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We show that time autocorrelation functions exhibiting an asymptotic
power law decay ∼ t−ρ/Γ (1 − ρ) take the form of a “stretched” Mittag–
Leffler function, Eρ(−(t/τ)ρ), if the associated memory function attains
its asymptotic form on a time scale which is much shorter than the char-
acteristic time scale of the asymptotic regime itself. The range for the
exponent is here restricted to if 0 < ρ < 1 and we show that the time scale
separation can be enforced by downscaling the amplitude of the memory
function. Reasoning along the same lines, we demonstrate that the veloc-
ity autocorrelation function of an anomalously diffusing particle behaves
as E2−α(−(t/τD)

2−α) if the associated memory function attains its asymp-
totic form on time scales much shorter than the diffusion time scale, τD.
The exponent α defines here the asymptotic form of its mean square dis-
placement, ⟨(x(t)− x(0))2⟩ ∼ tα, and 0 < α < 2.
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1. Introduction

Time autocorrelation functions are the basic physical quantities in spec-
troscopic experiments investigating the atomic and molecular dynamics of
condensed matter systems. Their normalized form,

ϕ(t) = cAA(t)/cAA(0) , (1.1)

describes the relaxation dynamics of the variable A(t) which is probed in
the respective experiment, where cAA(t) ≡ ⟨A(0)A(t)⟩ is an equilibrium
ensemble average. In complex systems, relaxation functions of the form
of (1.1) exhibit a strongly non-exponential long-time decay, reflecting the
fact that many dynamical variables with a broad spectrum of time scales
are coupled [1–4]. An example is the slow relaxation dynamics of proteins,

(2-A2.1)
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whose non-exponential behavior has been investigated for almost 50 years
[5–16]. The most commonly used generalization of the exponential relaxation
function is the Kohlrausch–Williams–Watt (KWW) function [17, 18]

ϕKWW(t) = exp(−(t/τ)ρ) , ρ > 0 , (1.2)

which is often referred to as “stretched” or “compressed” exponential func-
tion, depending if ρ < 1 or ρ > 1, respectively. The KWW function has
found many applications, in particular in the field of dielectric relaxation
spectroscopy [19, 20]. Another example for a non-exponential relaxation
function is the Mittag–Leffler relaxation function [8, 21]

ϕML(t) = Eρ(−(t/τ)ρ) , (1.3)

where the exponential function in expression (1.2) is replaced by the Mittag–
Leffler (ML) function [22–25]. The ML function is an entire function in the
complex plane which is represented by the Taylor series

Eρ(z) =
∞∑
k=0

zk

Γ (1 + kρ)
, (1.4)

and which has the asymptotic series expansion

Eρ(z) = −
M∑
n=1

z−n

Γ (1− nρ)
+O

(
z−(M+1)

)
, M = 1, 2, . . . (1.5)

For 0 < ρ < 1, it decays monotonously and displays an asymptotic power
law decay

ϕML(t)
t→∞∼ (t/τ)−ρ

Γ (1− ρ)
, (1.6)

whereas the KWW function decays asymptotically faster than any power
law term ∼ t−kρ, with k = 1, 2, . . . and ρ > 0. Figure 1 shows that it
interpolates, in fact, between the ML and the exponential relaxation func-
tion. The asymptotic power law form (1.6) of the ML relaxation function
expresses asymptotic self-similarity, i.e. asymptotic form invariance under a
scaling transformation t → µt (µ > 0), which is, for instance, an important
property of protein dynamics [8, 16]. We note in this context that ϕML(t) is
the solution of the fractional differential equation [2, 8]

dϕML(t)

dt
+ τ−ρ

0∂
1−ρ
t ϕML(t) = 0 , (1.7)
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Fig. 1. Log–log plots of E1/2(−t1/2) (blue), exp(−t1/2) (magenta), and exp(−t)
(orange).

where the symbol 0∂
1−ρ
t denotes a Riemann–Liouville derivative [26] of the

order of 1− ρ

0∂
1−ρ
t ϕML(t) ≡

d

dt

t∫
0

dt′
(t− t′)ρ−1

Γ (ρ)
ϕML

(
t′
)
. (1.8)

The convolution integral reflects here long-memory effects which have been
extensively discussed in the context of stochastic processes [27, 28] ever
since the seminal work of Mandelbrot and Van Ness on fractional Brownian
motion [29].

