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In this study, we tried to evaluate the quadrupole transition rates
and moments of the 104−110Pd isotopic chain and report on the structural
changes of these nuclei based on the variation of the transition probabilities.
To this aim, the electric quadrupole transition probabilities of considered
nuclei are calculated in both interacting boson models 1 and 2 frameworks.
Different levels are labelled and described by the quantum numbers of affine
SU(1,1) infinite-dimensional algebra between U(5) and O(6) dynamical lim-
its of considered models. The relation of calculation accuracy and the effec-
tive charges in comparison with quadrupole deformation and experimental
half-lives are considered. The interacting boson model 1 makes more exact
results for the only intra-band quadrupole transition rates and also such
Pd isotopes which have the lowest quadrupole deformations. Similarly,
the interacting boson model 2 makes more exact predictions for inter-band
transitions and also such transitions originated from the intruder state.
There are some significant changes in the quadrupole moments of differ-
ent levels in such nuclei which suggested them as candidates for the E(5)
critical point.
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1. Introduction

The electromagnetic transition rates together with energy spectra are
known as the most commonly used observables used in the theoretical de-
scription of different nuclei. Regarding the significant experimental data
of the electric quadrupole transition probabilities, this quantity is a suit-
able choice and allows evaluating the capability of the model, due to its
dependency on the defined operator and the proposed wave functions in the
framework of the selected model. The displacement of levels reported in
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some phenomena such as mixed symmetries, shape coexistence, and quan-
tum phase transition (QPT) affects these transition rates. This means, one
can use the variation of these probabilities to consider the structure of dif-
ferent nuclei. In atomic nuclei, the interplay of three fundamental forces
(electromagnetic, strong, and weak) between strongly interacting individual
fermions gives rise to the collective motion of nucleons, which for specific
proton (Z) and neutron (N) numbers can drive a system into dramatically
different coexisting nuclear shapes [1–5]. Different theoretical frameworks
such as the shell model [6–9] and geometric collective model [10, 11] are
the usual approaches for studying the structure of nuclei, in addition to
providing the ability to use different interactions depending on the proton
and neutron alignment in the selected nuclei. The success of these models
is especially remarkable for nuclei that are located near the closed proton
(or neutron) shells. On the other hand, the interacting boson model (IBM),
which is defined by using the algebraic structure and the creation and anni-
hilation operators, is known as the most commonly used framework for the
description of shape coexistence and its signatures. Energy levels, transition
rates, quadrupole moments can be used to describe the mixing of different
symmetries in nuclear structure, as it has been done in Refs. [12–25].

The present study aimed to evaluate the quadrupole transition rates
and moments of the 104−110Pd isotopic chain to investigate the indications
of structural changes, based on the variation of the transition probabilities.
The different isotopes of the Pd chain show indications of the mixing of
spherical and deformed shapes due to their proximity to the closed proton
and neutron shells. These nuclei are the subject of different studies which
used models based on algebraic techniques [26–35] and mean field approaches
to determine their energy spectra and transition rates [36, 37]. By consid-
ering two versions of IBM simultaneously, we evaluated the dependency of
the accuracy of the results and the effective charge coefficients to various
parameters.

2. Theoretical models

The electromagnetic transition probabilities have been highly studied
by both conducting experimental methods and also by various theoretical
models. The dependency of these quantities on the relevant operator, as
well as the wave functions of various states of the systems, allows evaluating
the capability of the model in comparison with the experimental data. The
probability of the λ-order electric transition defines as the expectation value
of the related transition operator as

B (Eλ; Ji → Jf) =
|〈Ji, ζ||T (Eλ)||Jf , ξ〉2

2Ji + 1
, (1)
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where ξ and ζ and are other quantum numbers required for labelling the
states. A Definition of the suitable operator and also the wave function
of considered states are the most necessary issues to evaluate transition
rates. Therefore, the following sections introduce the operators and quantum
numbers of the two models considered in this study.

