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Ground-state properties of even–even isotopes of polonium (Po) have
been studied. The physical observables of our interest include quadrupole
deformation and shape transitions, binding energies, charge radii, and
neutron skin thickness. Theoretical results for the differential variation
dS2n(Z,N) based on two-neutron separation energy are also presented.
Theoretical calculations are carried out by employing covariant density
functional theory with density-dependent meson exchange (DD-ME2) and
point coupling (DD-PC1) interactions. The presented ground state proper-
ties with the RMF (Relativistic Mean Field) model are in good agreement
with recently available experimental data. The theoretical estimates cal-
culated by the covariant density functional theory predict shape transition
from oblate to spherical and spherical to prolate along the isotopic chain
of even–even Po nuclei ranging from mass number of 186 to 218.

DOI:10.5506/APhysPolB.53.2-A3

1. Introduction

A new phase of the research has begun with the development of experi-
mental facilities like radioactive ion beams and other technological advance-
ments [1–6]. The modern facilities make it possible to study a variety of the
nuclides which are unexplored till now. One of the key problems in nuclear
physics is the understanding of atomic nucleus due to the complexity of the
many-body system. The study of neutron-rich nuclei is a wide-open area of
the research in the nuclear structure field. The nuclei far away from the line
of β stability is a matter of deep investigation and it is yet to be explored.
The nuclei which are away from the β-stability line play an important role
in the understanding of nuclear physics. The production of the new isotopes
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[7–9] in recent years has revived great interest in nuclear structure models.
Till today, very little information is available about those nuclei which are
lying near driplines (exotic or halo nuclei).

The study of the nuclear structure properties near the drip lines and
away from β-stability, especially for the heavy-mass range nuclei mainly de-
pends upon the theoretical models since the experimental data is available
only for the light nuclei and also the data available is not huge. The nuclear
many-body system is a very complex system and an effective theoretical
model is needed for the strong and reliable predictions for the nuclear struc-
ture systems. It is also true that the undiscovered nuclei that are stable and
form a bound system are very large in number and we cannot study all of
them, however, we are able to make an effective step by examining a few
of them. We have chosen a heavy-mass-range isotopic chain of 186-218Po for
our theoretical study and the theoretical model is based on covariant DFT.
The nuclear many-body dynamics can be understood very well by using the
density functional theory both in relativistic and non-relativistic regimes
[10–18]. The successes and applications of covariant DFT can be found in [14].
In our manuscript, the RHB (Relativistic Hartree–Bogoliubov) model [19]
with density-dependent effective interactions of point-coupling-types (DD-
PC1 [20]) and meson exchange (DD-ME2 [21]) is employed with the inclusion
of separable pairing interaction [22–24]. The RHB theory has been tested
several times and its successes involve the appreciable description of nuclei
near the drip lines (exotic nuclides) [25, 26]. It has also been used to study
the deformed exotic nuclides as reported in [27, 28]. Studies related to the
shell structure and shell closure based on covariant DFT are also available
in [12, 29]. All these studies make this theory really a promising one to
investigate the many-body systems. In the presented work, the systematic
constrained calculations for the potential energy curves (PECs) for the iso-
topic chain of 186-218Po are presented. We have also theoretically calculated
the results for other important ground-state properties such as systematics
of binding energy, charge radii, neutron skin thickness, two-neutron separa-
tion energy, and shell closure parameter. The organisation of the presented
paper is as follows. An overview of the RHB theory with employed effec-
tive interactions is presented in Section 2. In Section 3, the results of our
theoretical calculations in comparison to the recent experimental data are
presented. The presented work is summarized in Section 4.

2. Theoretical framework

The presented work is carried out with the RHB (Relativistic Hartree–
Bogoliubov) theory. The theory describes a nucleus as a relativistic system
of baryons and mesons, and the ground state of the system is described as
a vacuum with respect to the independent quasiparticle operators, which



RMF-based Microscopic Study of Ground-state Properties and . . . 2-A3.3

are defined by the unitary Bogoliubov transformation of the single nucleon
creation and annihilation operators. The details of the RHB model are given
in Refs. [21, 30]. We have employed the model based on the RHB theory
with the density-dependent effective interactions. The density-dependent
meson exchange and point coupling effective interactions are used to study
the shell structure evolution. The pairing correlations are also taken into
consideration by the RHB functional constructed through the Bogoliubov
transformation of quasi-particle operators. This model is briefly discussed
in the following subsections.