2. Anomalous relaxation

2.1. The memory function of the Mittag–Leffler relaxation function

The basic mathematical tool to be used in the following is the Laplace
transform, which is defined as f̂(s) =

∫∞
0 dt e−stf(t) (ℜ{s} > 0) for an ar-

bitrary function, f(t). The corresponding inverse transform is given by
f(t) = 1

2πi

∮
C ds estf̂(s), where C is the Bromwich contour [30]. For the ML

relaxation function, one obtains in particular [25]

ϕ̂ML(s) =
1

s+ s(sτ)−ρ
, (2.1)

using here the series expansion (1.4) with z = −(t/τ)ρ and performing the
Laplace transform term by term. Expression (2.1) may now be compared to
the general form of a Laplace transformed relaxation function

ϕ̂(s) =
1

s+ κ̂AA(s)
, (2.2)
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which follows from the Mori–Zwanzig form of the equation of motion for
time autocorrelation functions [31–33]

∂tcAA(t) +

t∫
0

dt′ κAA

(
t− t′

)
cAA

(
t′
)
= 0 . (2.3)

The memory function κAA(t) reflects here the interaction of the selected
dynamical variable, A, with the dynamical system under consideration and
Eq. (2.3) is derived within the theory of the Generalized Langevin Equa-
tion (GLE), assuming the framework of classical statistical mechanics. The
basic concept here is projection, splitting the space of dynamical variables
into a set of variables of interest and a set of “bath variables”, which are
considered as “noise”. Defining the scalar product (A,B) of two variables
through the phase-space average (A,B) ≡

∫ ∫
dp dq ρeq(p, q)A(p, q)B(p, q),

where ρeq(p, q) is the equilibrium distribution, the projector on A is given
by PA = (A, .)/(A,A). If A is the (single) variable of interest, the orthog-
onal projector, QA = 1− PA, projects thus on the space of noise variables.
Denoting the generator of an infinitesimal translation in time L, such that
A(t) = exp(tL)A(0), the time autocorrelation function may be written as a
scalar product

cAA(t) = (A(0), A(t)) , (2.4)
and the memory function has the form

κAA(t) = (A,A)−1
(
f
(Q)
A (0), f

(Q)
A (t)

)
, (2.5)

where f (Q)
A (t) is “the projected time derivative”

f
(Q)
A (t) = etQALQALA . (2.6)

Equation (2.5) shows that the memory function is itself a time autocorrela-
tion function and it follows from Eq. (2.1) the Laplace transformed memory
function of the ML relaxation function has the power law form of

κ̂ML(s) = s(sτ)−ρ . (2.7)

In the time domain, this corresponds to

κML(t) =
τ−ρtρ−2

Γ (ρ− 1)
, (2.8)

which shows that
t∫

0

dt′ κML

(
t− t′

)
cAA

(
t′
)
= τ−ρ

0∂
1−ρ
t cAA(t) . (2.9)
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From a physical point of view, the fractional derivative in the fractional dif-
ferential equation (1.7) can thus be interpreted as the convolution with a
memory function in the sense of the GLE and we note that expressions (2.7)
and (2.8) reflect the self-similarity of this memory function in the Laplace
and time domain, respectively. It should be noted that the form (2.8) of
the memory function cannot be true for t → 0 and it will be shown be-
low that it must be considered as an asymptotic form for long times. We
also emphasize that the term “Generalized Langevin Equation” is often used
in a wider sense, namely for any generalization of the historical Langevin
equation [34], where the velocity-dependent friction force, Fγ(t) = −γv(t),
of a Brownian particle is replaced by a convolution term of the form of
Fγ(t) = −

∫ t
0 dt

′ v(t− t′)κ(t′) (see, for example, Refs. [35–37]). The GLE de-
rived by Mori and Zwanzig has the particular property of being formally an
exact “projected” equation of motion, which is in particular time-reversible
as the underlying Hamilton’s equations of motion from which it is derived.
In this context, the description of irreversible phenomena like relaxation im-
plies thus either the assumption of a model for the memory function or the
assumption that irreversibility is de facto attained in a many-body system
with a large number of particles. Molecular dynamics (MD) simulations of
liquids and macromolecular systems have given ample of evidence that the
latter assumption is, in fact, valid if the observations are restricted to the
statistically relevant regime of the analyzed trajectories. This has already
been evidenced Rahman’s historical computation of the velocity autocor-
relation function (VACF) for liquid argon from MD simulation [38], which
shows that the VACF of a simple liquid exhibits damped oscillations.

