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A direct algebraic solution has been obtained from the full bosonic
master-field equation of the IIB matrix model for low dimensionality D = 3
and small matrix size N = 3. A different method is needed for larger
values of D and N . Here, we explore an indirect numerical approach and
obtain an approximate numerical solution for the nontrivial case (D, N) =
(10, 4) with a complex Pfaffian. We also present a suggestion for numerical
calculations at larger values of N .
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1. Introduction

It has been argued that the bosonic large-N master field [1, 2] of the
IIB matrix model [3, 4] can give rise to an emergent classical spacetime [5]
(see also Ref. [6] for further work on cosmology and Ref. [7] for a brief
review). The crucial point, now, is that the bosonic master field is essentially
determined by an algebraic equation and not a differential equation.

In a first paper [8], we have considered this algebraic equation with the
effects of fermions removed altogether. In a subsequent paper [9], we turned
to the full algebraic equation with the effects of fermions included and were
able to obtain a solution for dimensionality D = 3 and matrix size N = 3.

This result for (D, N) = (3, 3) is certainly gratifying, but it appears
that, with the same type of algebraic method, progress to larger values
of D and N does not seem feasible. A different method is required to,
ultimately, reach the parameters D = 10 and N � 1 of the genuine IIB
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matrix model. The present paper explores an indirect numerical approach
which looks promising (the meaning of the qualification “indirect” will be
explained later).

Before we get started, we would like to clarify the scope of the present
article. The numerical results to be given in Section 5 are only indicative.
The importance of the (D, N) = (10, 4) numerical results, in particular, is
to show that the proposed method works. As such, these numerical results
need to be viewed as a preparation for future work with more powerful
computers, which are needed anyway for reaching larger values of N .

2. Algebraic equation

As the present paper is solely devoted to obtaining solutions of a partic-
ular algebraic equation, let us immediately give that equation (some back-
ground on the origin and meaning of the equation will be given in Section 3).
Specifically, this algebraic equation for D traceless Hermitian matrices â µ
of dimension N ×N reads

i ( p̂k − p̂l) â µkl + [ â ν , [ â ν , â µ]]kl −
1

P ( â )

∂ P ( â )

∂ â µlk
− η̂ µkl = 0 , (2.1a)

P ( â ) = homogeneous polynomial of order K , (2.1b)

K ≡ (D − 2)
(
N2 − 1

)
, (2.1c)

D = 10 , N � 1 , (2.1d)

with matrix indices k, l running over {1, . . . , N} and directional indices
µ, ν running over {1, . . . , D}, while ν in (2.1a) is implicitly summed over.
The p̂k in (2.1a) are uniform random numbers and the η̂ µkl Gaussian random
numbers (these numbers can be fixed once and for all, provided N is large
enough; see Section 4.2 for further details). There is an explicit expression
for the Pfaffian P to be discussed later.

The algebraic equation (2.1a) is quite a challenge for mathematics and
computational science. But why is that equation also of interest to physics?
Well, the answer is that its solution may contain information about the
emergence of spacetime and the birth of the Universe. As promised above,
we will give some background in the next section, but the main focus of the
present paper is really on obtaining solutions of the above algebraic equation.
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3. Background

The algebraic equation of interest arises from the IKKT matrix model [3].
That model is also known as the IIB matrix model [4], because the matrix
model reproduces the structure of the light-cone type-IIB superstring field
theory.

The IIB matrix model of Kawai and collaborators [3, 4] has a finite
number of N × N traceless Hermitian matrices: ten bosonic matrices Aµ
and eight fermionic Majorana–Weyl matrices Ψα. The partition function Z
of the IIB matrix model is defined by the following “path” integral:

Z =

∫
dAdΨ e−Sbos(A)−Sferm(Ψ,A) . (3.1)

Here, the bosonic action Sbos(A) is quartic in A (the trace of the square
of Yang–Mills-type commutators) and the fermionic action Sferm(Ψ, A) is
quadratic in Ψ and linear in A (a Dirac-type term without derivatives but
with Yang–Mills-type commutators). In a symbolic notation, the fermionic
action reads

Sferm = Ψ̄M(A)Ψ . (3.2)

The precise definition of the measure in (3.1) and further details are sum-
marized in Ref. [9].