2.1. Interacting Boson Model 1

The Interacting Boson Model (IBM) is regarded as the most commonly-
used algebraic model to evaluate the energy spectra, as well as different-order
electromagnetic transition rates of nuclear systems in the low-lying regions of
different nuclei [12–14]. This model was introduced by Iachello and Arima in
1975 to examine the energy spectra and transition rates of nuclei in different
mass regions. However, this model has been developed in various ways to
describe the features of nuclei with the odd number of protons (neutrons) [20]
and high spins [21]. Concerning the simplest type of this model, e.g. IBM 1,
no distinction is considered between the proton and neutron; the particles
outside the closed shell are assumed as two types of bosons with the angular
momentum of 0 and 2, s and d bosons, respectively. The algebraic space
of this model is U(6), given the sub-space of two boson operators. In the
following, three dynamic limits of U(5), SO(6), and SU(3) were introduced
to this model to describe the different shapes of known nuclei. Depending
on a specific dynamic limit, a set of quantum numbers corresponding to
the symmetrical groups of that dynamic limit was applied to explain the
different states of each nucleus. Extensive research conducted in recent
years highlighted that the majority of known nuclei have not been fully
incorporated into a dynamic limit and exhibit intermediate behavior. The
E(5) [13] and X(5) [14] dynamical limits are used to describe the transition
between the U(5) to SO(6) and U(5) to SU(3) limits, respectively.

Gamma rays irradiated by nuclei contain very comprehensive data about
nuclear structure. Some observables such as electric moments, electric and
magnetic transitions in different orders are quantities that relate to these ra-
diations and present very sensitive data related to the symmetries of nuclei
and can be regarded as a measure to identify the existence of some phenom-
ena as quantum phase transition (QPT) and shape coexistence [23–26]. On
the other hand, the available experimental data for these quantities make
it possible to test the correctness of selected operators and wave functions
in considered models. The electric quadrupole transition operators in the
IBM 1 are defined as [21]

T̂ (E2)
µ = e

[
d̂ † × s̃+ ŝ† × d̃

](2)
µ

= q′
[
d̂ † × d̃

](2)
µ

, (2)



10-A5.4 F. Mokhtari, H. Sabri, M. Mohseni

where e represents the effective charge, q′ is a dimensionless coefficient and
s†(d †) is the creation operator of s(d) boson. To calculate theoretical pre-
dictions of this model, different states are first labeled, and then we evalu-
ated the effect of different operators of Eq. (2) on them. This process was
repeated for all quadrupole transitions in which their experimental counter-
parts in the considered nuclei are available [38–42]. Finally, the constants
of this model, namely e and q′, are extracted via the least square technique.
On the other hand, the Pd isotopic chains are mentioned as possible cases of
shape coexistence in the review article of Wood et al. [1] on this phenomenon
in even–even nuclei. More details on 108Pd nucleus are shown in the second
review paper by Heyde et al. [9] which also stated that intruder configu-
rations across closed shells cannot provide an explanation for the existence
of shape coexistence in the regions of Z ∼ 40, N ∼ 60. More recent data
on Pd isotopes can be found in the most recent experimental review done
by Garrett et al. [3]. Also, Martinou et al. [15] predict shape coexistence
in the N = 59–70 mass region via the theoretical side based on the alge-
braic approaches, while Bonatsos et al. in their recent paper [16], provide
a possible microscopic explanation of the appearance of shape coexistence
in the Z ∼ 64 and N ∼ 90 regions. They introduced the 0+2 intruder state
as a fingerprint for shape coexistence and suggested different formalisms to
avoid disadvantages of normal formalism in description of such states [43–
47]. These methods are based on mixed of different symmetries or using
the IBM 2 technique which distinguish between protons and neutrons as
reported by Zhang et al., in Ref. [45]. The latest work suggests more exact
predictions for transition rates originated from these intruder states. To
compare the accuracy of two different versions of IBM in the prediction of
transition rates, we consider this formalism, too. In the IBM 2, the E2
transition operator is [21]

T (E2) = epQp + enQn ,

Qρ =

[[
d †ρsρ + s†ρd̃ρ

](2)
+ q′ρ

[
d †ρ d̃ρ

](2)]
, ρ = p and n , (3)

where ep and en are the effective charges for the proton and neutron bosons,
respectively. These quantities together are extracted through a fitting pro-
cedure in comparison with all known B(E2) transition probabilities of con-
sidered nuclei.