2.2. Asymptotic power law relaxation and weak self-similarity

In the following, we will be working with relaxation functions which have
the same asymptotic behavior as ϕML(t), namely

ϕ(t)
t→∞∼ (t/τ)−ρ

Γ (1− ρ)
, 0 < ρ < 1 . (2.10)

In the context of asymptotic analysis, functions with an asymptotic power
law form belong to the class of “regularly varying functions”. Karamata [39]
defines a regularly varying function, q(t), through the properties q(t) > 0
and

q(λt)

q(t)

t→∞∼ f(λ) , λ > 0 , (2.11)

where f(λ) > 0. He shows moreover that q(t) must be of the form of

q(t) = L(t)ta , −∞ < a < +∞ , (2.12)
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and L(t) is a “slowly varying function” fulfilling

L(λt)

L(t)

t→∞∼ 1 , λ > 0 . (2.13)

We can thus conclude that any physical relaxation function evolving on a
concrete time scale and decaying asymptotically with power law decay of
the form of (2.10) can be written in the “weakly self-similar” form

ϕ(t) = Lϕ(t)
(t/τ)−ρ

Γ (1− ρ)
, 0 < ρ < 1 , (2.14)

where Lϕ(t) is a slowly varying function fulfilling

lim
t→∞

Lϕ(t) = 1 . (2.15)

Obviously, any positive function approaching a plateau value satisfies condi-
tion (2.13) for a slowly varying function. The property “weak self-similarity”
expresses that time correlation functions with an asymptotic — self-similar
— power law decay approach this regime with some slowly varying function,
Lϕ(.), and are for long times “almost self-similar”. We have coined this term
in Ref. [40] to show that the ML relaxation function is weakly self-similar.
We also again refer in this context to Ref. [20], where the asymptotic form of
the time correlation function is discussed from the point of view of limiting
distributions of waiting times.

We make now use of another theorem by Karamata [41], which relates
the asymptotic form of functions of the form of (2.14) in the limit of t→ ∞
to the asymptotic form of their Laplace transform for s → 0. The theorem
states the equivalence

h(t)
t→∞∼ L(t)tα ⇔ ĥ(s)

s→0∼ L

(
1

s

)
Γ (1 + α)

s1+α
, (2.16)

where α is subject to the condition α > −1 and the symbol “∼” may be re-
placed by an equal sign on either side. It thus follows from expression (2.14)
that

ϕ̂(s)
s→0∼ Lϕ

(
1

s

)
1

s(sτ)−ρ
, (2.17)

and for any ρ > 0, one then obtains the following asymptotic form of the
Laplace transformed memory function

κ̂AA(s)
s→0∼ s(sτ)−ρ

Lϕ

(
1
s

) . (2.18)
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Introducing now u = 1/s and noting that 1/L(t) is slowly varying if L(t)
is slowly varying shows that κ̂AA(1/u) is the asymptotic form of a reg-
ularly varying function. Since any regularly function can be written as
the product of a slowly varying function and a power law (see Eq. (2.12)),
there must exist some slowly varying function, Lκ̂(t), such that κ̂AA(1/u) =
u−1(u/τ)ρ/Lκ̂(u), and consequently

κ̂AA(s) =
s(sτ)−ρ

Lκ̂

(
1
s

) . (2.19)

For the Laplace transformed relaxation function, we thus have

ϕ̂(s) =
1

s+ s(sτ)−ρ

Lκ̂( 1
s )

, (2.20)

and comparison to Eq. (2.1) shows that the ML relaxation function is ob-
tained if one can assume that Lκ̂(1/s) ≈ 1. Assigning a typical time scale τ∗
to Lκ̂ (t) via