The fermionic matrices Ψ in (3.1) can be integrated out exactly (Gaussian
integrals) and there results a Pfaffian:

Pf [M(A)] ≡ P(A) , (3.3)

with further details collected in Appendix A. The final expression for the
partition function then reads

Z =

∫
dA P(A) e−Sbos(A) =

∫
dA e−Seff(A) , (3.4a)

Seff(A) = Sbos(A)− log P(A) . (3.4b)

For the bosonic observable

wµ1 ... µm ≡ Tr (Aµ1 · · · Aµm) , (3.5)

and arbitrary strings thereof, the expectation values are defined by the same
integral as in (3.4a):

〈wµ1 ... µm wν1 ... νn · · · wω1 ... ωz〉

=
1

Z

∫
dA (wµ1 ... µm wν1 ... νn · · · wω1 ... ωz) e−Seff . (3.6)
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At this moment, we can make a trivial but important observation: the
matrices of the IIB matrix model (3.1) have no spacetime dependence (for
this reason, we have used quotation marks in the terminology “path” inte-
gral). In fact, the IIB matrix model just gives numbers, Z and the expecta-
tion values 〈ww · · · w〉, while the matrices Aµ and Ψα in the “path” integral
are merely integration variables. In addition, there is no small dimension-
less parameter to motivate a saddle-point approximation. So, how does the
classical spacetime emerge? Recently, we have suggested [5] to revisit an
old idea, the large-N master field of Witten [1, 2], for a possible origin of
classical spacetime in the context of the IIB matrix model.

According to Witten [1], the large-N factorization of the expectation val-
ues (3.6) implies that the path integrals are saturated by a single configura-
tion, the so-called master field Âµ. To leading order in N , the expectation
values are then given by

〈wµ1 ... µm wν1 ... νn · · · wω1 ... ωz〉 N
= ŵ µ1 ... µm ŵ ν1 ... νn · · · ŵ ω1 ... ωz , (3.7a)

ŵ µ1 ... µm ≡ Tr
(
Âµ1 · · · Âµm

)
. (3.7b)

Hence, we do not have to perform the integral on the right-hand side of
(3.6): we only need ten traceless Hermitian matrices Âµ to get all these
expectation values from the simple procedure of replacing each Aµ in the
observables by the corresponding Âµ.

Now, the meaning of our previous suggestion is clear: classical spacetime
may reside in the bosonic master-field matrices Âµ of the IIB matrix model.
The heuristics is as follows [7]:

— The expectation values 〈wµ1 ... µm · · · wω1 ... ωz〉 from (3.6) correspond
to an infinity of real numbers and give a large part of the information
content of the IIB matrix model (but, obviously, not all the informa-
tion).

— That same information is encoded in the master-field matrices Âµ,
which, to leading order in N , give precisely the same numbers by the
products ŵ µ1 ... µm · · · ŵ ω1 ... ωz , where ŵ is simply the observable w
evaluated for Â.

— From these master-field matrices Âµ, it is possible to extract the points
and the metric of an emergent classical spacetime (as mentioned before,
the original matrices Aµ are merely integration variables).

Assuming that the matrices Âµ of the IIB-matrix-model master field
are known and that they are approximately band-diagonal (as suggested by
the numerical results of Refs. [10–12] and references therein), it is relatively
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easy [5] to extract a discrete set of spacetime points {x̂µk } and an interpolat-
ing inverse metric gµν(x). The metric gµν(x) is obtained as matrix inverse
of gµν(x).

But, instead of just assuming the matrices Âµ, we want to calculate
them. And, for that, we need an equation.

4. Master-field equation: General discussion

4.1. Preliminary remarks

Let us start with some good news: the master-field equation has already
been established, nearly 40 years ago, by Greensite and Halpern [2]. They
write in the first line of their abstract: “We derive an exact algebraic (mas-
ter) equation for the euclidean master field of any large-N matrix theory,
including quantum chromodynamics.” Now, “any” means “any” and we may
as well consider the large-N IIB matrix theory [3, 4].

A side remark is that the sentence quoted above is, perhaps, a little bit
too general. For example, an obvious restriction would be the restriction to
any consistent large-N matrix theory, where the additional adjective “con-
sistent” implies that the theory makes sense physically (being, for example,
causal and reflection-positive/unitary). In any case, the IIB matrix model
is certainly a good candidate for a consistent large-N matrix theory.

