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A new form of potential is used to treat the optical model unequivo-
cally for the analysis of scattering results of the 58Ni + 27Al system. The
phenomenological optical potential is formed with the Ginocchio potential
for analysis near the Coulomb barrier. Theoretical calculations explain the
experimental outcomes over a wide range of colliding energies, and hence
exhibit threshold anomaly. An inbuilt non-trivial behaviour in the formu-
lation near the Coulomb barrier position is found essential for a successful
explanation of the experimental results.
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1. Introduction

Interaction between two nucleons is the basic interaction in nuclear phys-
ics. This can be a phenomenological representation with proper radial de-
pendence with the help of nuclear scattering experiments. In principle, the
knowledge of such interaction can explore all properties of nuclei, but the
case is not so in practice. Rather the properties are studied by taking the
help of proper scattering experiments and reaction measurements [1, 2].

Not all the experiments involve the interaction of only nucleons with
nuclei. The interaction may involve alpha particles, deuterons, and many
other particles of composite nature. Superposition of contributing interac-
tions is considered in such situations. Various properties of nuclei can be
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determined by nucleus–nucleus scattering experiments at low- and medium-
energy ranges. The results so obtained can be analyzed by different models
of macroscopic and microscopic nature; the optical model is one of those
models. The versatility of an optical model is evident from the applicability
of the model even in the case of many complicated nuclear phenomena for
analysis. We may cite the examples of Woods–Saxon potential, Gaussian po-
tential, modified Woods–Saxon potentials, and some others which are used
in optical model analysis.

The real and imaginary parts of the optical potential show interesting
variations around the Coulomb barrier in the elastic scattering [3–7] of heavy
ions (A ≥4). In the case of tightly bound heavy projectiles, the real part
of the potential shows a quick rise when the magnitude of colliding energy
becomes very close to the Coulomb barrier. It attains its maximum at the
barrier and then shows a slow fall as the incident energy decreases below
the Coulomb potential. Interestingly, the real part hardly shows prominent
variation at higher magnitudes of colliding energies. Thus, the course of
variation follows a near bell-shaped curve around the Coulomb barrier.

The variation in the case of the imaginary part is different in the same
vicinity. It remains nearly constant at higher energy but decreases to a low
value around the barrier [7–13]. The phenomenon is referred to as threshold
anomaly (TA). TA phenomena take place due to the coupling of different
reaction channels; the channels being both elastic and quasi-elastic. The
anomaly in variations observed in the real and imaginary parts with colliding
energy of the projectile can be explained by dispersion relation, which is
realized from the principle of causality. The dispersion relation of Byron
and Fuller [14] may be considered for an explanation of the phenomena. We
explain the TA phenomenon by using a potential with few parameters and
a significantly small imaginary part.

We consider a heavy-ion elastic collision system 58Ni + 27Al, which is
semi-classical due to the big mass and large size of the particles involved.
The experimental data of the system are explained within the framework
of an optical model by using complex potential with suitable parameters.
Experimental measurement and theoretical analysis of scattering angular
distribution data of the elastic system are obtained from Brandan et al.
[15]. The angular distributions are measured with nickel beams (58Ni) at
five energies from 48.8 to 69.5 MeV in the centre-of- mass (c.m.) frame. We
consider this system to extend the variation in the study of elastic scatter-
ing with special attention to TA. A large change in the real part near the
Coulomb barrier was found for the system 16O+ 208Pb [7, 9], but the varia-
tion was small in the cases of 32S+32S [16], 32S+ 40Ca [13], and 35Cl+ 24Mg
[17]. The scattering data were measured by Sugiyama et al. [18, 19] for
the systems 28Si + 58Ni, 28Si + 62Ni, and 28Si + 64Ni, while Brandan et al.
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[15] considered a neighbouring system 58Ni + 27Al. We are interested in
the system 58Ni + 27Al to explain the experimental results by our optical
potential for the same energy range. Consideration of the system with an
aluminium target helps us realize the versatility of our potential in analyzing
light targets in addition to comparably heavier targets such as 90Zr [20] and
56Fe [21].