Lκ̂(t) ≡ Lκ̂(t/τ
∗) (2.21)

shows that this is the case if τ∗ → 0 and, therefore,

ϕ(t)
τ∗→0∼ Eρ(−(t/τ)ρ) , (2.22)

which is the central result of the paper.
From a physical point of view, τ∗ defines the characteristic time scale

describing the approach of the memory function to its asymptotic power law
form. The latter is derived by writing

κ̂AA(s)

s
=

(sτ)−ρ

Lκ̂

(
1

sτ∗

) ,
where the r.h.s. can be considered as the Laplace transform of a slowly
varying function. We can thus use equivalence (2.16), with equality for
ĥ(s), to obtain in the time domain

t∫
0

dt′ κ(t′)
t→∞∼ 1

Lκ̂ (t/τ∗)

τ−ρtρ−1

Γ (ρ)
.

Since limt→∞ dLκ̂(t/τ
∗)/dt = 0, it follows by differentiation that

κAA(t)
t→∞∼ 1

Lκ̂ (t/τ∗)

τ−ρtρ−2

Γ (ρ− 1)︸ ︷︷ ︸
κML(t)

(2.23)
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is a refined, asymptotic self-similar form of the memory function κML(t)
which is associated with the ML relaxation function (see Eq. (2.8)). Consid-
ering τ∗ → 0 thus means to make the memory function not asymptotically
but completely self-similar. This is not compatible with the fact that the
memory function is itself a time autocorrelation function (see Eq. (2.5)),
which implies in particular 0 < κAA(0) < ∞. The memory function of the
ML relaxation function is, therefore, a mathematical idealization, where only
the asymptotic power law form is considered. We note that this algebraic
long-time tail vanishes in the limit of ρ→ 1, where the memory function be-
comes a Dirac distribution, κAA(t) → δ(t)/τ , and the associated relaxation
function a normal exponential function, ϕ(t) → exp(−t/τ).

We finally note that the asymptotic form of Lϕ(t) can be read off from
Eq. (2.20), writing

ϕ̂(s) =

(
1

1
Lκ̂(1/sτ∗)

+ (sτ)ρ

)
︸ ︷︷ ︸

≡Lϕ̂(1/s)

s−1(sτ)ρ ,

where the term in parentheses defines a slowly varying function Lϕ̂(.) as a
function of 1/s. This shows that in the time domain,

ϕ(t)
t→∞∼

(
1

1
Lκ̂(t/τ∗)

+ (t/τ)−ρ

)
︸ ︷︷ ︸

Lϕ(t)≈Lϕ̂(t)

(t/τ)−ρ

Γ (1− ρ)
(2.24)

is a refined asymptotic form for ϕ(t). We note in this context that the limit
τ∗ → 0, i.e. Lκ̂ (t/τ

∗) ≈ 1, leads to the refined asymptotic form of the ML
relaxation function derived in Ref. [40].

2.3. Illustration

As an illustration for the above findings, we construct a model relax-
ation function from Kummer’s hypergeometric function [42], M(a, b, z) ≡
1F1(a, b, z). We define the Kummer relaxation function as

ϕK(t) = 1F1(ρ, 1,−t/τ) , (2.25)

and the essential point is that ϕK(t) decays asymptotically as the ML relax-
ation function, i.e.

ϕK(t)
t→∞∼ (t/τ)−ρ

Γ (1− ρ)
. (2.26)
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However, in contrast to the ML relaxation function, ϕM(t) can be developed
into a Taylor series around t = 0,

ϕK(t) = 1− ρ(t/τ) +
ρ(ρ+ 1)

4
(t/τ)2 +

ρ(ρ+ 1)(ρ+ 2)

36
(t/τ)3 + . . . (2.27)

The Laplace transform of the Kummer relaxation function has the simple
analytical form

ϕ̂K(s) = s−1(sτ)ρ (1 + sτ)−ρ , (2.28)

which may be written as

ϕ̂K(s) =
1

s+ s(sτ)−ρ

LK(1/sτ)

, (2.29)

where LK(t) is the slowly varying function

LK(t) =
tρ

(t+ 1)ρ − 1
. (2.30)

Our model correlation function, ϕ(t), will now be defined by replacing
LK(1/sτ) → LK(1/sτ