2.1. DD-ME model

In this model, the total Lagrangian [21] density can be written in the
following form:

L =
∑
i

ψ̄i(iγµ∂
µ −m)ψi +

1
2∂µσ∂

µσ − 1
2m

2
σσ

2

−1
2ΩµνΩ

µν + 1
2m

2
ωωµω

µ − 1
4R⃗µνR⃗

µν + 1
2m

2
ρρ⃗µ · ρ⃗µ

−1
4FµνF

µν − gσψ̄ψσ − gωψ̄γ
µψωµ − gρψ̄τ⃗γ

µψ · ρ⃗µ
−eψ̄γµψAµ . (1)

In Eq. (1), ω represents isoscalar–vector meson, σ represents isoscalar–scalar
meson, the term ρ refers to isovector–vector meson.

2.2. DD-PC model

In a complete analogous way to the meson-exchange RMF phenomenology
described before, a density-dependent interaction Lagrangian density of point
coupling models [20], which includes the isoscalar–vector (ψ̄γµψ)(ψ̄γ

µψ),
isoscalar–scalar (ψ̄ψ)2, and isovector–vector (ψ̄τ⃗γµψ)·(ψ̄τ⃗γµψ) four-fermion
contact interactions in the isospace–space can be written as

L = ψ̄(iγ ∂ −m)ψ − 1

2
αS(ρ)

(
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) (
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)
−1

2
αV (ρ)

(
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− 1
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αTV (ρ)
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(
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− eψ̄γ A

1− τ3
2

ψ . (2)

2.3. RHB approximation with a separable pairing interactions

The Relativistic Hartree–Bogoliubov model [31, 32] takes into account
the pairing correlations in the RHB functional also in terms of the quasi-
particle operators [33]. The pairing correlations are important to consider
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for a quantitative description of an open-shell nuclei. The formulation of
the RHB model is a relativistic extension of the conventional Hartree–Fock–
Bogoliubov (HFB) framework in which the mean field and pairing corre-
lations are treated self-consistently. The RHB model gives a unified de-
scription of particle–hole (ph) and particle–particle (pp) correlations on a
mean-field level by using the average self-consistent mean-field potential that
encloses the long-range ph correlations, and a pairing-field potential which
sums up the pp correlations. The density matrix in the presence of pairing
can be generalized to two densities, the normal density ρ̂, and pairing ten-
sor κ̂. The Relativistic Hartree–Bogoliubov energy density functional can
be written as

ERHB[ρ̂, κ̂] = ERMF[ρ̂] + Epair[κ̂] , (3)

where ERMF[ρ̂] is the nuclear energy density functional and is given by

ERMF

[
ψ, ψ̄, σ, ωµ, ρ⃗µ, Aµ

]
=

∫
d3rH(r) . (4)

The pairing part of RHB functional is given by

Epair[κ̂] =
1

4

∑
n1n′

1

∑
n2n′

2

κ∗n1n′
1

〈
n1n

′
1

∣∣V PP
∣∣n2n′2〉κn2n′

2
, (5)

where ⟨n1n′1|V PP|n2n′2⟩ are the matrix elements of the two-body pairing
interaction and indices n1, n′1, n2, and n′2 denote quantum numbers that
specify the Dirac indices of the spinor.

The pairing force is separable in momentum space and in r-space has the
form of

V PP
(
r1, r2, r

′
1, r

′
2

)
= −Gδ

(
R−R′)P (r)P (

r′
)
, (6)

where R = 1√
2
(r1 + r2) and r = 1√

2
(r1 − r2) represent the center of mass

and the relative coordinates, respectively, and the form factor P (r) is of the
Gaussian form written as

P (r) =
1

(4πa2)3/2
e−r2/2a2 . (7)

The pairing force has a finite range and it also conserves translational in-
variance due to the presence of the factor δ(R − R′). Finally, the pairing
energy in the nuclear ground state is given by

Epair = −G
∑
N

P ∗
NPN . (8)

The details can be found in Refs. [22, 34].
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3. Results and discussions

We present our computed results of quadrupole deformation and shape
transitions, binding Energies, charge radii, neutron skin thickness, two-
neutron separation energies S2n(Z,N), and the differential variation of the
two-neutron separation energy dS2n(Z,N) for the isotopic chain of polonium
(Po) ranging from mass number of 186 to 218. The theoretical calculations
are carried out within the framework of the RHB theory discussed briefly in
the previous section.