3. Results

This research attempted to examine the variations of the quadrupole
transition probabilities of the isotopic chain and their relation with structural
changes in these nuclei. The advantages of using the IBM to study the
properties of nuclei near the closed proton (or neutron) shell by combining
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different symmetries are expressed in different resources such as [23–25]. In
this study, we used affine SU(1,1) algebra to label states and calculated
the expectation value of the quadrupole transition operator, Eq. (3). The
main reason for this choice was the presence of multiple indications for the
coexistence of the shapes corresponding to the U(5) and SO(6) dynamical
limits in the Pd isotopic chain. By using the SU(1,1) operators in the form
of a shape-phase transition Hamiltonian, this method allows combining the
different symmetries by changing only one control parameter.

The SU(1,1) algebra has been described in detail in Ref. [21]. Here,
we briefly outline the basic ansatz and summarize the results. The infinite
dimensional SU(1,1) algebra is generated by using the following operators
[21]:

S±n = c2n+1
s S±(s) + c2n+1

d S±(d) , S0
n = c2ns S

0(s) + c2nd S
0(d) , (4)

where cs and cd are real parameters, and n can be 0,±1,±2, . . . These gen-
erators of this algebra satisfy the commutation relations as[

S 0
m, S

±
n

]
= ±S±m+n ,

[
S+
m, S

−
n

]
= −2S 0

m+n+1 . (5)

Then, {Sµm, µ = 0,+,−;±1,±2, . . .} generates an affine SU(1,1) Lie al-
gebra without central extension. The generators of SU(1,1) algebra make
it possible to introduce a transitional Hamiltonian between U(5) and SO(6)
limits as [21]

Ĥ = gS+
0 S
−
0 + εS 0

1 + γĈ2 (SO(5)) + γĈ2 (SO(3)) , (6)

where g, ε, and γ are real parameters, Ĉ2(SO(5)) and Ĉ2(SO(3)) denote
the Casimir operators of related groups. This Hamiltonian is equivalent to
SO(6) Hamiltonian if cs = cd, and to U(5) Hamiltonian when cs = 0 and
cd 6= 0. Therefore, the cs 6= cd 6= 0 requirement just corresponds to the
U(5)↔ SO(6) transitional region. In our calculation, we take cd(= 1) as a
constant value and cs varying between 0 and cd. The advantages of this
Hamiltonian in description of energy spectra for the Pd isotopic chain have
been reported in the original paper which introduced this algebraic structure
[21] and, therefore, we do not report the predictions of this approach for
energy levels. Interested readers can find details about the processes of such
determinations for energy spectra in Refs. [22, 25, 48] for different isotopic
chains.

The eigenstates which are necessary to determine the eigenvalues of tran-
sitional Hamiltonian and also the quadrupole transition rates are labelled by
using the quantum numbers of the affine SU(1,1) Lie algebra as introduced
in Ref. [21]. This aim is yielded by using the Fourier–Laurent expansion of
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the eigenstates and the generators of SU(1,1) algebra in terms of unknown
c-number parameters of xi with i = 1, 2, . . . , k. Therefore, the eigenstates
can be considered as [21]

|k; νsνn∆LM〉 =
∑
ni∈Z

an1an2 . . . ank
xn1
1 x

n2
2 . . . xnk

k S
+
n1
S+
n2
. . . S+

nk
|lw〉 , (7)

where lw is the lowest state. The analytical behavior of wave functions makes
it possible to consider xi near zero. The commutation relations between the
generators of SU(1,1) algebra together Eq. (10), introduced the final form
of wave functions as

|k; νsνn∆LM〉 = NS+
x1S

+
x2 . . . S

+
xk
|lw〉 . (8)

In this model, the quantum number k regards as the basic quantum number
and relates to the total number of bosons, NB, as [21]