We use a phenomenological optical potential [22, 23] based on a short-
ranged, smooth, and analytically solvable asymmetric potential developed
by Ginocchio [24]. Our potential has significantly fewer parameters. The
potential consists of two analytically solvable regions, namely, the inner (vol-
ume) region and the outer (surface) region. The regions are smoothly joined
near r = R0. We refer the location to an analytic junction, because the
junction is analytically solvable and the Schrödinger equation can be solved
there. Mallick et al. in [22] have explained the results of 16O+28Si scattering
experiment over a large range of energy by using this potential. The inbuilt
non-trivial behaviour near the Coulomb barrier position is an important fea-
ture of the potential used. The feature helps us explain the experimental
data of the collision system with a tightly bound nickel (58Ni) projectile.
We also find the phenomena of ‘threshold anomaly’ in systems 14N+90Zr
[20] and 14N+56Fe [21] with the fast rise of the absorptive imaginary part,
accompanied by a rapid fall of the real part of potential when the incident
energy magnitude rises above their respective Coulomb barriers.

The optical potentials used in some papers bear large imaginary parts,
in which substantial absorption of partial waves may take place. On the
contrary, Brandan et al. [15] fix the volume imaginary term at a low value
in comparison to the high real part but vary the surface component to fit
the data. The ratio between imaginary-to-real parts remains at 0.04 for the
entire range of incident energy. The small ratio is less effective in destroying
resonance states if at all generated by volume part in effective potential.

We organized our illustration to discuss the formulation of the optical
potential in Section 2. The sub-sections contained in Section 3 explain the
application of the formulation for elastic scatterings of the tightly bound
heavy projectile on the aluminium target at energies close to the Coulomb
barrier and describe the TA phenomenon. The dependence of reflection
function |Sl| upon ‘l’ is studied for each contributing partial wave. Finally,
Section 4 presents the summary of the analysis and main conclusions of the
task.

2. Formulation of theory

Nuclear interactions are described by a potential comprising the Coulomb
potential VC(r), the nuclear potential VN(r), and a centrifugal part VCF.
Their combined effect or effective potential Veff(r) for the reduced system of
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nuclear collision with reduced mass µ can be given by

Veff = VC(r) + VN(r) + VCF . (1)

The term

VCF ∼
l(l + 1)~2

2µr2

describes the potential as a contribution from the centrifugal force. The
nuclear potential is given in complex form, i.e., VN(r) = Vn(r) + iWn(r).
The real part [23] of the nuclear potential is represented by

Vn(r) =


−VB
B1

[
B0 + (B1 −B0)

(
1− y2

1

)]
if 0 < r < R0 ,

−VB
B2

[
B2

(
1− y2

2

)]
if r ≥ R0 .

(2)

With substitutions of y = tanh ρn, ρn = (r − R0)bn, and VB = V01B1 =
V02B2, the real part becomes

Vn(r) =


−V01

[
B0 +

(B1−B0)

cosh2 ρ1

]
if 0 < r < R0 ,

−V02

[
B2

cosh2 ρ2

]
if r ≥ R0 .

(3)

The parameter bn is known as the slope parameter and is given by bn =√
2mVB
~2Bn

for which n = 1, 2. In Eq. (3), R0 represents the radial distance
in the surface region which is close to the radial position of the effective
S-wave barrier potential. The potential depth at origin r = 0 is controlled
by B0, whereas parameter VB gives a measure of potential depth at r =
R0. Parameter Bn controls bn on both sides of R0, and so does the other
parameter VB. A little change in Bn results in a large variation in the
potential, and bn changes largely. Figure 1 describes the real part Vn(r)
of nuclear potential with the parameters mentioned. The potential we use
possesses an interesting feature that is different from the usual potential
behaviour. Unlike monotonous fall of potential with distance ‘r’ in the
case of standardWoods–Saxon potential, our potential shows neck-formation
near r = R0, where two sections of the potential corresponding to the volume
region (slope b1) and the surface region (slope b2) meet to satisfy analytic
continuity. The feature ensures indifference in two parts of the potential and
keeps their derivatives the same at that position as well. Such a potential
takes care of phenomena such as the effects of frictional forces and resonance
in the formation of a composite binuclear system. It can transfer nucleon(s)
of the target to the projectile and of a projectile to the target in the surface
region as the bombarding nuclei interact with each other. This non-trivial
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feature helps fit cross sections suitably at various energies for the system
considered. This is further explained in Fig. 7 in Section 4. The non-trivial
behaviour does not impose any irregularity in amplitude variation of the
wave function with the varying radial distance.