3.1. Quadrupole deformation and shape transition

We have shown our results for the quadrupole deformation parameter and
the shape transition for the even–even Po isotopes ranging from mass number
A = 186 to A = 218 in Figs. 1, 2, 3, 4, and 5. The reason of interest for the
shape transitions in nuclei is very obvious as it is the fundamental property
of the nuclei. Nucleons try to adjust themselves inside the nuclei in such
a manner so that the overall distribution is corresponding to the maximum
possible binding energy. In the axially symmetric case, the deformed nuclei
can exist in the prolate or oblate shape configuration. The positive value of
the quadrupole deformation parameter (β2) is corresponding to the prolate
shape and the negative value of β2 shows the oblate shape deformation. The
Po isotopes belong to the heavy-mass region and in Ref. [35], there is no sign
of substantial triaxiality involved in the case of Po isotopes. This is why we
have considered the axial shapes in our study.

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

-7.695

-7.69

-7.685

-7.68

-7.675

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

-7.722

-7.716

-7.71

-7.704

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

-7.755

-7.75

-7.745

-7.74

-7.735

-7.73

-7.725

-0.3 -0.2 -0.1 0 0.1 0.2 0.3
-7.775

-7.77

-7.765

-7.76

-7.755

 DD-ME2
 DD-PC1

 DD-ME2
 DD-PC1

 DD-ME2
 DD-PC1Bi

nd
in

g 
En

er
gy

 (M
eV

)

 DD-ME2
 DD-PC1

Deformation Parameter (b2)

Fig. 1. The potential energy curves (PEC) plotted as a function of β2 for the
186-192Po isotopes. The theoretical estimates are computed by using the relativistic
nuclear density functional based on the DD-ME2 and DD-PC1 parameters.
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Fig. 2. The potential energy curves (PEC) plotted as a function of β2 for the
194-200Po isotopes. The theoretical estimates are computed by using the relativistic
nuclear density functional based on the DD-ME2 and DD-PC1 parameters.

The potential energy curves (PECs) are shown in Figs 1, 2, 3, 4, and 5
for the isotopic chain of the polonium nuclei 186-218Po. The most stable
configuration corresponding to the deformation parameter is the one where
the binding energy per nucleon value is most negative. The negative value
here indicates that this much of additional energy is required to disassemble
the nucleon from the respective nuclei and that is why it is called the binding
energy per nucleon. The theoretical estimates are computed by using the
relativistic nuclear density functional based on the DD-ME2 and DD-PC1
parameters. From the PECs drawn in Figs. 1, 2, 3, 4, and 5, it can be
easily extracted that there is a shape transition from oblate to spherical and
then spherical to oblate as one moves from 186Po to 218Po. Isotopes ranging
from 186Po to 204Po show the oblate-shape configuration and 206Po to 214Po
correspond to the spherical shape and, afterward, there is a transition to
prolate-shape configuration for the 216Po and 218Po nuclides. It can be easily
seen that the nuclei near the magic number of neutron N = 126 are spherical
and the isotopes close to N = 126 show either none or slight deformation
from the spherical symmetry. This fact is attributed to the magicity of the
neutron number N = 126 and as one moves away from this configuration
along the isotopic chain, the redistribution of the nucleons among the nuclei
leads to the deformation in order to get the state of maximum stability in
that particular configuration of the nucleons.
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Fig. 3. The potential energy curves (PEC) plotted as a function of β2 for the
202-208Po isotopes. The theoretical estimates are computed by using the relativistic
nuclear density functional based on the DD-ME2 and DD-PC1 parameters.
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Fig. 4. The potential energy curves (PEC) plotted as a function of β2 for the
210-216Po isotopes. The theoretical estimates are computed by using the relativistic
nuclear density functional based on the DD-ME2 and DD-PC1 parameters.
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Fig. 5. The potential energy curves (PEC) plotted as a function of β2 for the 218Po
isotope. The theoretical estimates are computed by using the relativistic nuclear
density functional based on the DD-ME2 and DD-PC1 parameters.

