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An unstable field theory is what we obtain when we linearise the equa-
tions of an interacting field theory near an unstable state. Theories of this
kind are adopted to model the onset of spontaneous symmetry breakings,
when the fields are sitting on the top of the Mexican hat, and they start
to “roll down” to the bottom. At present, there exists no rigorous proof
that unstable quantum field theories are Lorentz-invariant (in the sense of
Wigner’s theorem). Here, we show that they should not be. In fact, un-
stable theories always have a limited regime of applicability, and they are
valid only for a very short time. As a consequence, there is a preferred
simultaneity hyperplane, along which the unstable theory is everywhere
applicable, while a generic observer (whose four-velocity is not orthogonal
to such hyperplane) must use the full non-linear theory. In summary: the
current quantization schemes are “ok”, independently of whether they lead
to a Lorentz-invariant theory.
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1. Introduction

In the simplest model of spontaneous symmetry breaking [1, 2], one has
a real scalar field ϕ, whose dynamics is governed by the Lagrangian density1

L = −1

2
∂µϕ∂

µϕ− λ

4

(
ϕ2 − v2

)2
, (1)

with λ, v > 0. Here, the symmetry that is being broken is the reflection
ϕ → −ϕ, as the system needs to choose one of two possible ground states:
ϕ = ±v. The Euler–Lagrange equation for the Lagrangian density (1) is

∂µ∂
µϕ = −m2ϕ+ λϕ3 , (2)

∗ Funded by SCOAP3 under Creative Commons License, CC-BY 4.0.
1 We adopt the metric signature (−,+,+,+) and work in natural units: c = ~ = 1.

(11-A4.1)
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with m2 = λv2. Now, suppose that the initial value of the field is close to
zero. Since the state ϕ = 0 is a local maximum of the potential, the system
is in an unstable state, and it will start “rolling down” towards the bottom
of the potential (i.e. towards ϕ = ±v). However, during the initial phase of
the fall, ϕ is so small that the term λϕ3 is effectively negligible. Thus, we
can linearise equation (2), and work with the much simpler field equation

∂µ∂
µϕ = −m2ϕ , (3)

which is known as the “tachyon field equation” [3].
Here is the issue. If we want to make reliable models of spontaneous

symmetry breakings, we need a quantum theory. The reason is that in
classical field theory, the state ϕ = 0 is an equilibrium state. This means that
the field will not fall down, unless it is externally perturbed. On the other
hand, in a quantum world, there are inevitably fluctuations (related to the
uncertainty principle), and these fluctuations push the field down without
the need for any external influence. Hence, a purely classical description
is structurally incapable of grasping the initial dynamics of the symmetry
breaking [1]. So, the question is: Can we quantise equation (3)?

The matter is still debated. If we look for a plane-wave solution of (3), of
the form of ϕ ∝ ei(kx−ωt), we get the dispersion relation ω =

√
k2 −m2 (like

Klein–Gordon, but with the replacement m → im). In the past, this led
many authors to conclude that the elementary excitations of (3) should be
interpreted as superluminal particles (“tachyons” [3]), whose four-momentum
is spacelike. Hence, in their first attempts to quantise (3), their main goal
was to incorporate this alleged “superluminal character” into the quantum
theory [3–8]. However, it was soon realised that (3) is actually a perfectly
causal equation, whose excitations travel inside the light-cone [9–11], and
that quantum field theory structurally forbids any kind of superluminal
transmission of signals [12–16]. Hence, the “superluminal interpretation” has
largely been abandoned, in favour of more conventional approaches [17–19].

One issue that immediately appears when we try to quantise unstable
“tachyon-type” equations like (3) using standard techniques is that the re-
sulting theory does not have a vacuum state [17], thus violating one of the
Wightman axioms [20]. Schroer and Swieca [17] tried to fix this by consid-
ering a Hilbert space with indefinite metric. However, if one thinks about
it, the non-existence of a vacuum state is precisely what we want. In fact,
if the Klein–Gordon theory is the “field-theory analogue” of the harmonic
oscillator (in the sense that each Fourier mode is an oscillator), the tachyon
field is the analogue of the inverted oscillator [21], whose Hamiltonian is

H(x, p) =
p2

2m
− 1

2
κx2 . (4)
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We do not expect such a system to admit a ground state, because it is
unstable by construction. Of course, the “exact” theory arising from the
Lagrangian (1) admits a vacuum (actually, two vacua, with 〈ϕ〉 = ±v).
However, such vacuum states fall outside the regime of validity of the tachyon
approximation (3), which holds only for |ϕ| � v. Hence, the non-existence
of a “tachyonic” vacuum state is to be expected [22], and even desired [18].