Fig. 1. The real part Vn(r) of the nuclear potential for the scattering system 58Ni+
27Al plotted against the radial distance ‘r’ at incident energy Ecm = 53.6 MeV.
Parameters taken are R0 = 9.7 fm, B0 = 250 MeV, B1 = 6.0, B2 = 1.0 and
VB = 1.6 MeV. The arrow indicates the position of analytic junction.

The imaginary part Wn(r) of the potential can be represented in a sim-
ilar fashion as that of the real part. Of course, their strengths differ. By
substituting V0nW = VBW /Wn, the imaginary part is given by Eq. (4) and
its behaviour is depicted in Fig. 2 with suitable parameterization

Wn(r) =


−V01W

[
W0 +

(W1−W0)

cosh2 ρ1

]
if 0 < r < R0W ,

−V02W

[
W2

cosh2 ρ2

]
if r ≥ R0W .

(4)

The Coulomb potential for the scattering system is given by

VC(r) =


ZPZTe

2

2R3
C

(
3R2

C − r2
)

if r < RC ,

ZPZTe
2

r if r > RC ,

(5)

where RC = rC(A
1/3
P + A

1/3
T ); AP is the mass number of the projectile and

AT is the mass number of the target nucleus. Also, ZP is the atomic number
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Fig. 2. Presentation of the imaginary part Wn(r) of the nuclear potential against
the radial distance (r) for 58Ni + 27Al system at the incident energy Ecm = 53.6

MeV. Parameters are R0W = 9.75 fm, W0 = 7.2 MeV, VBW = 1.1 MeV, W1 = 1.0

and W2 = 1.2. An arrow indicates the position of analytic junction.

of the projectile and ZT is the atomic number of the target nucleus. With
l = 0, Eq. (5) describes the effective potential as

Veff(r) = VN(r) + VC(r) . (6)

The real part (taking l = 0) of the effective optical potential is given in
Fig. 3 with the parameters which are used for the real part in Fig. 1 and the
imaginary part in Fig. 2. The scattering amplitude can be determined by
solving Schrodinger’s equation. We solve the following Schrodinger equation
with the given effective potential Veff(r) for various partial waves (l) to obtain
the total scattering amplitude f(θ).[

−~2

2µ
∇2 + Veff(r)

]
ψ(~r ) = Eψ(~r ) . (7)

The total scattering amplitude f(θ) is expressed as the sum of Coulomb and
nuclear scattering amplitudes. fC(θ) and fN(θ) are the Coulomb scatter-
ing amplitude and nuclear scattering amplitude, respectively, then the total
scattering amplitude is given by

f(θ) = fC(θ) + fN(θ) . (8)
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Fig. 3. The effective optical potential Veff(r) for l = 0 for 58Ni+ 27Al at Ecm= 53.6
MeV against the radial distance (r). Parameters are R0 = 9.7 fm, B0 = 250 MeV,
B1 = 6.0, B2 = 1.0, VB = 1.6 MeV, R0W = 9.75 fm, W0 = 7.2 MeV, VBW = 1.1

MeV,W1 = 1.0 andW2 = 1.2. The arrow indicates the position of analytic junction
in the effective potential.