4.2. Bosonic master-field equation

Building on the work by Greensite and Halpern [2], we then have the
IIB-matrix-model bosonic master field in a “quenched” form [5]:

Â µ
kl = ei p̂k τeq â µkl e−i p̂l τeq . (4.1a)

Here, the p̂k are dimensionless random constants (see below) and the dimen-
sionless time τeq must have a sufficiently large value in order to represent
an equilibrium situation (τ is the fictitious Langevin time of the stochastic-
quantization procedure). The τ -independent matrix â µ on the right-hand
side of (4.1a) solves the following algebraic equation [5]:

i ( p̂k − p̂l) â µkl +
∂ Seff ( â )

∂ âµ lk
− η̂ µkl = 0 , (4.1b)

in terms of the effective action Seff ( â ) from (3.4b), the master momenta p̂k
(real uniform random numbers), and the master noise matrices η̂ µkl [using
real Gaussian random numbers for the corresponding coefficients η̂ µc with
Lie-algebra index c, where the expansion is similar to (A.4) in Appendix A ].
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Further details on the interpretation of (4.1a) and (4.1b) can be found
in Sec. 3.2 of Ref. [9]. At this moment, we like to emphasize one point
(already briefly mentioned in Section 2): the random numbers p̂k and η̂ µkl
can be fixed once and for all (assuming that N is large enough), and these
random numbers are called themaster momenta and noise. This observation
implies that, at large N , it suffices to solve the algebraic equation (4.1b)
with a particular realization of random numbers p̂k and η̂ µkl, and this is the
strategy employed in our previous papers [8, 9] and the present one.

The algebraic equation (4.1b) is, of course, precisely (2.1a).

4.3. Simplified equation

The algebraic equation (2.1a) is truly formidable and it makes sense to
first consider the simplified equation without Pfaffian term [8]:

i ( p̂k − p̂l) â µkl + [ â ν , [ â ν , â µ]]kl − η̂
µ
kl = 0 . (4.2)

The matrices â µ are N × N traceless Hermitian matrices and the number
of variables is

Nvar = D
(
N2 − 1

)
, (4.3)

which grows rapidly with increasing N . The simplified equation (4.2) is
essentially a cubic polynomial. Remark also that the simplified equation
(4.2) differs from the one in Ref. [8] by the sign of the double commutator,
but this can be compensated by a redefinition of p̂k and η̂ µkl.

It appears impossible to obtain a general analytic solution of (4.2) in
terms of the master constants p̂k and η̂ µkl. Instead, we have obtained so-
lutions [8] for (D, N) = (2, 4) and (D, N) = (2, 6) by taking a particular
realization of the random master constants (other realizations give similar
results). As our focus will be on N = 4 in the following, we briefly review
here the results of the simplified equation (4.2) for (D, N) = (2, 4).

Taking a particular realization (the “alpha-realization”) of the 4 pseudo-
random numbers for the master momenta and the 30 pseudorandom numbers
for the master noise (they are given by Eqs. (16abc) in Ref. [8], with overall
minus signs added), we have obtained an explicit solution â 1

α-sol and â
2
α-sol

as given by Eqs. (17ab) in Ref. [8]. For the absolute values of these matrix
entries, the density plots are shown in the first two panels of Fig. 1. There
is no obvious band-diagonal structure.

Next, change the basis, in order to diagonalize and order the µ = 1
matrix. This produces the matrices â ′ 1α-sol and â

′ 2
α-sol as given by Eqs. (21ab)

in Ref. [8]. For the absolute values of these new matrix entries, the density
plots are shown in the last two panels of Fig. 1. There appears a clear
band-diagonal structure in â ′ 2α-sol, which is a nontrivial result.
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Fig. 1. From left to right, density plots of the matrices Abs
[
â 1
α-sol

]
, Abs

[
â 2
α-sol

]
,

Abs
[
â ′ 1
α-sol

]
, and Abs

[
â ′ 2
α-sol

]
, as obtained in Sec. 4.1 of Ref. [8] from the simplified

algebraic equation (4.2) for (D, N) = (2, 4) and a particular choice (labelled “α”)
of master momenta and master noise.

As mentioned in Section 3, the diagonal/band-diagonal structure of the
master-field matrices allows for the extraction of a classical spacetime, but it
remains to demonstrate that dynamical fermions do not spoil this structure.

4.4. Full equation rewritten with a trace term

We now look for solutions of the full bosonic master-field equation (2.1a),
with dynamic fermions included, but, first, only for rather small values of D
and N .

The Pfaffian is a Kth order homogenous polynomial, denoted symboli-
cally by PK(A), with K = (D − 2) (N2 − 1). Further details are given in
Appendix A. The basic structure of the algebraic equation (2.1a) is then as
follows:

P
( p̂ )
1 ( â ) + P3 ( â ) +

PK−1 ( â )

PK ( â )
+ P

( η̂ )
0 ( â ) = 0 , (4.4)

where the suffixes on P0 and P1 indicate their respective dependence on the
master noise η̂ µkl and the master momenta p̂k. Multiplying (4.4) by PK( â ),
we get a polynomial equation of the order of K + 3 with the following
structure:

P
( p̂ )
K+1 ( â ) + PK+3 ( â ) + PK−1 ( â ) + P

( η̂ )
K ( â ) = 0 . (4.5)

For the case of {D, N} = {3, 3}, there is an explicit algebraic result for
the Pfaffian [13]. Taking a particular realization of the random constants
(other realizations give similar results), we have established [9] the existence
of several solutions of the full bosonic master-field equation (2.1a). Moreover,
there is a mild diagonal/band-diagonal structure, but the value N = 3 is
too small for definitive statements.
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These (D, N) = (3, 3) results were obtained by a direct algebraic calcu-
lation and it would seem difficult to go to larger values of D and N . But
perhaps there can be progress with a numerical approach. The idea [15] is
to use the fact that the square of the Pfaffian of the skew-symmetric matrix
M =M( â ) equals its determinant,

[Pf(M)]2 = detM , (4.6)

so that we can write the variational term in the algebraic equation (2.1a) as
a trace,

δ Pf(M)

Pf(M)
=

1

2

δ detM
detM

=
1

2
Tr
[
M−1δM

]
, (4.7)

and this trace can be readily evaluated numerically (as was done in Ref. [12]).
Just to be clear, it is the third term on the left-hand side of (2.1a) that is
replaced by a term involving the trace, according to (4.7).

We will call the resulting calculation an indirect numerical calculation,
where the qualification “indirect” is meant to show that the Pfaffian is not
directly considered but rather its relative variation written as the trace term
(4.7) with the matrixMA,B from Appendix A. First results from this indirect
numerical calculation will be presented in Section 5.

5. Numerical results from the full algebraic equation

5.1. Cases of (D, N) = (3, 3 ) and (D, N) = (10, 3 )

We have performed numerical calculations of the full algebraic equation
(2.1a) with the trace term (4.7) for three cases: (D, N) = (3, 3), (D, N) =
(10, 3), and (D, N) = (10, 4). Some details of the calculations are listed in
Table I.

The numerical results of the first two rows in Table I were obtained from
the NMinimize routine of Mathematica 12.1 (cf. Ref. [16]) with the downhill-
simplex method of Nelder and Mead [17, 18]. Our main interest is, however,
in the (D, N) = (10, 4) case and we will discuss that case in the next
subsection.

5.2. Case of (D, N) = (10, 4 )

The downhill-simplex method used for (D, N) = (3, 3) and (D, N) =
(10, 3) is, without further modifications, no longer suitable for the 300 real
variables of the present case

(D, N) = (10, 4) . (5.1)
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TABLE I

Numerical calculations of the full bosonic master-field equation (2.1a) using the
identity (4.7). The number of variables is given by Nvar = D (N2 − 1) and the
order of the Pfaffian by K = (D − 2) (N2 − 1).

Nvar K Calculational detailsa

(D, N) = (3, 3) 24 8 single-processor, O(hr)b

(D, N) = (10, 3) 80 64 single-processor, O(day)
(D, N) = (10, 4) 150c 120 6-kernel, O(month)

aFor a Lenovo T15p notebook with an Intel Core i7-10750H processor(6 kernels, 12 threads,
12 MB cache, 2.6–5.0 GHz clock frequency) running Mathematica 12.1.

bReproducing the previous algebraic results [9].
cComplex variables in the matrix solution, as the Pfaffian P( â ) is complex (cf. Appendix A).

Instead, we have used a simple random-step procedure, which could be par-
tially parallelized. In this way, we have obtained an approximate numerical
solution. A numerical solution is, of course, always “approximate,” but oc-
casionally, we prefer to emphasize this fact by the use of the adjective.

Before we describe the obtained results, we need to specify the particular
realization (the “κ-realization”) of the pseudorandom numbers entering the
algebraic equation (2.1a). As this involves 154 real numbers, the details are
rather cumbersome and are relegated to Appendix B. Other realizations of
the pseudorandom numbers (the λ, µ, ν, . . . realizations) are expected to
give similar results, according to our previous results [8, 9].

The calculation follows the same procedure as in our earlier work, namely
the numerical minimization of a nonnegative function fpenalty that will be
defined shortly. But the calculation for the case (5.1) is hard with many vari-
ables and a high-order Pfaffian. The main difficulty is that, for a computer as
described in footnote a of Table I, the evaluation of fpenalty at a single point
in the 300-dimensional configuration space takes a long time, about 90 sec-
onds [which is approximately ten times more than for the (D, N) = (10, 3)
calculation]. Furthermore, the fpenalty valley appears to be long, narrow,
and winding (at least, for the used coordinates r̂ cµ and ŝ cµ , to be defined
shortly).