NB = 2k + νs + νd . (9)

N is also the normalization factor, and the operators are defined as

S+
xi =

cs
1− c2sxi

S+(s) +
cd

1− c2dxi
S+(d) . (10)

The c-numbers of xi are determined through the following set of equations:

α

xi
=
gc2s
(
νs + 1

2

)
1− c2sxi

+
gc2d
(
ν + 5

2

)
1− c2dxi

−
∑
i 6=j

2

xi − xj
for i = 1, 2, . . . , k . (11)

We have solved Eq. (11) with definite values of c and α for the i = 1 case
as introduced in Ref. [21]. We have determined the roots of Bethe–Ansatz
equations (BAE) with specified values of νs and ν. Then, we have used
“Find root” in the Maple17 software to get all roots.

The Pd isotopic chain is located in the near and vicinity of Z = 50
proton closed shell. The energy spectra of such nuclei correspond with the
prediction of U(5) dynamical limit and, consequently, we can use the eigen-
states of SU(1,1) formalism as |k, νd, νs, ν∆, L〉 for their labelling. On the
other hand, the selection rules for the first and second terms of Eq. (2) are
respectively, ∆nd = ±1 and ∆nd = 0. For the ground-state band, where
the nd is constant, the quantum numbers which yield non-zero results are
νd = nd, n∆ = 0, and L = 2nd. For the excited bands, we used different
values of nd, and this makes a non-zero effect from the first term in Eq. (2).
By using the tensor product relation, we obtain

[sm × dn]kq =
∑
q′q′′

〈
k′q′k′′q′′|kq

〉
smq′ d

n
q′′ . (12)
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We extended Eq. (2) and determined each term. Finally, the constants
of this equation, e and q′, are extracted for each nucleus by the least-square
technique in the Matlab program in comparison with the experimental coun-
terparts of transition rates. Tables 1 to 4 report on the results of IBM 1
method, along with charge constants for each nucleus. It is worth noting

Table 1. Different quadrupole transition probabilities (all in W.u.) for the 104Pd

nucleus. The experimental data are taken from Ref. [38, p. 2105]. Theoretical
results are yielded by IBM 1. The constants of Eq. (3) are e = 1.35 and q′ = −0.14

(in W.u.). T1/2 is the experimental half-live of the initial state where * shows that
it is determined via Coulex.

Transition T1/2 B(E2)exp
B(E2)th
IBM 1

2+
1 → 0+

1 9.9 ps 36.9 42.4
4+

1 → 2+
1 1.5* ps 49.0 51.2

0+
2 → 2+

1 5.2* ps 13.2 27.7
2+

2 → 2+
1 1.6* ps 21.8 28.2

0+
3 → 2+

1 < 0.25* ps > 25 17.7
4+

2 → 2+
2 1.2* ps 25.0 34.2

Table 2. Similar to Table 1 (all in W.u.) for the 106Pd nucleus. The experimental
data are taken from Ref. [39, p. 983]. The effective charges are eπ = 1.53 and
q′ = −0.12.

Transition T1/2 B(E2)exp
B(E2)th
IBM 1

2+
1 → 0+

1 12.2* ps 50.0 57.2
2+

2 → 2+
1 3.12* ps 39.4 48.6

0+
2 → 2+

2 5.8 ps 19.0 31.5
0+

2 → 2+
1 5.8 ps 43.0 70.6

4+
1 → 2+

1 1.31 ps 71.0 75.1
2+

3 → 4+
1 — 5.3 8.4

2+
3 → 0+

2 — 39.0 45.2
2+

3 → 2+
2 — 10.2 12.8

0+
3 → 2+

2 2.8 ps 13.0 16.2
0+

3 → 2+
1 2.8 ps 2.4 3.7
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Table 3. Similar to Table 1, for the 108Pd nucleus. The experimental data are
taken from Ref. [40, p. 165]. The effective charges are eπ = 1.68 and q′ = −0.09.

