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The term θϵµνρσFµνFρσ, when added to the electromagnetic Lagrangian
− 1

16πF
µνFµν , does not change the signature of the Lagrangian. Actually, it

increases the part with negative kinetic energy term at the spatial infinity.
For this reason’ it does not change the conclusion that at the spatial infinity
the magnetic part of the electromagnetic field should be absent.
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The best established conservation law in physics is the electric charge
conservation. The same is true for the universality of electric charge, i.e.,
the equality of the absolute magnitude of electric charge of an electron and
a proton. The most remarkable fact in physics is the quantum nature of
an electric charge. This fact was well established even before the discovery
of quanta of energy. In 1909, Einstein brought to the broader audience
another remarkable fact, observed earlier by Jeans, that the magnitude of
the electric charge squared e2 has the same physical dimension as hc, where
h is the Planck constant introduced just few years before. The magnitude
of the ratio e2

hc was then estimated to be of an order of 10−3. Einstein has
proposed that the same theoretical framework which will have a constant
e2 included in its mathematical structure will have as a consequence the
quantum theory of radiation, and, therefore, the Planck constant h will have
been ‘explained’. In other words, once e2 and the fine structure constant

α =
e2

ℏc
(1)
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are given then h would have been established as a secondary constant of
Nature. This was not what have happened historically, as we well know
now. Meanwhile, the quantum theory of radiation was established but it
was also recognized as an incomplete theoretical scheme. This is precisely
due to the remarkable experimental fact of the electric charge quantization
Q = Ne.

Since Gauss, we know that the electric charge ‘resides at spatial infinity’,
as we would describe it in our modern language. On the other hand, special
theory of relativity tells us that spatial infinity where electric charge resides
is a dynamic concept as an electric charge exists for the eternity of time
allowed to it at spatial infinity. Physically, a signal propagating from or to
spatial infinity takes an infinite duration of time. This can be formally un-
derstood from the observation that the Gauss law is valid in every Lorentz
frame. The phenomenological theory of the electric charge proposed by one
of us [1–3] contains the only constant of Nature which is relevant to the
problem of the quantum nature of electric charge, which is e, the magnitude
of the electronic charge. Staruszkiewicz proposed some time ago [1, 2] that
the closed dynamical system which contains electric charge must necessar-
ily contain infrared photons which carry information about electric charges
emitting them so they could be observed at spatial infinity.

It is well known that spatial infinity of the Minkowski spacetime is the
timelike 2+ 1-dimensional de Sitter hyperboloid. This is what is needed for
the purposes of doing quantum field theory because such a manifold has a
well defined Cauchy surface. Quantum mechanics of the electric charge is
the quantum field theory of the phase field S(x) defined on the de Sitter
spatial infinity [1, 2]. In [3] and below, the phase field is denoted e(x) for
obvious reasons.

Electromagnetic field at the spatial infinity is described completely by
two homogeneous of degree zero solutions of the d’Alembert equation [1–3].
They are defined as follows. At the spatial infinity, the potential Aµ(x) must
be homogeneous of degree −1:

Aµ(λx) = λ−1Aµ(x) , (2)

for all λ > 0 [3, 4].
Using the Maxwell equations and the above homogeneity condition, one

finds that

xµFµν(x) = ∂νe(x) , (3)
1
2ϵ

µνρσxνFρσ(x) = ∂µm(x) . (4)

These equations can be solved with respect to Fµν , which shows that the
functions e(x) and m(x) determine Fµν(x) completely. e(x) is the electric
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part of the field, while m(x) is the magnetic part. It was shown [1–3] that

−d4xFµνF
µν = 2

dζ0

ζ0
√
g d3ζ

(
gik∂ie∂ke− gik∂im∂km

)
. (5)

The metric on spatial infinity gik is defined in an obvious way

gik =
(
ζ0
)−2

gµν
∂xµ

∂ζi
∂xν

∂ζk
, i, k = 1, 2, 3 . (6)

The coordinates covering spatial infinity,

ζ0 =
√
−xx→ +∞ , (7)

are the hyperspherical coordinates [1–3]:

x0 = ζ0 sinh ζ1 , (8)
x1 = ζ0 cosh ζ1 sin ζ2 cos ζ3 , (9)
x2 = ζ0 cosh ζ1 sin ζ2 sin ζ3 , (10)
x3 = ζ0 cosh ζ1 cos ζ2 . (11)

The Lagrangian density is seen to be a difference of two identical La-
grangian densities. The part with the right sign, giving rise upon quantiza-
tion to a positive definite inner product, is called electric. The part with the
wrong sign is called magnetic. It is seen that the magnetic part enters the
total Lagrangian with the negative sign. This is unphysical and probably
explains nonexistence of magnetic monopoles [3, 7].

We hold it self-evident that the sign of the Lagrangian is physically
important and that the wrong sign implies the existence of negative norm
states. One may keep them, but then one is not working in the framework
of quantum mechanics [6].

We wish to note that the addition of the term

θϵµνρσFµνFρσ (12)

to the Lagrangian [5] does not change this conclusion, simply because it does
not change the signature of the Lagrangian treated as a quadratic form:

d4x

(
− 1

16π
FµνF

µν +ΘϵµνρσFµνFρσ

)
=

1

8π

dζ0

ζ0
√
g d3ζ

(
gik∂ie

′∂ke
′ − gik∂im

′∂km
′
)
, (13)
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where

e′ = e cosh γ −m sinh γ , (14)
m′ = e sinh γ +m cosh γ . (15)

The parameter γ is defined by the relation

sinh 2γ = 8πΘ . (16)

Therefore, the asymptotic Lagrangian at the spatial infinity, calculated as
above, but including the θ term, will also be a difference of two identical
Lagrangians, one having necessarily the ‘wrong’ sign. This means, that the
argument against the existence of magnetic monopoles [7] given at [3] is not
affected by the θ term.

It was also shown [1–3] that the electric charge Q is always quantized
in the units of electronic charge e. Magnetic monopoles (if they existed)
would possibly carry a fractional electric charge [5]. Hence, nonexistence of
magnetic monopoles is compatible with the quantization of electric charge
[1–3].
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