As the Pfaffian term in the algebraic equation is complex, we must allow
for complex variables in the solution:

â cµ = r̂ cµ + i ŝ cµ ∈ C , (5.2)

with real numbers r̂ cµ and ŝ cµ . In this way, we have obtained a series of
approximate numerical solutions of the algebraic equation (2.1a) with the
identity (4.7) and the κ-realization of pseudorandom constants. A selection
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of these approximate numerical solutions is shown in Table II, where the
caption defines the function fpenalty, as well as another diagnostic quantity.
Specifically, we will discuss the approximate numerical solution from the
last row of Table II and denote this particular solution by “κ-num-sol”. We,
then, have 300 real numbers defining the following matrices:

âµκ-num-sol , for µ = 1, . . . , 10 . (5.3)

With complex coefficients â cµ , these (approximate) master-field matrices are
no longer Hermitian. The situation is perhaps analogous to that of com-
plex saddle-points appearing for a real problem. Our interpretation is that
these (approximate) master-field matrices carry information both in their
Hermitian and anti-Hermitian parts.

We suspect that the Hermitian parts of the master-field matrices (with
real eigenvalues) contain information about the emerging spacetime [5].
What the information in the anti-Hermitian parts corresponds to is not
clear for the moment (see Section 6 for a suggestion).

Consider, therefore, the Hermitian parts

âµκ-num-sol-HERM ≡
1

2

[
âµκ-num-sol +

(
âµκ-num-sol

)†]
. (5.4)

Calculating the absolute values of these matrix entries, we observe no obvious
band-diagonal structure (see Fig. 2). Now, change the basis, in order to

TABLE II

Approximate numerical solutions of the full (D, N) = (10, 4) bosonic master-field
equation (2.1a) with the identity (4.7) and the pseudorandom constants given in
Appendix B. The complex residues of the 150 component equations eq-â cµ are
computed (they all vanish for a perfect solution). The quantity MaxAbsRes is the
maximum of the absolute values of these residues and the function fpenalty is the
sum of their squared absolute values. The expression eq-â cµ follows from (2.1a) by
performing a matrix multiplication with tc, taking the trace, and multiplying the
result by two [here, tc is the SU(4) generator defined in Appendix A with trace
condition (A.3b)].

fpenalty ≡
∑∣∣eq-â cµ

∣∣2 MaxAbsRes ≡ max
{∣∣eq-â cµ

∣∣}
1375.200 6.81

422.468 4.56

310.932 3.46

209.330 2.83

108.094 1.83

39.882 1.15
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diagonalize and order the µ = 1 matrix. This gives the matrices

â ′µκ-num-sol-HERM , for µ = 1, . . . , 10 . (5.5)

Calculating the absolute values of the entries of these transformed matrices,
there is not yet a clear signal for a diagonal/band-diagonal structure: see
Fig. 3 and compare with Fig. 1 without dynamic fermions. Let us consider
the result from Fig. 3 in somewhat more detail.

1 2 3 4

1

2

3

4

1 2 3 4

1

2

3

4

1 2 3 4

1

2

3

4

1 2 3 4

1

2

3

4

1 2 3 4

1

2

3

4

1 2 3 4

1

2

3

4

1 2 3 4

1

2

3

4

1 2 3 4

1

2

3

4

1 2 3 4

1

2

3

4

1 2 3 4

1

2

3

4

1 2 3 4

1

2

3

4

1 2 3 4

1

2

3

4

1 2 3 4

1

2

3

4

1 2 3 4

1

2

3

4

1 2 3 4

1

2

3

4

1 2 3 4

1

2

3

4

1 2 3 4

1

2

3

4

1 2 3 4

1

2

3

4

1 2 3 4

1

2

3

4

1 2 3 4

1

2

3

4

Fig. 2. Density plots of the original (D, N) = (10, 4) approximate numerical solu-
tion Abs

[
âµκ-num-sol-HERM

]
with fpenalty = 39.882. Shown are µ = 1, . . . , 5 on the

top row and µ = 6, . . . , 10 on the bottom row.
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Fig. 3. Density plots of the transformed (D, N) = (10, 4) approximate numerical
solution Abs

[
â ′µ
κ-num-sol-HERM

]
with fpenalty = 39.882. Shown are µ = 1, . . . , 5 on

the top row and µ = 6, . . . , 10 on the bottom row.
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The first observation is that we can perhaps observe a trend if we look
at the improving approximations as listed in the last five rows of Table II.
The five corresponding density plots of Abs

[
â ′µκ-num-sol-HERM

]
are shown as

Figs. 6–10 in Ref. [19]. In these figures, we can, for example, focus on the
pattern of the µ = 2 matrix as it evolves with improving approximations (de-
creasing penalty function) and see that a very weak diagonal/band-diagonal
structure appears at fpenalty ∼ 300 and that this structure more or less sta-
bilizes at lower values of fpenalty (note that N = 4 is still far away from
infinity). The second observation is that, at best, we can expect to find only
a mild diagonal/band-diagonal structure due to the dynamic-fermion effects,
as was previously observed in the algebraic (D, N) = (3, 3) results [9].