Transition T1/2 B(E2)exp
B(E2)th
IBM 1

2+
1 → 0+

1 23.9* ps 55.5 59.0

2+
2 → 2+

1 6.2* ps 44.0 48.8

4+
1 → 2+

1 2.8* ps 90.0 93.3

0+
2 → 2+

2 4.0* ps 47.0 72.2

0+
2 → 2+

1 4.0* ps 52.0 77.3

2+
3 → 0+

2 4.8* ps 59.0 65.2

2+
3 → 2+

2 4.8* ps 11.0 14.8

Table 4. Similar to Table 1, for the 110Pd nucleus. The experimental data are
taken from Ref. [41, p. 1361]. The effective charges are eπ = 1.59 and q′ = −0.17.
T1/2 is the experimental half-live of the initial state which is yielded via the recoil
distance Doppler shift technique.

Transition T1/2 B(E2)exp
B(E2)th
IBM 1

2+
1 → 0+

1 44.0 ps 55.5 59.4

2+
2 → 2+

1 17.7 ps 44.0 49.1

4+
1 → 2+

1 4.1 ps 90.0 94.7

0+
2 → 2+

1 7.9 ps 37.0 61.2

2+
3 → 0+

2 9.1 ps 160.0 169.1

4+
2 → 2+

2 5.1 ps 34.0 37.5

that the electric quadrupole transition probabilities were considered pure,
and the contribution of the possible combination of the magnetic bipolar
transition was not included in the calculations. The half-lives of initial
states for considered transitions are reported in these tables, too. These
quantities are taken from the latest datasheets [38–42], but some of these
half-lives are calculated from the measured quadrupole transition rates and
others are derived via Coulex [26]. The details about which data belong to
which category are available in these data sheets, but their explicit values,
independent of the calculation method, are important in our analyses. Also,
we used the experimental values for quadrupole transitions which yield by
gamma transitions, and we reported the pages of these data in the considered
data sheets [38–41, 41] in the captions of Tables 1–8.
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Based on these results, there is a relative agreement between the experi-
mental values and the predictions of IBM 1. This adaptation is higher for the
104Pd nucleus than that for 110Pd due to the proximity to the closed neutron
shell. Moreover, increasing the levels’ half-life clearly reveals the advantages
of the predictions of this model in comparison with the experimental values.
These results can be attributed to the greater stability of the system and,
as a result, the lack of deviation from the spherical state which we consider
in the following. We also observed a better agreement between the IBM 1
prediction and the empirical data for the intra-band transition in compar-
ison with the inter-band one. Another issue which has been considered in
this study are the relations of two parameters of Eq. (2), namely e and q′,
with regard to the neutron numbers and also the experimental quadrupole
deformations of these nuclei. The effective charge, e, describes the concept
of the effective contribution of quadrupole forces, while the q′ coefficient
describes the effect of d-bosons pairing. An increase in the quadrupole in-
teraction indicates the movement of the system towards the spherical shape,
while a decrease in the quadrupole force causes deformation in the nucleus,
such as the results reported for nuclei in the same mass region [44]. The
shape coexistence phenomenon can be considered as the result of competi-
tion between these two forces in the nucleus structure. We considered the
variation of these coefficients in comparison with the neutron number and
the experimental quadrupole deformation for the Pd isotopic chain in figure
1 (a) and (b), respectively.

Fig. 1. Fluctuation of (a) e— effective charge and (b) q′ — dimensionless quantity,
in relation to the neutron number and experimental quadrupole deformation in the
Pd isotopic chain.

The results reveal the changes in the trend of these coefficients for the
106Pd nucleus, which can be attributed to the mixing of different symme-
tries in this nucleus in comparison with other ones. This finding confirms the
prediction in Refs. [45–50] based on the energy levels and other observables.



10-A5.10 F. Mokhtari, H. Sabri, M. Mohseni

Figure 1 (a) proposes the biggest value of e as the effect of quadrupole inter-
action for the 110Pd nucleus, which has the biggest quadrupole deformation.
On the other hand, our results suggest the smallest q′ value, as the effect of
pairing, for the same nucleus.

