb (i.e. m̃a = m̃b = 1), the

results (16) and (22) go over into the ones obtained in [13] which agree with
the result obtained in [14]. The finite parts of the functions J̃1 and J̃2, i.e.
the integrals over t, η, and s, can be easily evaluated using, for instance, the
standard Mathematica function allowing to numerically perform integrations
over (multidimensional) domains. Since the finite part of J̃ = J̃1 + J̃2 scales
as the seventh power of pFa, in Fig. 5 we show J̃(r, 1, m̃a) as a function
of r = pFb/pFa for several values of the mass ratio mb/ma. It is clear
that the curves corresponding to mb/ma = x and 1/x merge for r = 1

0.2 0.4 0.6 0.8 1.0
r

0.002

0.004

0.006

0.008

0.010

0.012

J (r, 1)

Fig. 5. The plot of the function J̃(r, 1, m̃a). The consecutive lines (counting from
below at r ∼ 0.9) correspond to the ratio mb/ma equal to 40/6 (red), 6/40 (blue),
2 (violet), 1/2 (yellow), and 1 (green). At r = 1 (zero polarization), the results
for mb/ma = x and mb/ma = 1/x coincide as they should. The value J̃(1, 1, 1) =
0.0114449 = (11 − 2 ln 2)/840 (the endpoint of the green curve for mb/ma = 1) is
the the result of [9].



On the Ground-state Energy of a Mixture of Two Different . . . 1-A3.13

(vanishing polarization) as they should; also, independently of the mass
ratio, the function J̃ vanishes for the maximal polarization (at P = 1, i.e.
for r = 0) when all fermions are of the same type, as required by the Pauli
exclusion principle.

3. Results

The energy density with the order (kFa0)
2 term included can be ex-

pressed in several equivalent ways. Either in terms of the ratio r ≡ pFb/pFa

and kF ≡ 3π2(Na +Nb)/V , so that pFa = kF(2/(1 + r3))1/3,

EΩ
V

=
k3

F

3π2

~2k2
F

4mred

(
2

1 + r3

)5/3
{

3

10

(
m̃b + m̃ar

5
)
+

2

3π
r3

(
2

1 + r3

)1/3

(kFa0)

+
96

π2

(
2

1 + r3

)2/3

(kFa0)
2 J̃(1, r, m̃a) + . . .

}
, (23)

or in terms of the polarization P = (Na−Nb)/(Na+Nb) = (1− r3)/(1+ r3)

EΩ
V

=
k3

F

3π2

~2k2
F

4mred

{
3

10

(
m̃b(1+P )

5/3 + m̃a(1−P )5/3
)
+

2

3π

(
1− P 2

)
(kFa0)

+
96

π2
(1 + P )7/3 (kFa0)

2J̃(1, r(P ), m̃a) + . . .

}
, (24)

where r(P ) = ((1 − P )/(1 + P ))1/3. Note also that the prefactor
~2k5

F/12π
2mred in this formula can be written in the form of

(N/V )(~2k2
F/4mred) .

At zero polarization (r = 1, P = 0), formula (24) simplifies to

EΩ
V

=
k3

F

3π2

~2k2
F

4mred

3

5

{
1 +

10

9π
(kFa0) +

160

π2
(kFa0)

2J̃(1, 1, m̃a) + . . .

}
. (25)

Setting here m̃a = 40/23, i.e. mb/ma = 6/40, one finds that with J̃ =
0.00808856, this agrees with the second-order result shown for this mass
ratio in Fig. 1 of [1]. No plots of energy density for nonzero polarization
are shown in [1] but the authors give an interpolation formula for the evalu-
ated numerically function I(P, mb/ma) in terms of which their second-order
correction to the system’s energy is expressed. The precise relation of this
function I to our function J̃ should be

ma +mb

mb
I(P, mb/ma)

= 320(1 + P )7/3J̃
(
1, ((1− P )/(1 + P ))1/3, 2ma/(ma +mb)

)
.