There is still, however, another issue that needs to be solved: the question
about Lorentz invariance. Of course, the Lagrangian density (1) should give
rise to a Lorentz-invariant field theory. And, indeed, the field equation (2)
is Lorentz-invariant: it looks the same in all reference frames. Also equa-
tion (3) is Lorentz-invariant as it is obtained from (2) under the assumption
|ϕ| � v, which is a Lorentz-invariant condition (since ϕ is a scalar). Hence,
it is reasonable to expect that also (3) will give rise to a Lorentz-invariant
theory2. But one needs to be careful because in quantum field theory, the
expression “Lorentz invariance” has a rigorous mathematical meaning. It is
not just a statement about how the field equations look like in different ref-
erence frames. By Wigner’s theorem, a quantum theory is Lorentz-invariant
if and only if its Hilbert space is the carrier space of a unitary represen-
tation U(Λ) of the Lorentz group [23–25]. Unfortunately, there is to date
no rigorous proof that this is indeed the case, for unstable fields (like the
tachyon field). For example, the quantization scheme of Lima [18] is car-
ried out within a generic static spacetime, with no other specific symmetries
besides time-translation invariance. Hence, the Minkowski limit of Lima’s
theory is not guaranteed to be consistent with Lorentz invariance. Indeed,
the issue of whether tachyon field theories are Lorentz-invariant has been
a main reason for concern since the beginning [4–6], and the matter is still
debated [26, 27].

Our goal, here, is to show that, if we start from the assumption that the
tachyon field equation (3) is just the linear limit of equation (2), then the as-
sociated “quantum tachyonic theory” is not expected to be Lorentz-invariant
(in Wigner’s sense). Actually, even if we were able to find some operators
U(Λ) that resemble the structure of the Lorentz group, such operators would
be unphysical, and their action on physical states should not be trusted.

2 Indeed, in a classical world, equation (3) describes a theory which is manifestly
Poincaré-invariant. Its effective Lagrangian density is a Lorentz scalar, 2L =
−∂µϕ∂µϕ − m2ϕ2, which does not depend explicitly on xµ. Thus, no preferred
direction in spacetime is singled out. Another perspective on this is that, since in a
classical world the condition ϕ(p) = 0 ∀p ∈ R1+3 defines a Poincaré-invariant state
(the so-called “false vacuum”), we are linearising a Lorentz-invariant theory around a
Lorentz-invariant background state, and this must produce a Lorentz-invariant linear
theory.
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2. Tachyon fields are not Lorentz-invariant

In Subsection 2.1, we present an intuitive geometric argument as to why
tachyon field theories should not be expected to be Lorentz-invariant. In
Subsection 2.2, we set up an algebraic (operator-based) argument.

2.1. Geometric argument

Let Alice be an inertial observer, and call “tA” her time coordinate.
Suppose that in her reference frame, at tA = 0, the quantity 〈ϕ2〉 is close to
zero, so that the tachyon approximation is valid. Then, taking the average
of equation (3), we find that the field average should grow exponentially,
over a characteristic timescale m−1

〈ϕ(tA)〉 ∼ emtA . (5)

At some time τ , the average of ϕ becomes so large that the tachyon approx-
imation is no longer valid. This happens when 〈ϕ〉 ∼ v. Hence, for tA & τ ,
we need to rely on the “exact” theory, and we must restore the non-linear
term λϕ3 in the field equation.