3.2. Binding energy and its derived physical observables

Binding energy is the underlying property of the nuclides which provides
the deep insights into the nuclear structure. The binding energy refers to
that energy which when given to the nuclei, breaks it apart into its con-
stituent nucleons. The binding energy is directly related to the stability of
the nuclei. The quantities such as nuclear separation energy, shell closure pa-
rameters which are also the important observables related to the nuclei can
be calculated using the binding energy. The theoretical results of the binding
energy per nucleon for the isotopic chain of polonium isotopes are shown in
Fig. 6. The theoretical extractions based on the RHB theory are compared
with the available experimental data taken from Ref. [36] and they are in
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Fig. 6. Variation of theoretical and experimental [36] binding energies (BE) as a
function of neutron number (N) for the 186-218Po isotopes. Data taken from the
FRDM [37] and HFB [35] calculations is also shown for comparison.
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good agreement with the experimental extractions. We have also compared
our results with the calculations obtained from the Finite Range Droplet
model (FRDM) [37] and the Hartree–Fock–Bogoliubov (HFB) model [35]
which are also in agreement with our results. It can be observed from Fig. 6
that the binding energy per nucleon increases from neutron number N = 102
to N = 124, and after that, there is a decrease in the binding energy up to
the neutron number of N = 134. The present systematics of binding energy
per nucleon indicates that as we add more and more neutrons to the nuclei,
the stability gets increased as the excess of neutron overcomes the Coulomb
repulsion among the protons up to the neutron number near the magic shell
neutron number N = 126. After that, there is a decreasing trend in binding
energy per nucleon attributed to the fact that the asymmetry between the
proton and the neutron number gets increased and this reduces the stability.

Figures 7 and 8 show the theoretical results for the physical observables
derived from the binding energies, and these physical observables are two-
neutron separation energy S2n and the shell closure parameter dS2n based
on the two-neutron separation energy. The two-neutron separation energy
gives the measure of the energy that is essentially required to remove two
neutrons from a particular nucleus. It is defined by using the formula

S2n(Z,N) = [B(Z,N)−B(Z,N − 2)] . (9)

The authors in Ref. [38] have proposed an important physical quantity
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Fig. 7. Theoretically calculated two-neutron separation energy (S2n) of the even–
even 186-218Po isotopes and its comparison with experimental data [36] as a func-
tion of neutron number (N). The theoretical estimates are computed by using the
relativistic nuclear density functional based on the DD-ME2 and DD-PC1 param-
eters. Data taken from the FRDM [37] and HFB [35] calculations is also shown for
comparison.
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dS2n(Z,N) based on two-neutron separation energies which is used to iden-
tify the appearance or the collapse of the shell closures. It is defined by
using the formula

dS2n(Z,N) =

∣∣∣∣S2n(Z,N + 2)− S2n(Z,N)

2

∣∣∣∣ . (10)

We have theoretically calculated the results of S2n(Z,N) and dS2n(Z,N)
for the even–even isotopes of polonium (Po) in Figs. 7 and 8, respectively,
and plotted them against the neutron number (N). We have also compared
our theoretical results with the available experimental data [36] and with
the calculations obtained from the FRDM [37] and HFB [35] models. It
can be seen in Fig. 7 that there is a substantial drop in S2n(Z,N) values
across 210Po indicating the neutron number N = 126 as the neutron shell
closure in the isotopic chain of even–even Po nuclides. The presence of the
shell closure at N = 126 in 210Po is also supported in the Fig. 8 where we
presented the variation of dS2n(Z,N) values for the isotopic chain of Po.
A peak is observed at neuron number N = 126 indicating a shell gap. The
theoretical estimates are computed by using the relativistic nuclear density
functional based on the DD-ME2 and DD-PC1 parameters.
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Fig. 8. Theoretically calculated differential shell closure parameter (dS2n) of the
even–even 186-218Po isotopes and its comparison with experimental data [36] as
a function of neutron number (N). The theoretical estimates are computed by
using the relativistic nuclear density functional based on the DD-ME2 and DD-
PC1 parameters. Data taken from the FRDM [37] and HFB [35] calculations is
also shown for comparison.
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3.3. Charge radii