∗), such that

ϕ̂(s) ≡ 1

s+ s(sτ)−ρ

LK(1/sτ∗)

τ∗→0∼ ϕ̂ML(s) . (2.31)

The inverse Laplace transform ϕ̂(s) → ϕ(t) cannot be performed analytically
and we resorted to computing it from a Padé approximation of ϕ̂(s) (see also
Ref. [43])

ϕ̂(s) ≈ Pm(s− s0)

Qn(s− s0)
, (2.32)

where Pm(.) and Qn(.) are polynomials of degree m and n, respectively.
This approach leads by construction to a multi-exponential approximation
of ϕ(t) which can be computed via the residue theorem, since ϕ̂(s) is a
rational function in s

ϕ(t) ≈ 1

2πi

∮
C

ds est
Pm(s− s0)

Qn(s− s0)
=
∑
k

Res

{
est
Pm(s− s0)

Qn(s− s0)
, s = sk

}
.

Choosing s0 = 0.1, m = 10, and n = 11, we found that the approximation
is excellent in a time range of approximately 0 ≤ t < 40 and suffices to
illustrate the approach of the model relaxation function ϕ(t) to the ML
relaxation function, which is shown in Fig. 2. We note here that for ρ = 0.2,
the ratio τ∗/τ must be chosen very small to obtain ϕ(t) ≈ ϕML(t).
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Fig. 2. Model relaxation function ϕ(t) for different values of ρ and τ∗/τ (blue
dashed lines), together with the exact limiting cases — the Kummer relaxation
function (blue solid line) and the ML relaxation function (red solid line).

3. Anomalous diffusion

3.1. Diffusion and velocity autocorrelation function

The Mittag–Leffler relaxation function appears also in the context of
anomalous diffusion, where it describes the form of the velocity autocorre-
lation function under the condition of time scale separation comparing the
time evolution of the “slow” velocity autocorrelation function (VACF) of the
diffusing particle and the “fast” associated memory function. This has been
proven in Ref. [43] by using amplitude scaling of the memory function and
we show here that the same result can be obtained more directly, following
the reasoning in Section 2.2. In diffusion processes, one considers the mean
squared displacement (MSD) of a diffusing particle

W (t) =
〈
(x(t)− x(0))2

〉
, (3.1)

which may be written in the alternative form

W (t) = 2

t∫
0

dt′
(
t− t′

)
cvv
(
t′
)
, (3.2)
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where cvv(t) = (v(0), v(t)) is the velocity autocorrelation function (VACF)
and x(t) − x(0) =

∫ t
0 dt

′v(t′), with v = dx(t)/dt. The MSD for an anoma-
lously diffusing particle has the asymptotic form [1, 4]

W (t)
t→∞∼ 2Dαt

α, 0 < α < 2 , (3.3)

where 0 < α < 1 is referred to as “subdiffusion”, which is typical for diffusion
in crowded environments, α = 1 corresponds to normal diffusion according
to the Einstein–Smoluchowski law [44, 45] and 1 < α < 2 to “superdiffu-
sion”, which describes diffusion of particles tending to be expelled from their
instantaneous positions. The MSD may now be considered as a regularly
varying function, and we can write

W (t) = 2DαLW (t)tα , 0 < α < 2 , (3.4)

where LW (.) is a slowly varying function describing the approach of the
MSD to the asymptotic regime. The VACF being a classical time correlation
function obeys an equation of motion of the form of (2.3),

∂tcvv(t) +

t∫
0

dt′ cvv
(
t− t′

)
κvv

(
t′
)
= 0 , (3.5)

and the Laplace transform of this equation may be inserted into the Laplace
transform of Eq. (3.2) to give

Ŵ (s) =
2

s2
⟨v2⟩

s+ κ̂(s)︸ ︷︷ ︸
ĉvv(s)

. (3.6)

On the other hand, it follows from the general form (3.4) of the MSD that

Ŵ (s)
s→0∼ 2DαLW

(
1

s

)
Γ (1 + α)

s1+α
, (3.7)

and defining the diffusion time scale

τD =

( 〈
v2
〉

DαΓ (α+ 1)

) 1
α−2

, (3.8)

the asymptotic form of the memory function is found to be

κ̂vv(s)
s→0∼ s(sτD)

α−2

LW

(
1
s

) . (3.9)
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Therefore, the memory function of the VACF must have the general form of

κ̂vv(s) =
s(sτD)

α−2

Lκ̂

(
1
s

) , (3.10)

noting that limt→∞ Lκ̂(t) = 1. Introducing now again an explicit time scale
τ∗ for Lκ̂(t), i.e.