On the other hand, the IBM 1 shows the biggest deviation in comparison
with the experimental counterparts for such quadrupole transitions which
originated from the state known as an intruder level in this isotopic chain.
Also, for 106Pd and 108Pd nuclei for which the coexistence phenomenon of
spherical and axially deformed shapes has been reported in [32–36], the
predictions of IBM 1 are not satisfactory. To avoid disadvantages of this
approach in such situations, the IBM 2 [36] or a method which is based on
the mixing of both U(5) and O(6) dynamical limits are suggested [20, 43–45].
In this paper, we consider the IBM 2 formalism and report its predictions.

The algebraic structure of IBM 2 is [21]

Up(6)⊗Un(6) ⊃ SOp(5)⊗ SOn(5) ⊃ SOp(3)⊗ SOn(3) ⊃ SO(3) . (13)

Similar to what have been done in IBM 1, the Casimir operators of
SU(1,1) algebra in the IBM 2 version are

S±n =
∑
t

(
c2n+1
s;t S±(s; t) + c2n+1

d;t S±(d; t)
)
,

S0
n =

∑
t

(
c2ns;tS

0(s; t) + c2nd;tS
0(d; t)

)
. (14)

The sum, t, is over neutron (n) and proton (p), and n can be 0 and 1. Also,
the eigenstates of this algebra in IBM 2 are∣∣k, β; νpsν

n
s , ν

p
d , ν

n
d ;np∆Lp, n

n
∆Ln;L

〉
= N′S+

x1 S
+
x2 . . . S

+
xk
|lw〉 . (15)

In this version, the quantum number of SU(1,1) algebra is defined as

2k = Np +Nn − νps − νns − ν
p
d − ν

n
d . (16)

In this approach, N′ is the normalization factor. The operators in IBM 2
are defined as [21]

S+
xi =

∑
t

(
cs;t

1− c2s;txi
S+(s; t) +

cd;t
1− c2d;txi

S+(d; t)

)
. (17)

Similar to what have been done in IBM 1, we must solve c-numbers of
the following set of equations:

α

xi
=
∑
t

(
c2s;t
(
νts+

1
2

)
1− c2s;txi

+
c2d;t
(
νt+ 5

2

)
1− c2d;txi

)
−
∑
i 6=j

2

xi − xj
for i = 1, 2, . . . , k ,

(18)
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to get the xi roots. Again, we solved Eq. (18) with definite values of c and
α for i = 1, and by using the Bethe–Ansatz equations (BAE) with specified
values of νts and νtd, other roots are determined, too. To determine the
predictions of IBM 2, we determined the expectation values of E2 operator,
e.g. Eq. (3), on the related eigenstates, e.g. Eq. (15), and finally, the effective
charges, ep and en, and dimensionless quantities, q′p and q′n, are extracted
in comparison with experimental data which are listed in Tables 5–8 for the
considered isotopic chain.

Table 5. IBM 2 predictions for different quadrupole transition probabilities (all in
W.u.) of the 104Pd nucleus. The experimental data are taken from Ref. [38, p.
2105]. Parameters of Eq. (3) are ep = 1.38, en = 1.24, q′p = −0.27, and q′n = −0.09.
T1/2 is the experimental half-live of the initial state.

Transition T1/2 B(E2)exp
B(E2)th
IBM 2

2+
1 → 0+

1 9.9 ps 36.9 39.7
4+

1 → 2+
1 1.5 ps 49.0 50.9

0+
2 → 2+

1 5.2 ps 13.2 14.3
2+

2 → 2+
1 1.6 ps 21.8 23.5

0+
3 → 2+

1 < 0.25 ps > 25 19.9
4+

2 → 2+
2 1.2 ps 25.0 29.0

Table 6. Similar to Table (5) for the 106Pd nucleus. The experimental data are
taken from Ref. [39, p. 983]. Parameters of Eq. (3) are ep = 1.31, en = 1.18,
q′p = −0.29, and q′n = −0.14. T1/2 is the experimental half-live of the initial state.