Now, let us see what happens in the reference of Bob, who moves with
speed w > 0 with respect to Alice. The change of coordinates that relates
Alice’s and Bob’s frames is (if we orient the axes properly){

tA = γ(tB − wxB) ,
xA = γ(xB − wtB) ,

(6)

with γ = (1 − w2)−1/2. Hence, equation (5) becomes, in Bob’s coordinates
(recall that ϕ is a scalar)

〈ϕ(tB, xB)〉 ∼ emγtB e−mγwxB . (7)

As we can see, in Bob’s frame, the field average has an exponential de-
pendence both on space and on time (see figure 1). This is a consequence
of relativity of simultaneity [11, 28, 29]. But now we immediately see the
problem. As xB → −∞, the value of 〈ϕ〉 can become arbitrarily large. In
particular, there is a point Q, given by

Q = − τ

γw
, (8)

such that on its left, the average 〈ϕ〉 is comparable to v already at tB = 0.
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This, however, implies that Bob is not allowed to use the tachyon approxi-
mation at tB = 0. Actually, he is not allowed to use it at any time because
for any tB, there is some location Q(tB) such that the tachyon approximation
breaks down on the left of Q(tB).

Fig. 1. Minkowski diagram of 〈ϕ〉 in Alice’s coordinates (left panel), and in Bob’s
coordinates (right panel). The two diagrams are mapped into each other by a
Lorentz boost. The shades of red are a colour-map of the intensity of 〈ϕ〉 (red
large, white small). The blue dashed line marks the threshold above which the
tachyon field approximation is no longer valid, as 〈ϕ〉 ∼ v. Above such a threshold,
one needs to rely on the full theory (restoring the non-linear term λϕ3). In Alice’s
frame, this happens at a certain time τ . In Bob’s frame, instead, it happens in
different places at different times. Crucially, there are some locations where the
tachyon approximation is not valid even at tB = 0. These are all the places on the
left of Q = −τ/γw (yellow star).

In practice, Bob may just focus on observables with support on the region
xB > Q(tB), where the tachyon approximation is still valid. However, the
focus of Wigner’s theorem is on quantum states, which describe the totality
of the system at a given time. In particular, if the tachyon theory is Lorentz-
invariant, then for any quantum state (of the tachyon theory) that describes
the system in Alice’s frame, there must be a corresponding quantum state
(belonging to the tachyon theory itself) that describes the same system in
Bob’s frame. Clearly, this does not happen, as the state in Bob’s frame can
only be described within the full non-linear theory, at any time.

Note that this result is highly non-trivial, as it arises from the intrin-
sic differences between the classical and the quantum descriptions of the
same system. In a classical description, everything we need is a field,
ϕ : R1+3 → R, which obeys a Lorentz-invariant field equation. From this
perspective, equation (3) defines a theory that is manifestly Lorentz-invariant.
However, in a quantum world, we also need a unitary group of transforma-
tions U(Λ), which does not exist here.
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2.2. Algebraic argument

Let H be the Hilbert space of the full non-linear theory arising from the
Lagrangian (1). Let also

U(Λ) : H → H ,
H : H → H ,
P j : H → H (9)

be respectively the Lorentz group, the Hamiltonian, and the linear momen-
tum of the non-linear theory3. For example, the operator H is just [23]

H =
1

2

∫ [
(∂tϕ)

2 + |∇ϕ|2 + λ

2

(
ϕ2 − v2

)2]
d3x . (10)

Let us now define a projector Q : H → H, which returns “1” if the dynamics
of the state can be well approximated (at t = 0) using the tachyon field
theory, and “0” otherwise. Clearly, if a state |α〉 can be described (at t = 0)
within the tachyon theory, the same must be true for e−iP

jaj |α〉, which is
just a copy of |α〉 translated in space. Hence, Q is invariant under space
translations, [

Q, P j
]
= 0 . (11)

On the other hand, if we evolve the state |α〉 for a long time, at some point
the tachyon approximation ceases to be valid because 〈ϕ〉 becomes too large.
Hence,

[Q, H] 6= 0 . (12)

Now, let Λ be a boost of velocity w 6= 0 in the x1 direction, and let us
introduce the short-hand notation |Λψ〉 := U(Λ) |ψ〉. Our goal is to show
that we can always find at least one state |β〉 such that

Q |β〉 = |β〉 ,
Q |Λβ〉 ≈ 0 . (13)

That is, we can always find a state |β〉 that can be modelled within the
“tachyon approximation”, but such that, when we boost it, the resulting
state |Λβ〉 cannot be described within the tachyon theory itself. The ex-
istence of such a state would imply that the tachyon field theory is not
Lorentz-invariant (in Wigner’s sense) because a boost is not a one-to-one
transformation from the tachyonic Hilbert space to itself (not even approx-
imately!).