Obviously, we would like to obtain an improved (D, N) = (10, 4) numer-
ical solution with fpenalty . 1, but it is possible that the basic result as given
in Fig. 3 does not change much. In any case, the (D, N) = (10, 4) numeri-
cal results shown here are, as mentioned in the last paragraph of Section 1,
primarily intended to verify that the proposed method can be implemented.
The actual (D, N) = (10, 4) results are only indicative and future work on
supercomputers should go to larger values of N (see Section 6 for further
comments).

6. Discussion

A direct algebraic solution of the full bosonic master-field equation (2.1a)
of the IIB matrix model cannot go much further than dimensionality D = 3
and matrix size N = 3. In the present paper, we have explored an indirect
numerical approach. The qualification “indirect” indicates that the Pfaffian
is not directly considered but rather its relative variation written as the trace
term (4.7). With a considerable effort, we have obtained an approximate
numerical solution for the case of (D, N) = (10, 4), which has a complex
Pfaffian. Having a complex Pfaffian requires a conceptual reinterpretation
of the bosonic master-field, with a Hermitian part possibly relevant to the
emergence of spacetime and an anti-Hermitian part whose interpretation is
unclear for the moment (perhaps this anti-Hermitian part is directly or indi-
rectly relevant to the emergence of matter). Obviously, this is an important
open question.

It is, however, difficult to go to N values very much larger than 4, while
keeping D = 10. We now have a perhaps somewhat surprising suggestion,
namely, to temporarily leave behind the purely algebraic equation and to
return to the original Langevin differential equation, but with a special form
of the noise matrices. Specifically, we suggest to use the quenched-master
form for the Langevin noise matrices:
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η µkl(τ) = ei p̂k τ η̂ µkl e−i p̂l τ , (6.1)

with Langevin time τ and fixed random numbers p̂k and η̂ µkl, where the
matrix indices k and l take values from {1, 2, . . . , N} and the directional
index µ from {1, 2, . . . , D}. See Sec. 3.2 in Ref. [9] for a brief discussion of
the characteristics of these random numbers p̂k and η̂ µkl, the first having a
uniform distribution and the second D-independent Gaussian distributions.
See, furthermore, Sec. 2 of Ref. [2] for the proof that the noise (6.1) suffices
in the large-N limit (with planar diagrams dominating).

It appears that the D = 10 setup and technology used in Ref. [12] [start-
ing from Eqs. (3.2) and (3.3) in that reference], can be employed, but now
with the special noise matrices (6.1). The idea is to extract, from the ob-
tained numerical solution Â µ(τ) at an equilibrium time τeq, the constant
master-field matrices â µ by the use of (4.1a), for the given values of p̂k. The
obtained matrices â µ are expected to solve the algebraic equation (4.1b), at
least within the numerical accuracy. Assuming that the trace term (4.7) can
be evaluated accurately (with advanced numerical methods and powerful
computers), it would seem that master-field matrices â µ with sizes N = 64
and N = 128 could be within reach.

Appendix A

Pfaffian for D = 10 and N ≥ 2

The fermion integration in the partition function of the D = 10 IIB
matrix model (3.1) with fermionic action (3.2) gives the Pfaffian (3.3) as a
function of the bosonic matrices Aµ. Explicitly, the Pfaffian evaluated for
the master-field matrices âµ reads [13, 14]:

P ( â ) ≡ Pf [M ( â )] , (A.1a)

Maα , bβ = −i fabc (CΣµ)αβ â cµ , (A.1b)

with Lie-algebra indices a, b, c running over {1, . . . , (N2 − 1)}, spinorial
indices α, β running over {1, . . . , 16}, and the directional index µ being
summed over {1, . . . , 10}, where the pair of indices aα gives a combined in-
dex A and bβ gives a combined index B. For completeness, we give the def-
inition of the Pfaffian in terms of the completely antisymmetric Levi-Civita
symbol ε normalized to 1. The Pfaffian of a (2n) × (2n) skew-symmetric
matrix A = (aij) is then given by