Lκ̂(t) ≡ Lκ̂(t/τ
∗) , (3.11)

the Laplace transform of the relaxation function

ψ(t) = cvv(t)/cvv(0) (3.12)

becomes
ψ̂(s) =

1

s+ s(sτD)α−2

Lκ̂( 1
sτ∗ )

τ∗→0∼ 1

s+ s(sτD)α−2
, (3.13)

and, therefore,
ψ(t)

τ∗→0∼ E2−α(−(t/τD)
2−α) . (3.14)

For an MSD that grows asymptotically as 2Dαt
α, we thus obtain a VACF

in the form of an ML relaxation function of the order of 2−α and τD given
by Eq. (3.8) as the characteristic time scale. For the α = 1 case, i.e. for
normal diffusion, we have in particular exponential relaxation

lim
α→1

ψ(t)
τ∗→0∼ exp(−t/τD) , (3.15)

which characterizes the case of Langevin dynamics. In the Langevin model,
τ∗ is the time scale of the rapidly varying external forces due to the im-
pact of the solvent molecules, which are modeled as rapidly varying random
forces [34].

3.2. Illustration

As an illustration, we take the relaxation function of Section 2.3 as a
model for the VACF, replacing ρ→ 2− α,

ψ̂(s) :=
1

s+ s(sτD)α−2

LK(1/sτ∗)

. (3.16)

The slowly varying function LK(.) is here given by Eq. (2.30). We use again
a Padé approximation for ψ̂(s) in order to obtain ψ(t) for different values
of τ∗/τD by the inverse Laplace transform, recalling that ψ(t) is then a
multi-exponential approximation of the true model relaxation function in
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the time domain. Figure 3 shows from top to bottom in the left panels
the normalized model VACFs for α = 0.5, 1, 1.5, respectively, using different
ratios τ∗/τD, and in the right panels the respective MSDs, which have been
obtained by numerical integration according to Eq. (3.2). In contrast to the
case of anomalous relaxation, the index of the ML relaxation function varies
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Fig. 3. From top to bottom: Normalized velocity autocorrelation functions (left
panel) and mean squared displacements (right panel) for α = 0.5, 1.0, 1.5, respec-
tively. For α = 0.5 and α = 1.5, the dashed lines indicate the normalized model
VACFs and the corresponding MSDs for the indicated values of τ∗/τD. The blue
and red solid lines correspond, respectively, to the τ∗ = τD and τ∗/τD → 0 cases.
For α = 1, the model VACF and the Mittag–Leffler relaxation function coincide
and become an exponentially decaying function, ψ(t) = exp(−t/τD).
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here between 0 and 2. The “subdiffusive” regime, 0 < α < 1, is characterized
by a VACF exhibiting a negative algebraic long-time tail, which indicates a
persisting tendency of the diffusing particles to invert their velocity and to
return to the point of departure, whereas the VACF corresponding to the
“superdiffusive” regime, 1 < α < 2, exhibits a positive power law long-time
tail which indicates a persisting tendency of the diffusing particles to keep
their velocity and to escape from the current position [46].

It is important to note that the time scale separation does not lead to
an MSD of the form of W (t) = 2Dαt

α, i.e. to LW (.) = 1. The reason is
that LW (.) and Lκ̂(.) are only asymptotically equal and the ballistic regime
W (t) ≈ ⟨v2⟩t2 survives the limit of τ∗/τD → 0. This follows by the Taylor
expansion of expression (3.2) and it can also be seen in Fig. 3, which shows
that all MSDs start with a quadratic ballistic regime.