3 Note that U(Λ) here describes a Lorentz transformation associated with the full non-
linear theory, and not with the tachyon theory.
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Pick a quantum state |α〉 such that Q |α〉 = |α〉, and consider the one-
parameter family of states |α(L)〉 = eiP

1L |α〉. These are all eigenstates of Q
with eigenvalue 1, since

Q eiP
1L |α〉 = eiP

1LQ |α〉 = eiP
1L |α〉 . (14)

On the other hand, we can use the composition rules of the Poincaré group
[23] to show that [29]

U(Λ) eiP
1L |α〉 = eiP

1γL e−iHγwLU(Λ) |α〉 . (15)

Hence, recalling equation (11), we have

Q |Λα(L)〉 = eiP
1γLQ e−iHγwL |Λα〉 . (16)

Now, let us focus on the time-evolution of |Λα〉. As we said before, we
expect that all states, sooner or later (as the field “rolls down”), will exit the
tachyonic approximation. Hence, there should be one instant of time τ such
that Q e−iHτ |Λα〉 ≈ 0. Therefore, if we choose L = τ/wγ (for this we need
w 6= 0), equation (16) finally becomes

Q |Λα(τ/wγ)〉 = eiP
1γLQ e−iHτ |Λα〉 ≈ 0 . (17)

Thus, if we set |β〉 = |α(τ/wγ)〉, we recover both equations in (13). This
completes our proof.

Let us make some quick final remarks:

— Also the algebraic argument above makes heavy use of relativity of
simultaneity. In fact, the evolution operator e−iHγwL on the right-
hand side of (15) comes from the fact that, since eiP

1L |α〉 and |α〉
have a “distance” L, when we boost them, their internal clocks are
desynchronized of an amount γwL.

— To restore Lorentz-invariance, one may try to artificially remove from
the tachyonic Hilbert space all those states |β〉 that satisfy (13). But
this would imply that for any tachyonic state |α〉, there exists a value
of L such that eiP 1L |α〉 is not tachyonic. Hence, to restore the Lorentz
invariance, we would end up breaking space-translation invariance.

— We did not make any assumption about the magnitude of w, besides
w 6= 0. Hence, the Lorentz invariance is broken at any non-vanishing
speed.
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3. Conclusions

Here is the good news. The quantization schemes of unstable theories
that are available in the literature should be considered acceptable even if a
rigorous analysis were to show that the Hilbert space is not equipped with
a unitary representation of the Lorentz group. The problem, in a nutshell,
is that the regime of validity of an unstable theory necessarily lasts for a
finite amount of time. Sooner or later, we must replace the unstable theory
with the full non-linear theory. Then, because of relativity of simultaneity,
if the “tachyon-like” approximation is valid across all space (at a given time)
in Alice’s frame, it cannot be valid across all space also in Bob’s frame [see
figure 1].

All of this does not mean that we should also observe a breakdown of
Lorentz invariance in actual computations. Equation (3) is still a Lorentz-
invariant field equation. Hence, there can be no trace of this “broken Lorentz
symmetry” in the dynamics of 〈ϕ〉. Additionally, since equation (3) is linear,
the field–field commutator [ϕ(x), ϕ(y)] obeys the same tachyon equation
as the field itself, and such an equation is Lorentz-invariant. Hence, also
the commutator should not give any signal of a broken Lorentz symmetry.
Indeed, no “local” computation should be affected by these issues. The
problem appears only at a global level, when we look at the Hilbert space
as a whole, and we consider phenomena that take place at spacelike infinity
(x1 → ∞), where the effects of relativity of simultaneity become divergent
(t′ = γt− γwx1 →∞).

From a mathematical perspective, our analysis is similar to that carried
out in a previous article [29], where it was shown that whether an unstable
particle has decayed or not may depend on the reference frame, if relativity of
simultaneity is taken into account. Although the physical setting is different,
there is a common moral to both works: when an unstable system of any
kind is Lorentz-boosted, relativity of simultaneity can give rise to many
counterintuitive effects [11, 30, 31], which have been overlooked till now.

This work was supported by a Vanderbilt’s Seeding Success Grant. I thank
F. Giacosa for reading the manuscript and providing useful comments.
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