The nuclear amplitude fN(θ) and the Coulomb amplitude fC(θ) have expan-
sions as follows:

fN(θ) =
1

2ik

∑
l

(2l + 1)e2iσl
(
e2iδ̄l−1

)
Pl(cos θ) , (9)

fC(θ) =
1

2ik

∑
l

(2l + 1)
(
e2iδ̄l−1

)
. (10)

The parameter σl describes the Coulomb phase shift due to scattering and
δl describes the nuclear phase shift. The ratio of differential cross section
and Coulomb scattering cross section represents the elastic scattering cross
section. The differential cross section of the elastic scattering with respect
to the Rutherford scattering cross section (σRuth ) is given by

dσ

dσRuth
=

∣∣∣∣ f(θ)fC(θ)

∣∣∣∣2 . (11)

Equations (12) and (13) mentioned below describe the partial waves for the
elastic scattering cross section σel and the partial wave reaction cross section
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σrl. The S-matrix for the lth partial wave is represented by Sl

σel =
π

k2
(2l + 1)|1− Sl|2 , (12)

σrl =
π

k2
(2l + 1)

(
1− |Sl|2

)
. (13)

With the above theoretical formalism and potential, the results of the elastic
scattering system have been discussed in the following section.

3. Results

While analyzing elastic scattering data for the system 58Ni + 27Al, the
potential in the optical model taken by Brandan et al. [15] contains a real
part and an imaginary part. The imaginary part comprises the volume term
and complicated surface term, in which the minimum value (1.5 MeV) dif-
fers by 96% from the maximum value (37.67 MeV). The success story of
the optical potential generated by theflexible Ginocchio potential [22–24]
catalyzes us to explain elastic scattering data and threshold anomaly of the
system. The formalism of Section 2 is applied to analyze the experimental
data. Theoretical calculations are carried out to measure angular cross sec-
tions at different incident energies, and the variations in real and imaginary
parts near the Coulomb barrier are studied carefully.

3.1. Study of elastic scattering cross sections

The incident energies in the laboratory frame for the elastic scatter-
ing of 58Ni-beam by 27Al-target are taken at 155, 160, 170, 185, and 220
MeV, which are equivalent to 48.8, 50.4, 53.6, 58.3, and 69.5 MeV, respec-
tively, in the c.m.-frame. The Coulomb barrier of the system is present near
50MeV. The optical model parameters for the best fit are stated in Table 1.

Table 1. Energy-dependent parameters.

Ecm VB W2 VBW

[MeV] [MeV] [MeV] [MeV]
48.8 1.6 1.40 0.4
50.4 1.9 1.20 0.6
53.6 1.6 1.20 1.1
58.3 1.3 1.20 1.24
69.5 1.25 3.90 1.24
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Theoretical angular cross sections are compared with experimental values
as shown in Fig. 4 for the above incident energies. Experimental data ob-
tained from http://nrv.jinr.ru are digitized with GSYS-2.4. Seven pa-
rameters of the potential out of ten parameters remain energy-independent.

Fig. 4. Plotting of calculated angular cross sections against experimental values at
given incident energies for 58Ni + 27Al with parameters R0 = 9.7 fm, R0W = 9.75

fm, B0 = 250 MeV, B1 = 6.0, B2 = 1.0, W0 = 7.2 MeV and W1 = 1.0. In all the
figures, half-dark circles represent experimental data and solid-line curves represent
theoretical calculations. Experimental data are obtained from Ref. [15].

http://nrv.jinr.ru
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The radial distance in the surface region R0 is kept constant at 9.7 fm with
energy here. Other independent parameters are found to be R0W = 9.75
fm, B0 = 250 MeV, B1 = 6.0, B2 = 1.0, W0 = 7.2 MeV, and W1 = 1.0for
the best fit of theoretical data to experimental results for the entire range
of incident energies. Only three parameters VB, W2, and VBW enlisted in
Table 1 vary with incident energies. For our entire calculations, we take
the Coulomb radius parameter rC to be 1.25 fm. Theoretical calculations
are in fairly good agreement with the experimental results, which is evident
from the plots illustrated in Fig. 4. Theoretical calculations in the graphs
are represented by solid-line curves, whereas the experimental data [15] are
represented by half-dark circles.

No doubt, the optical potential we use takes care of the volume region as
well as the surface region. Further, imaginary potentials used in the potential
for the best fit are significantly small in comparison to the corresponding real
potentials. The real parts of the potential are taken the same, i.e., 250 MeV
for all the five incident energies. The imaginary parts are also kept small and
the same, i.e., 7.2 MeV in comparison to their counterpart real potentials.
Thus, the ratios of imaginary parts to real parts remain the same, i.e., 0.028
for all colliding energies.