Pf[A] ≡ 1

2n n!
εi1j1i2j2···injn ai1j1 ai2j2 · · · ainjn , (A.2)

with implicit summations over repeated indices.
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The real numbers fabc in (A.1b) are the structure constants from the
SU(N) traceless Hermitian generators ta:

fabc = −2 iTr (ta [tb, tc]) , (A.3a)

Tr (ta · tb) =
1

2
δab , (A.3b)

where the last equation sets the normalization of the generators. The coeffi-
cients â cµ in (A.1b) have resulted from the expansion of the bosonic master-
field matrix âµ with respect to these generators,

(âµ)kl = â cµ (tc)kl . (A.4)

The charge conjugation matrix C in (A.1b) becomes the unit matrix for an
appropriate choice of Σµ matrices [14]:

Σ1 = i σ2 ⊗ σ2 ⊗ σ2 ⊗ σ2 , Σ2 = i σ2 ⊗ σ2 ⊗ 1⊗ σ1 ,

Σ3 = i σ2 ⊗ σ2 ⊗ 1⊗ σ3 , Σ4 = i σ2 ⊗ σ1 ⊗ σ2 ⊗ 1 ,

Σ5 = i σ2 ⊗ σ3 ⊗ σ2 ⊗ 1 , Σ6 = i σ2 ⊗ 1⊗ σ1 ⊗ σ2 ,

Σ7 = i σ2 ⊗ 1⊗ σ3 ⊗ σ2 , Σ8 = i σ1 ⊗ 1⊗ 1⊗ 1 ,

Σ9 = i σ3 ⊗ 1⊗ 1⊗ 1 , Σ10 = 1⊗ 1⊗ 1⊗ 1 = 116 , (A.5)

which are manifestly symmetric (so that the corresponding matrix C is triv-
ial). Incidentally, we prefer to call these matrices “Sigma” by analogy to the
4-dimensional case with the four 4× 4 Dirac matrices γµ and the three 2×2
Pauli matrices σa, to which σ4 ≡ 1 is added.

The matrix dimension of M equals 48 for N = 2, 128 for N = 3, and
240 for N = 4. With arbitrary numerical coefficients â cµ , it can be readily
verified that det[M] = (Pf[M])2 is positive and real for N = 2 and 3, but
complex for N = 4. This implies that the above Pfaffian is real for N = 2
and 3 and complex for N = 4. The above Pfaffian is, in general, complex
also for N > 4 [14].

The homogeneous polynomial P ( â ) from (A.1a) has an order equal to
half the dimension ofM ( â ). Hence, the polynomial P ( â ) has the order 24,
64, and 120 for N = 2, 3, and 4, respectively. The corresponding algebraic
equations (2.1a) are indeed huge.
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Appendix B

Pseudorandom numbers for (D, N) = (10, 4)

In this appendix, we give the particular realization (the “κ-realization”)
of the pseudorandom numbers used for the approximate numerical solution
of Section 5.2.

Specifically, we take the following 4 real pseudorandom numbers for the
master momenta:

p̂κ-realization =
{
−111

250 ,
19
200 , −

63
200 ,

189
1000

}
, (B.1)

and the following 150 real pseudorandom numbers entering the Hermitian
master-noise matrices:

η̂ 1
κ-realization =

593
2000

√
2
− 151

500
1

2000 −
9i
40

353
2000 + 6i

25 − 987
2000 −

51i
400

1
2000 + 9i

40
151
500 + 593

2000
√

2
1
8 −

63i
2000 −131

400 −
367i
2000

353
2000 −

6i
25

1
8 + 63i

2000 − 369
1000 −

593
2000

√
2
−169

400 + 171i
500

− 987
2000 + 51i

400 −131
400 + 367i

2000 −169
400 −

171i
500

369
1000 −

593
2000

√
2

 , (B.2a)

η̂ 2
κ-realization =

69
2000 −

17
50
√

2
−153

500 −
47i
500

897
2000 −

61i
1000

269
2000 −

237i
2000

−153
500 + 47i

500 − 69
2000 −

17
50
√

2
1

250 −
13i
200 −103

400 + 367i
1000

897
2000 + 61i

1000
1

250 + 13i
200

17
50
√

2
− 123

250
1
20 −

71i
2000

269
2000 + 237i

2000 −103
400 −

367i
1000

1
20 + 71i

2000
123
250 + 17

50
√

2

 , (B.2b)

η̂ 3
κ-realization =

313
1000 + 7

250
√

2
7

200 + 431i
2000

17
40 −

59i
250 − 437

2000 + 69i
1000

7
200 −

431i
2000

7
250
√

2
− 313

1000 − 991
2000 −

49i
250

83
1000 −

279i
2000

17
40 + 59i

250 − 991
2000 + 49i

250
871
2000 −

7
250
√

2
49
250 + 121i

500

− 437
2000 −

69i
1000

83
1000 + 279i

2000
49
250 −

121i
500 − 871

2000 −
7

250
√

2

 , (B.2c)