The nuclear charge radius is the fundamental nuclear observable that
estimates the size of the nucleus. In this subsection, we are presenting the
results of nuclear charge radii which is evaluated using different interactions
such as DD-ME2 and DD-PC1 with covariant DFT. Figure 9 presents our
theoretical results of root-mean-square charge radii. The results for the
charge radii Rch in the Fermi meter as a function of neutron number N for
the isotopic chain of even–even Po are shown. The theoretical charge radius
is calculated using the formula [22]

Rch =
√
r2p + 0.64 fm . (11)

Here, rp denotes the r.m.s. radius of the proton density distribution and
term 0.64 fm2 accounts for the finite size of the proton.
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Fig. 9. Comparison of experimental [39] and theoretically calculated root-mean-
square charge radii (Rch) plotted against the neutron number (N) for the even–even
186-218Po isotopes. The theoretical estimates are computed by using the relativistic
nuclear density functional based on the DD-ME2 and DD-PC1 parameters. Data
taken from the HFB [35] calculations is also shown for comparison.

The experimental measurements of Rch are also shown for comparison
[39]. The experimentally observed systematics of charge radii is very well
reproduced by our theoretical calculations based on the RMF model with
covariant DFT. We have also compared our results with those obtained from
the HFB model [35] which are also in agreement with our results and follow
a similar trend as our results. It is clear from Fig. 9 that, as the neutron
numberN increases for the isotopic chain of the even–even Po isotopes, there
is an increase in the charge radii and it keeps on increasing. This trend is
attributed to a redistribution of the nucleons inside the nuclei to overcome
the Coulomb repulsion by the addition of an excess of the neutron.
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3.4. Neutron skin thickness

The neutron skin thickness ∆rnp is defined by the following equation:

∆rnp =
√
r2n −

√
r2p , (12)

where rn refers to the neutron r.m.s. radius and rp denotes the proton r.m.s.
radius. It is well-understood from Ref. [40] that the accurate measurement
of the neutron skin thickness would place rigid constraints on the density
dependence of the nuclear symmetry energy denoted as S(ρ). The density
dependence of the nuclear symmetry energy has direct consequences in finite
nuclear matter and nuclear dense matter of astrophysical interest. This
makes this nuclear observable a very important one that can reveal many
insights about the nuclei. Within the available experimental technology in
nuclear physics, the nuclear symmetry energy cannot be measured directly
but the information of this fundamental quantity can be extracted from the
neutron skin thickness and electric dipole polarizability [41]. In Fig. 10,
we present the neutron skin thickness ∆rnp = rn − rp in fm, plotted as a
function of neutron number N for the chain of even–even Po isotopes. The
theoretical estimates are computed by using the relativistic nuclear density
functional based on the DD-ME2 and DD-PC1 parameters. We have also
compared our results with the results obtained from the HFB model [35]. It
can be seen from Fig. 10 that the magnitudes of skin thickness are increasing
systematically with an increase in the neutron number along the isotopic
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Fig. 10. The neutron skin thickness (∆rnp) of the even–even 186-218Po isotopes
plotted against the neutron number (N). The theoretical estimates are computed
by using the relativistic nuclear density functional based on the DD-ME2 and DD-
PC1 parameters. Data taken from the HFB [35] calculations is also shown for
comparison.
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chain of even–even Po nuclides. This gradual increase in the neutron skin
may be attributed to the redistribution of the nucleons as a result of nuclear
interactions with the addition of extra neutrons keeping the atomic number
(Z) fixed up to the neutron drip line.

4. Conclusions

We have got some of the very important conclusions based upon our the-
oretical estimations presented in this paper by employing Nuclear Density
Functionals based on the Relativistic Hartree–Bogoliubov (RHB) with the
different effective interactions such as DD-PC1 and DD-ME2. The system-
atics of average binding energy, two-neutron separation energy, shell closure
parameter, nuclear charge radii, and neutron skin thickness have been calcu-
lated and compared with the available experimental data. The theoretically
calculated results are in good agreement with the experimental data and
also predict the values of observables for which experimental data is not
available. We have also compared our results with the results obtained from
the FRDM [37] and HFB [35] models which are also in agreement with our
results. The present theoretical results of nuclear structure properties sup-
port the existence of shell closure at N = 126. The results for quadrupole
deformation and potential energy curves indicate the shape transition from
oblate to spherical and spherical to prolate along the isotopic chain of Po
nuclei ranging from mass number of 186 to 218.
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