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We present a proof of positivity of an invariant kernel, which is of
basic importance for the Staruszkiewicz theory of the quantum Coulomb
field. Presented proof of positivity is independent of the Staruszkiewicz
theory and is based on the classical Schoenberg’s theorem for conditionally
negative definite functions, as well as on the generalized Bochner’s theorem.
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1. Introduction

Let us consider the following function:

u× v 7→ 〈u|v〉 = exp

{
− e2

π
(λ cothλ− 1)

}
(1)

for u, v ranging over the Lobachevsky space u ·u = 1, v ·v = 1. Here, λ is the
hyperbolic angle between u and v: coshλ = u ·v. Although it is not evident,
(1) is equal to an invariant positive definite kernel on the Lobachevsky space.
Reference [9] gives a decomposition of (1) into the Fourier integral (here,
z = e2/π and the second term below is absent for z > 1)

〈f |f〉 =

∫
dudvf(u)f(v)〈u|v〉 =

1

(2π)3

∞∫
0

dν ν2K(ν; z)

∫
S2

d2p |Ff(p; ν)|2

+
(1− z)2(2e)z

16π2

∫
S2×S2

d2p d2k

(p · k)z
Ff(p; i(1− z)) Ff(k; i(1− z)) (2)

for |f〉 =
∫

duf(u)|u〉 with smooth f of compact support on the Lobachevsky
space u · u = 1, with the invariant measure du on the Lobachevsky space.

(2-A5.1)

https://www.actaphys.uj.edu.pl/findarticle?series=reg&vol=53&aid=2-A5
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In formula (2), the constant e stands for the basis of natural logarithms
and e in z = e2/π stands for the elementary charge, experimental value of
which is approximately equal to 1√

137
in units in which ~ = c = 1. Here, the

Gel’fand–Graev–Vilenkin inverse Fourier transform of f on the Lobachevsky
space is used

f(u) =
1

(2π)3

∞∫
0

dν ν2

∫
S2

d2pFf(p; ν) (p · u)−iν−1

together with the Gelfand–Graev–Vilenkin Fourier transform Ff of f on
the Lobachevsky space, equal

Ff(p; ν) =

∫
du f(u) (p · u)iν−1 ,

which is a homogeneous of degree iν−1 function of p on the positive sheet of
the cone (and thus with Ff(p; i(1− z)) homogeneous of degree z − 2 in p).
Decomposition (2) can be computed as in [9] without the assumption of
positive definiteness of (1) (the invariance of (1) is evident). Positive defi-
niteness of (1) is equivalent (in terms of [9]) to the positivity of the weight
function K(ν; z = e2/π)

K(ν; z) = −4π

ν
z2ez

+∞∑
n=−∞

[ν + i(2n+ 1− z)]n−1

[ν + i(2n+ 1 + z)]n+2

in (2) for each positive real ν. However, positivity of the weight function
K(ν; e2/π) is not evident, compare [12]. In fact, a proof of positivity of the
kernel (1), independent of the Staruszkiewicz theory [8], would give us a
proof of (relative) consistency of his theory. This is the task of the present
paper.

2. Positivity of a Hermitian form on
a space of homogeneous states

In this section, we define a linear space (E∗)etr of generalized homoge-
neous states and a Hermitian form (·, ·)

J
on this space. We then prove its

positivity. In the next section, we use positivity of (·, ·)
J
in the proof of

positivity of the kernel (1). Although the space (E∗)etr and the form (·, ·)
J

have some deeper relation with the Staruszkiewicz theory, we do not enter
into this relation here, and treat the space (E∗)etr and the form (·, ·)

J
on

(E∗)etr as an intermediate auxiliary construction in the proof of positivity of
the kernel (1).
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We define the linear space (E∗)etr of electric-type transversal homoge-
neous of degree χ = −1 states as the space of states spanned (over C) by
the following states:

f̃µ(p) =
N∑
i

αi
uiµ
ui · p

,
N∑
i

αi = 0 , (3)

where ui runs over a finite set of time-like unit (ui · ui = 1) four-vectors,
and p runs over the positive energy sheet of the cone p · p = 0 in momen-
tum space, regarded as distribution supported at the cone p · p = 0 in the
momentum p. Note that if we allow in this definition only real f̃ and αi
and both energy sheets of the light cone in the momentum space, and finally
discard the condition

∑
αi = 0, then we obtain the space of (Fourier trans-

forms of) homogeneous of degree −1 solutions of the d’Alembert equation
— the electric-type solutions generated by the Dirac solution

f̃(p) =
u

u · p
, u = (1, 0, 0, 0) , f(x) =

(
θ(−x · x)

1

|x|
, 0, 0, 0

)
.