3.2. Phenomenon of threshold anomaly

While plotting theoretical data against experimental results, the real
and the imaginary parts of the optical potential show the phenomenal vari-
ation. Variations found for the best-fit curves at colliding energies near the
Coulomb barrier are described in Fig. 5.

Fig. 5. Variation of optical potential with incident energy. Left: the real part (VB)
varies with incident energy near the Coulomb barrier. The variation is described
by a dashed line with dark stars. Right: the imaginary part (VBW ) varies with
incident energy near the Coulomb barrier. The variation is shown by a dashed line
with dark circles.
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The imaginary part (VBW ) increases when the incident energy increases
above the top of the Coulomb barrier and then remains constant at about
1.24 MeV. In the same vicinity, the real part (VB) increases initially from
1.6MeV to 1.9 MeV near the Coulomb barrier. Again it decreases rapidly
from the top of the barrier until its strength becomes nearly constant (∼ 1.25
MeV) at higher energies. The variations surmise the presence of an inter-
esting phenomenon threshold anomaly in the interaction of 58Ni with the
27Al target. The bell-shaped dashed line for the real part and the L-shaped
dashed line for the imaginary part shown in the TA graph are obtained from
the equation of dispersion relation. Theoretical calculations substantially
follow the shapes.

3.3. Study of reflection function |Sl|

The variation of the reflection function |Sl| and |1 − Sl| with ‘l’ values
are depicted in Fig. 6 to observe the dependence on the contributing partial
waves at incident energy Ecm = 69.5 MeV. As is evident from the plot
of |Sl|, the partial waves having low ‘l’ values are absorbed for which |Sl|
almost vanishes. They contribute to nuclear reactions. The partial waves
having higher ‘l’ values greater than l = 28 are effective in the Coulomb
region dominated by repulsion. Thus, the plot distinguishes the absorptive
domain from the non-absorptive Coulomb domain and shows how the low
‘l’ partial waves significantly contribute to the elastic scattering. On the
other hand, if the variation of |1− Sl| is considered, then oscillations in the

Fig. 6. Plotting of the reflection function |Sl| and |1−Sl| as functions of ‘l’ for the
58Ni + 27Al system at Ecm = 69.5 MeV. Potential parameters are stated above.
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elastic cross section at higher energy are expected. When the value of VBW
remains small at the surface region, it allows a greater number of partial
waves to enter the interior region. Barrier waves are scattered from the
barrier. The superposition of internal waves with barrier waves produces
correct measured elastic scattering data in presence of a non-trivial feature
in the effective potential.

4. Conclusions

We use only three parameters that are energy-dependent for the entire
analysis as compared to many parameters of the Woods–Saxon potential.
The optical potential used possesses a specific deformation effect at the
surface of the nucleus. The deformation controls absorption during nucleus–
nucleus scattering. This can be reflected in the analysis of the scattering
system. The non-trivial shape of the potential may cause deformation in
the Coulomb barrier and particularly such non-trivial deformation helps us
explain the elastic scattering data of the system.

Boztosun et al. [25] have added two additional real potentials U1(r) and
U2(r) to the nuclear potential to construct a modified optical potential.
The additional terms are derivatives of the Woods–Saxon shape. This tech-
nique can modify the shape of optical potential at the surface region. This
greatly helps improve the agreement between the experimental values and
our theoretical calculations in the elastic scattering. There are many ex-
amples of adding extra terms to the nuclear potential which modifies its
monotonic variation with the radial distance to account for those effects for
fitting the elastic scattering data. In a similar fashion, our optical potential
is constructed with a non-trivial formation to accommodate such internal
processes in heavy-ion collisions.