Transition T1/2 B(E2)exp
B(E2)th
IBM 2

2+
1 → 0+

1 12.2 ps 50.0 53.1
2+

2 → 2+
1 3.12 ps 39.4 43.4

0+
2 → 2+

2 5.2 ps 19.0 20.9
0+

2 → 2+
1 5.2 ps 43.0 46.1

4+
1 → 2+

1 1.31 ps 71.0 74.8
2+

3 → 4+
1 — 5.3 7.2

2+
3 → 0+

2 — 39.0 41.9
2+

3 → 2+
2 — 10.2 12.1

0+
3 → 2+

2 2.8 ps 13.0 15.6
0+

3 → 2+
1 2.8 ps 2.4 3.2
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Table 7. Similar to Table (5) for the 108Pd nucleus. The experimental data are
taken from Ref. [40, p. 165]. Parameters of Eq. (3) are ep = 1.40, en = 1.29,
q′p = −0.31, and q′n = −0.17. T1/2 is the experimental half-live of the initial state.

Transition T1/2 B(E2)exp
B(E2)th
IBM 2

2+
1 → 0+

1 23.9 ps 55.5 58.2

2+
2 → 2+

1 6.2 ps 44.0 46.2

4+
1 → 2+

1 2.8 ps 90.0 92.1

0+
2 → 2+

2 4.0 ps 47.0 49.8

0+
2 → 2+

1 4.0 ps 52.0 54.5

2+
3 → 0+

2 4.8 ps 59.0 63.1

2+
3 → 2+

2 4.8 ps 11.0 13.9

Table 8. Similar to Table (5) for the 110Pd nucleus. The experimental data are
taken from Ref. [41, p. 1361]. Parameters of Eq. (3) are ep = 1.44, en = 1.37,
q′p = −0.29, and q′n = −0.23. T1/2 is the experimental half-live of the initial state.

Transition T1/2 B(E2)exp
B(E2)th
IBM 2

2+
1 → 0+

1 44.0 ps 55.5 58.6

2+
2 → 2+

1 17.7 ps 44.0 46.9

4+
1 → 2+

1 4.1 ps 90.0 93.1

0+
2 → 2+

1 7.9 ps 37.0 39.7

2+
3 → 0+

2 9.1 ps 160 166.2

4+
2 → 2+

2 5.1 ps 34.0 36.3

The results indicate the higher accuracy of the IBM 2 in comparison
with the IBM 1 and also the ability of this model to describe the inter-band
transitions better than the first version. Similar to the IBM 1, results show
better agreement with experimental counterparts when the half-life level is
increased. The results can be considered as a criterion for selecting the
IBM 2 to study those types of nuclei near the closed-shell with indications
of the shape coexistence phenomenon. Besides, the prediction of IBM 2
improves theoretical predictions for the inter-band transitions as such tran-
sitions which originated from 0+2 intruder states. We consider the variation
between two IBM 1 and 2 results in relation to experimental values through
the following quantity as:
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σ =

(
1

N

∑
|B(E2)exp −B(E2)th|2

)1/2

, (19)

where N is the total number of transition rates included in such a compari-
son. Figure 2 (a) and (b) illustrates the variations of this quantity in terms
of the experimental quadrupole deformation, β2, of the Pd isotopic chain for
both IBM 1 and 2 predictions, respectively.

Fig. 2. Variation of theoretical predictions, σ, which are defined in Eq. (19), for
quadrupole transitions calculated by (a) IBM 1 and (b) IBM 2 in comparison
with experimental counterparts for the 104−110Pd isotopic chain in relation to the
experimental quadrupole deformation.