4. Memory function scaling

4.1. Anomalous relaxation

It follows from the asymptotic forms (2.15) and (2.17) of the slowly
varying function L(.) and the Laplace transformed relaxation function, re-
spectively, that the relaxation time scale τ is given by

τ =
(
lim
s→0

sρ−1κ̂AA(s)
)−1/ρ

= η−1/ρ
ρ , 0 < ρ < 1 , (4.1)

where ηρ = lims→0 s
ρ−1κ̂AA(s) can be expressed as the fractional Kubo

integral [46]

ηρ =

∞∫
0

dt ∂ρ−1
t κAA(t) . (4.2)

The fractional time derivative of the memory function is here defined through

∂ρ−1
t κAA(t) =

d

dt

t∫
0

dt′
(t− t′)1−ρ

Γ (2− ρ)
κAA

(
t′
)
.

In the case of normal relaxation, where ρ → 1, we have τ = 1/η and
η =

∫∞
0 dt κAA(t). With these preliminaries, one sees immediately that

the scaling
κAA(t) → λκAA(t) (4.3)

entails a scaling of the time scale τ through

τ → τ(λ) = λ−1/ρτ , (4.4)
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such that limλ→0 τ
∗/τ(λ) = 0 and

ϕ(t)
λ→0∼ Eρ(−λ(t/τ)ρ) (4.5)

becomes the ML relaxation function.

4.2. Anomalous diffusion

In the case of anomalous diffusion, we have simply to replace

A→ v and ρ→ 2− α , where 0 < α < 2 . (4.6)

This leads to a diffusion time of the form of

τD =
(
lim
s→0

s1−ακ̂vv(s)
) 1

α−2
= η

1
α−2
α , (4.7)

where the fractional relaxation rate is given by

ηα =

∞∫
0

dt ∂1−α
t κvv(t) . (4.8)

The fractional derivative of the order of 1− α reads here explicitly

∂1−α
t κvv(t) =

d

dt

t∫
0

dt′
(t− t′)α−1

Γ (α)
κvv

(
t′
)
,

and the scaling κvv(t) → λκvv(t) entails here a change of the diffusion time
scale τD as

τD → τD(λ) = λ
1

α−2 τD . (4.9)

Therefore, limλ→0 τ
∗/τD(λ) → 0 and

ψ(t)
λ→0∼ E2−α

(
−λ(t/τD)2−α

)
(4.10)

are in agreement with Ref. [43]. The physical argument for scaling the
memory function is here an increase of the mass of the diffusing particle
according to m → m/λ. The mass scaling argument was already used
some time ago [47] by one of us (G.R.K.) to explain the approach ψ(t) →
exp(−λ(t/τD)), for λ → 0, which is characteristic for the Brownian motion
and which has been found empirically by molecular dynamics simulations
of a tracer particle of increasing mass, m → m/λ, in a solvent of identical
“solvent particles” of mass m [48].
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5. Conclusion and discussion

We have shown that any time correlation function displaying an asymp-
totic slow power law decay ∼ t−ρ/Γ (1 − ρ), with 0 < ρ < 1, takes the
form of a Mittag–Leffler relaxation function, Eρ(−(t/τ)ρ), if there is a sep-
aration between the time scale τ∗, describing the approach of the memory
function to its asymptotic form, and the relaxation time scale τ describing
its asymptotic regime, in the sense of τ∗ ≪ τ . The essential point was
to use that time correlation functions with an asymptotic power law decay
and their associated memory functions are regularly varying functions in
the sense of asymptotic analysis, and that such functions can be written
as a product of a slowly varying function, L(t), tending to a plateau value,
and a power law function ∼ t−ρ. The Mittag–Leffler relaxation function
appears also as a limiting case of the velocity autocorrelation function of an
anomalously diffusing particle, ⟨v(0)v(t)⟩ ∼ E2−α(−(t/τD)

2−α), if the time
scale τ∗ describing the approach of the associated memory function to its
asymptotic regime is much shorter than the diffusion time scale, τD, where
0 < α < 2 defines the asymptotic form of the mean squared displacement,
⟨(x(t)− x(0))2⟩ ∼ tα.

The derivation of the ML relaxation function in the framework of asymp-
totic analysis shows an alternative route to the scaling method for the mem-
ory function used in earlier work [43], and gives a clearer physical picture of
the transition to the asymptotic regime. We finally remark that numerical
illustrations have been produced with Wolfram’s Mathematica package [49].
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