We are unable to explain experimental results with the theoretical for-
malism without considering the non-trivial aspect of our construction. In
this regard, we show the results with R0 = 0, and then with R0 = R0W = 0
in Fig. 7 for the system 58Ni+17Al at Ecm = 53.6 MeV to observe the effect
of the non-trivial feature. We compare the left plot in the middle row of
Fig. 4 with Fig. 7; both the plots are given for the same incident energy,
Ecm = 53.6 MeV. The theoretical result with R0 = 0 is shown in Fig. 7
with a solid curve, which deviates from the experimental values represented
by dark circles. Here, the condition R0 = 0 results in the absense of outer
region. Similarly, R0W = 0 imposes the condition for the absence of inner
region, with which the theoretical result is shown by a horizontal straight
segment that largely deviates from the experimental data. Thus, our the-
oretical calculations agree with the experimental data iff both the regions
are taken simultaneously. Hence, by looking at the fittings of calculated
elastic scattering values with and without the non-trivial features, we seek
its essentiality in our potential.
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Fig. 7. Comparison of theoretically calculated angular elastic scattering cross sec-
tions with experimental values for 58Ni + 27Al system at Ecm = 53.6MeV with
R0 = R0w = 0, R0 = 0, and the experimental results.

Our theoretical formalism well explains the experimental results for the
said system. It works well in the case of the light 27Al-target and heavy
58Ni-projectile. Further, the potential observes the TA phenomenon near
the Coulomb barrier of the system considered.

We are thankful to Jajati Kesari Nayak for discussion.

REFERENCES

[1] M.J. Moravcsik, «The Two-Nucleon Interaction», Clarendon Press, Oxford
1963.

[2] P.E. Hodgson, «The Optical Model of the Nucleon–Nucleus Interaction»,
Annu. Rev. Nucl. Sci. 17, 1 (1967).

[3] C. Mahaux, H. Ngô, G.R. Satchler, «Causality and the threshold anomaly of
the nucleus–nucleus potential», Nucl. Phys. A 449, 354 (1986).

[4] A.M. Stefanini et al., «Strong Energy Dependence of the Optical Potential
for 32S+ 58,64Ni near the Coulomb Barrier», Phys. Rev. Lett. 59, 2852 (1987).

[5] D. Pereira et al., «Effect of the threshold anomallyon the fusion cross
sections for the systems 16O+ 63,65Cu», Phys. Lett. B 220, 347 (1989).

[6] I.J. Thompson, M.A. Nagarajan, J.S. Lilley, M.J. Smithson, «The threshold
anomaly in 16O+ 208Pb scattering», Nucl. Phys. A 505, 84 (1989).

[7] M.A. Nagarajan, C.C. Mahaux, G.R. Satchler, «Dispersion Relation and the
Low-Energy Behavior of the Heavy-Ion Optical Potential», Phys. Rev. Lett.
54, 1136 (1985).

http://dx.doi.org/10.1146/annurev.ns.17.120167.000245
http://dx.doi.org/10.1016/0375-9474(86)90009-6
http://dx.doi.org/10.1103/PhysRevLett.59.2852
http://dx.doi.org/10.1016/0370-2693(89)90885-X
http://dx.doi.org/10.1016/0375-9474(89)90417-X
http://dx.doi.org/10.1103/PhysRevLett.54.1136
http://dx.doi.org/10.1103/PhysRevLett.54.1136


10-A1.14 K.K. Jena, S.K. Agarwalla, B.B. Sahu

[8] D. Abriola et al., «Energy dependence of the optical potential for the
16O+ 144Sm system near the Coulomb barrier», Phys. Rev. C 39, 546 (1989).

[9] G.R. Sachtler, «Heavy-ion scattering and reactions near the Coulomb barrier
and “threshold anomalies”», Phys. Rep. 199, 147 (1991).

[10] Lin Chengjian et al., «Quasi-elastic Scattering of 19F + 208Pb System at
Near-and Sub-barrier Energies», Chinese Phys. C 21, 872 (1997).

[11] B.R. Fulton et al., «Energy dependence of the 16O+ 60Ni potential and the
optical model dispersion relation», Phys. Lett. B 162, 55 (1985).

[12] C.J. Lin et al., «Threshold anomaly in the 19F + 208Pb system», Phys. Rev.
C 63, 064606 (2001).

[13] J. Díaz et al., «The threshold anomaly in the 32S + 40Ca interaction», Nucl.
Phys. A 494, 311 (1989).

[14] F.W. Byron Jr., R.W. Fuller, «Mathematics of Classical and Quantum
Physics», Inc., New York (1992).