As shown in Fig. 2 (a) and (b), when all of E2 transitions between dif-
ferent levels are considered, the maximum accuracy of both models (blue
area) is for the conditions where the deformation values reach the mini-
mum amount, and the number of neutrons is in the closest distance to the
closed shell. Furthermore, Fig. 2 shows that the maximum accuracy of the
predictions of these models is yielded for the 104Pd nucleus. These results
are in good agreement with the report on the presence of a closed subshell
in the number of neutrons equal to N = 58, which was obtained in this
study by emphasizing the electric quadrupole transition probabilities [44].
Ultimately, the results highlight the ability of IBM 1 only for nuclei near
the closed shell. In addition, the higher accuracy of this model in describ-
ing transitions inside the ground band in comparison with the inter-band
transitions demonstrates the applicability of this method to the performed
transitions in the form of only one type of symmetry. On the other hand,
the more exact predictions of IBM 2 for inter-band transitions and also such
transitions between intruder states confirm the idea proposing this approach
together with methods based on symmetry mixing for investigation of shape
coexistence and intruder levels.
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It is also possible to use the results of the IBM 1 for the electric quadru-
pole transition probabilities, to calculate the quadrupole moment of the
considered nuclei. This quantity is a good criterion for evaluating the co-
existence of shapes, due to its dependency on the system eigenstates. The
quadrupole moment is defined as [11]

QL =

〈
k, νd, νs, n∆, L

∣∣∣∣∣
√

16π

5
T (E2)

∣∣∣∣∣ k, νd, νs, n∆, L
〉
. (20)

For the states in the ground band, this relation simply reduces to

QL = β2

√
16π

5

√
1

14
L , (21)

and for 2+1 state, it is equal to β2
√

16π
5

√
2
7 . We determined the quadrupole

moment for different states of this isotopic chain in Table 9 and presented
their variation in figure 3.

Table 9. Quadrupole moments of different levels of the Pd isotopic chain. The
experimental values are taken from Ref. [42]. All quantities are expressed in barn.

Nucleus Qexp(2+
1 ) Q(2+

1 ) Q(4+
1 ) Q(0+

2 ) Q(2+
2 ) Q(4+

2 ) Q(0+
3 )

104Pd −0.46 −0.44 −0.88 −0.51 −0.67 −0.91 −0.57
106Pd — −0.22 −0.44 −0.31 −0.44 −0.51 −0.85
108Pd −0.48 −0.46 −0.92 −0.58 −0.71 −0.95 −0.62
110Pd −0.55 −0.53 −1.06 −0.62 −0.75 −1.06 −0.66

Two first columns of Table 9 show satisfactory agreement between our re-
sults for quadrupole moment of states in comparison with experimental coun-
terparts. This achievement verifies our extraction procedure for the parame-
ters of the quadrupole transition operator. Moreover, the obvious changes of
different quadrupole moments in the 106Pd nucleus, together with previous
results by other authors, show the relation between quadrupole transitions
and moments to deformation of nuclei in this mass region [43–50]. Any
significant results do not yield by similar investigation in the framework of
IBM 2 for quadrupole moments and therefore, their results are not reported
here. We will consider such dependence between different orders of magnetic
and electric transition rates and different modes of nuclear deformations in
the next works.
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Fig. 3. Fluctuation of quadrupole moments of different states in the Pd isotopic
chain determined in the IBM 1 framework.

4. Summary and conclusion

In this research, the 104−110Pd isotopic chain was considered to determine
its electric quadrupole transition probabilities within IBM 1 and 2 frame-
works. For this purpose, an affine SU(1,1) algebra has been used to label
and describe different states between both U(5) and SO(6) dynamical limits.
The results indicate the advantages of using these models in this mass range.
The results of the IBM 1 for nuclei near the closed neutron shell and also
the intra-band transitions are in good agreement with experimental data.
For inter-band transitions and especially, quadrupole transitions originated
from intruder states, the predictions of IBM 2 show an improvement and
suggest this model for such situations where different kinds of symmetries
are combined in the nucleus. The results for the effective charge coefficients
in IBM 1 confirm the reduction in the effect of quadrupole interaction in the
106Pd nucleus. This result was also verified by examining the quadrupole
moments of different levels in this isotopic chain which suggests an obvious
change in this nucleus, too. Finally, one may use the results of this study to
evaluate the symmetry mixing in nuclei near the Z = 50 closed proton shell.

This study is supported by the University of Tabriz Research Affairs
Office and the Payame Noor University.
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