η̂ 4
κ-realization =

293
1000 + 429

2000
√

2
− 11

250 −
469i
2000 − 439

1000 −
483i
2000 −11

50 + 41i
400

− 11
250 + 469i

2000
429

2000
√

2
− 293

1000
409
1000 −

343i
2000

3
16 −

407i
1000

− 439
1000 + 483i

2000
409
1000 + 343i

2000 − 6
125 −

429
2000

√
2
−141

500 −
31i

2000

−11
50 −

41i
400

3
16 + 407i

1000 −141
500 + 31i

2000
6

125 −
429

2000
√

2

 , (B.2d)
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η̂ 5
κ-realization =

183
500
√

2
− 48

125
37
125 + 249i

1000 − 511
2000 −

43i
500 − 129

2000 + 19i
200

37
125 −

249i
1000

48
125 + 183

500
√

2
49
400 −

463i
1000

23
200 + 433i

2000

− 511
2000 + 43i

500
49
400 + 463i

1000 − 46
125 −

183
500
√

2
821
2000 + 199i

2000

− 129
2000 −

19i
200

23
200 −

433i
2000

821
2000 −

199i
2000

46
125 −

183
500
√

2

 , (B.2e)

η̂ 6
κ-realization =

181
1000 −

181
2000

√
2

−143
500 + i

5
921
2000 −

313i
1000 − 603

2000 −
449i
2000

−143
500 −

i
5 − 181

1000 −
181

2000
√

2
609
2000 −

39i
2000

443
2000 + 383i

1000
921
2000 + 313i

1000
609
2000 + 39i

2000
941
2000 + 181

2000
√

2
− 17

1000 + 27i
2000

− 603
2000 + 449i

2000
443
2000 −

383i
1000 − 17

1000 −
27i

2000
181

2000
√

2
− 941

2000

 ,(B.2f)

η̂ 7
κ-realization =

57
2000 + 83

200
√

2
−129

500 −
147i
2000

387
2000 −

611i
2000

313
2000 + 191i

400

−129
500 + 147i

2000
83

200
√

2
− 57

2000 − 61
500 −

11i
50 − 969

2000 + 927i
2000

387
2000 + 611i

2000 − 61
500 + 11i

50 − 2
125 −

83
200
√

2
489
1000 + 361i

1000
313
2000 −

191i
400 − 969

2000 −
927i
2000

489
1000 −

361i
1000

2
125 −

83
200
√

2

 , (B.2g)

η̂ 8
κ-realization =

321
2000 −

193
2000

√
2

− 273
2000 −

441i
2000

427
1000 −

317i
2000 − 407

2000 −
57i
400

− 273
2000 + 441i

2000 − 321
2000 −

193
2000

√
2

23
2000 + 93i

400
163
500 + 18i

125
427
1000 + 317i

2000
23

2000 −
93i
400

307
1000 + 193

2000
√

2
333
2000 −

9i
25

− 407
2000 + 57i

400
163
500 −

18i
125

333
2000 + 9i

25
193

2000
√

2
− 307

1000

 , (B.2h)

η̂ 9
κ-realization =
− 39

400 −
7

200
√

2
1

500 −
i

125 − 981
2000 + 56i

125 − 137
1000 + 547i

2000
1

500 + i
125

39
400 −

7
200
√

2
− 201

1000 + 101i
1000 − 63

500 + 31i
125

− 981
2000 −

56i
125 − 201

1000 −
101i
1000

197
400 + 7

200
√

2
597
2000 −

57i
125

− 137
1000 −

547i
2000 − 63

500 −
31i
125

597
2000 + 57i

125
7

200
√

2
− 197

400

 , (B.2i)

η̂ 10
κ-realization =

577
2000

√
2
− 319

2000
969
2000 + 2i

5 − 243
2000 + 29i

500 − 19
125 −

151i
1000

969
2000 −

2i
5

319
2000 + 577

2000
√

2
17
50 + 119i

2000
463
2000 −

33i
400

− 243
2000 −

29i
500

17
50 −

119i
2000

119
1000 −

577
2000
√

2
257
1000 + 219i

500

− 19
125 + 151i

1000
463
2000 + 33i

400
257
1000 −

219i
500 − 119

1000 −
577

2000
√

2

. (B.2j)
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Incidentally, the above matrices (B.2) also make clear what 4× 4 matrix
realizations have been chosen for the SU(4) generators ta from (A.3).
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