[15] M.E. Brandan et al., «Elastic scattering of 58Ni + 27Al at near-barrier
energies», Phys. Rev. C 48, 1147 (1993).

[16] B. Bilwes et al., «Folding model analysis of 32S + 32S elastic scattering at 70,
90, 97.09, 120 and 160 MeV», Nucl. Phys. A 473, 353 (1987).

[17] J.M. Barrigon et al., «Isotopic effects and surface absorption in
35,37Cl + 24Mg interactions», Nucl. Phys. A 545, 720 (1992).

[18] Y. Sugiyama et al., «Transfer cross sections for 28Si + 58,62Ni», Phys. Lett. B
176, 302 (1986).

[19] Y. Sugiyama et al., «Contribution of nucleon transfer to the elastic scattering
of 28Si + 58,64Ni near the Coulomb barrier», Phys. Rev. Lett. 62, 1727 (1989).

[20] K.K. Jena, S.K. Agarwalla, «Analysis of Elastic Scattering of 14N+ 90Zr», in:
Y.K. Gupta, R.R. Sahu, S. Santra, A.K. Gupta (Eds.) «Proceedings of the
65th DAE-BRNS Symposium on Nuclear Physics», Bhabha Atomic Research
Centre, DAE Convention Center, Mumbai, India December 1–5, 2021, p. 329.

[21] K.K. Jena et al., «Study of Threshold Anomaly in 14N+ 56Fe», in: Y.K.
Gupta, R.R. Sahu, S. Santra, A.K. Gupta (Eds.) «Proceedings of the 65th

DAE-BRNS Symposium on Nuclear Physics», Bhabha Atomic Research
Centre, DAE Convention Center, Mumbai, India December 1–5, 2021, p. 437.

[22] G.S. Mallick, S.K. Agarwalla, B.Sahu, C.S. Shastry, «Analysis of elastic
scattering of 16O+ 28Si and 12C+ 24Mg by a new optical potential», Phys.
Rev. C 73, 054606 (2006).

[23] B. Sahu, G.S. Mallick, S.K. Agarwalla, «Soluble complex potential model for
heavy-ion collision: resonance and fusion in 12C+ 12C reaction», Nucl. Phys.
A 727, 299 (2003).

[24] J.N. Ginocchio, «A class of exactly solvable potentials. I. One-dimensional
Schrödinger equation», Ann. Phys. (N.Y.) 152, 203 (1984).

[25] I. Boztosun, «New results in the analysis of 16O+ 28Sielastic scattering by
modifying the optical potential», Phys. Rev. C 66, 024610 (2002).

http://dx.doi.org/10.1103/PhysRevC.39.546
http://dx.doi.org/10.1016/0370-1573(91)90066-U
http://dx.doi.org/10.1016/0370-2693(85)91060-3
http://dx.doi.org/10.1103/PhysRevC.63.064606
http://dx.doi.org/10.1103/PhysRevC.63.064606
http://dx.doi.org/10.1016/0375-9474(89)90026-2
http://dx.doi.org/10.1016/0375-9474(89)90026-2
http://dx.doi.org/10.1103/PhysRevC.48.1147
http://dx.doi.org/10.1016/0375-9474(87)90150-3
http://dx.doi.org/10.1016/0375-9474(92)90299-Y
http://dx.doi.org/10.1016/0370-2693(86)90168-1
http://dx.doi.org/10.1016/0370-2693(86)90168-1
http://dx.doi.org/10.1103/PhysRevLett.62.1727
http://dx.doi.org/10.1103/PhysRevC.73.054606
http://dx.doi.org/10.1103/PhysRevC.73.054606
http://dx.doi.org/10.1016/j.nuclphysa.2003.08.010
http://dx.doi.org/10.1016/j.nuclphysa.2003.08.010
http://dx.doi.org/10.1016/0003-4916(84)90084-8
http://dx.doi.org/10.1103/PhysRevC.66.024610

	1 Introduction
	2 Formulation of theory
	3 Results
	3.1 Study of elastic scattering cross sections
	3.2 Phenomenon of threshold anomaly
	3.3 Study of reflection function |Sl|

	4 Conclusions