1-A3.14 P. Chankowski, J. Wojtkiewicz

We have checked that although the interpolation formula of [1] yields for
P = 1 a small but nonzero value of the function I (slightly at variance
with the Pauli exclusion principle), it nevertheless agrees excellently with
the results of our calculation.

The energy density given by formula (24) in the case of equal masses
(ma = mb ≡ mf ) of the oppositely polarized fermions is shown in Fig. 6.
It illustrates the well-known fact [19] that the emergence of a nonzero po-
larization (of the global minimum of the energy density as a function of P )
which in the mean-field approximation (i.e. with only the order kFa0 term
included) is a second-order transition [4], after the inclusion of the second-
order term becomes the first-order one. This, however, occurs probably
beyond the limits of the reliability of the approximation used: for vanishing
polarization, the comparison of the second-order formula with the results
of the quantum Monte Carlo simulations of [6] shows that it is numerically
reliable only up to kFa0

<∼ 0.5.

0.2 0.4 0.6 0.8
P

1.5780

1.5785

1.5790

1.5795

1.5800

energy density

Fig. 6. Energy density EΩ/V in units (3/5)(~2k2F/2mf )(k
3
F/3π

2) of the gas of the
same mass (ma = mb ≡ mf ) spin-1/2 fermions as a function of the polarization
P for different values (from below): 1.0520 (blue), 1.0525 (yellow), 1.0530 (green),
1.0535 (red), 1.0540 (violet), 1.0545 (dark red), and 1.0550 (light blue) of kFa0.
The emergence of the ferromagnetic behaviour as well as the first-order character
of the transition to the ferromagnetic state are clearly seen.

If the masses of oppositely polarized fermions differ, the minimum of
the energy density is at P 6= 0 already in the case of vanishing interactions
(the system is polarized in the direction of the polarization of the heavier
species). If the mass ratio corresponds to different atoms, this effect com-
pletely dominates the dependence of the energy density on the polarization.
Only if the mass ratio is very close to unity (as would be if different isotopes
of the same element could play the roles two different fermion species), can
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the mean-field correction generate a higher (i.e. unstable), second mini-
mum at an opposite polarization and this only when kFa0 ≈ π/2; for such
strengths of the interaction, however, the second-order correction computed
in this paper and in [1] is so large, that the two minima (the deeper one
corresponding to the direction of the polarization of heavier isotopes) occur
already at P = ±1 and the discussion of the change of the order of the
transition is meaningless in view of the clear unreliability of the expansion.
In Fig. 7, the effects of inclusion of the second-order term in the case of
the mass ratio mb/ma = 2/3 are shown for kFa0 = 0.5 to show that when
the expansion is reliable, the minimum of the energy density at a nonzero
polarization, existing already without any interaction, can only be slightly
displaced.

-1.0 -0.5 0.5 1.0
P

1.2

1.4

1.6

1.8

Energy density

Fig. 7. Energy density EΩ/V in units (3/5)(~2k2F/4mred)(k
3
F/3π

2) of the mixture of
two species of oppositely polarized spin-1/2 fermions with the mass ratio mb/ma =

2/3 and kFa0 = 0.5, as a function of the polarization P . The lower curve is the
mean-field result, while the upper one shows the effects of inclusion the term of the
order of (kFa0)2.

4. Final remarks

We have shown that the order (kFa0)
2, where a0 is the s-wave scattering

length and kF = (3π2N/V )1/3, correction to the ground-state energy of a
mixture of the oppositely polarized fermions of different masses, computed
for the first time in [1] by using a complicated numerical evaluation of the
formulae derived in [8], can be easily and semi-analytically reproduced in
the effective theory approach proposed first in [9] which is simple and leads
to integrals which can be numerically evaluated using the standard built-
in Mathematica routines. Thus, this method can allow for extending the
computation to yet higher orders.
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