Note that the condition ∑
i

αi = 0

is equivalent to the transversality condition

pµf̃µ = 0 ,

which, together with the assumption that supp f̃µ ⊂ {p; p · p = 0}, assures
the inverse Fourier transform of f̃µ, regarded as distribution concentrated
on the cone, to be a solution of the vacuous Maxwell equations.

For the infrared fields having the form of (3), we define the invariant
inner product(

f̃ , f̃
)
J

=

∫
S2

(
f̃(p), Jp̄f̃(p)

)
C4

d2p = −
∫
S2

f̃µ(p)f̃µ(p) d2p , (4)

Jp̄ =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , p = (p0, p1, p2, p3) = (p0,p) , p·p = 0 , p0> 0 .

Recall, that by the homogeneity condition, f̃ is determined by its values on
the unit two sphere S2, |p| = 1, in the cone Op̄ = {p : p · p = 0, p0 > 0}, and
d2p can be identified with the ordinary measure on S2.
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In the case when both sheets of the light cone in momentum space are
allowed, and f̃ as well as αi are real, then the sum (3) can be realized
physically as the electromagnetic potential of the infrared radiation field
produced in the scattering process of point charges αi, with some four-
velocities pi coming in (which have, say, the corresponding αi positive) and
with the four-velocities pi coming out which have the corresponding αi with
the opposite sign, compare [7]. In particular, for the potential

f̃µ(p) =
e

2π

(
uµ
u · p

− vµ
v · p

)
corresponding to the infrared field produced by a point charge e scattered
at the origin such that uµ, vµ are the time-like four-velocities of the point
charge before and after the scattering, respectively, the inner product (4) is
equal to (

f̃ , f̃
)
J

= 2
e2

π
(λ cothλ− 1) ,

where λ is the hyperbolic angle between u and v, i.e. coshλ = u · v, com-
pare [7].

In the investigation of the Hermitian form (4), the operator B standing
in the formula for the inner product (ϕ̃, ϕ̃′) = (ϕ̃, Bϕ̃′)L2(R3;C4) and in the
formula for the Krein-inner product(

ϕ̃, J′ϕ̃′
)

=
(
ϕ̃, BJ′ϕ̃′

)
L2(R3;C4)

=
(
ϕ̃, Jp̄ϕ̃

′)
L2(R3,dµOp̄ ;C4) ,

in the single-particle Krein–Hilbert space H′ of the free e.m. potential field
in the Gupta–Bleuler gauge, will be useful. Here, dµOp̄(p) = d3p

2|p| is the
standard invariant measure on the cone Op̄. Recall that B is the operator
of pointwise multiplication by the matrix

1

2r
B(p) , p ∈ Op̄ ;

which is strictly positive and self-adjoint in C4, with

B(p)=


r−2+r2

2
r−2−r2

2r p1 r−2−r2

2r p2 r−2−r2

2r p3

r−2−r2

2r p1 r−2+r2−2
2r2 p1p1 + 1 r−2+r2−2

2r2 p1p2 r−2+r2−2
2r2 p1p3

r−2−r2

2r p2 r−2+r2−2
2r2 p2p1 r−2+r2−2

2r2 p2p2 + 1 r−2+r2−2
2r2 p2p3

r−2−r2

2r p3 r−2+r2−2
2r2 p3p1 r−2+r2−2

2r2 p3p2 r−2+r2−2
2r2 p3p3 + 1

 ,

(5)
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again strictly positive self-adjoint on C4. Here, r = p0(p) = |p|. For each
p ∈ Op̄,

w1
+(p) =


0
p2√

(p1)2+(p2)2

−p1√
(p1)2+(p2)2

0

 , w1
−(p) =



0
p1p3√

(p1)2+(p2)2r

p2p3√
(p1)2+(p2)2r

−
√

(p1)2+(p2)2

r

 ,

wr−2(p) =



1√
2

1√
2

p1

r

1√
2

p2

r

1√
2

p3

r

 , wr2(p) =



1√
2

− 1√
2

p1

r

− 1√
2

p2

r

− 1√
2

p3

r


are the eigenvectors of the matrix B(p) which are orthonormal in C4, where
w1

+(p), w1
−(p) correspond to the eigenvalue equal to +1, and w

r−2 (p), w
r2

(p)

correspond to the eigenvalues r−2, r2, respectively, compare [13].
There is a canonical decomposition of the one-particle Krein–Hilbert

space H′ of the field Aµ associated to the operator B, which allows the
construction of the subspace H′tr ⊂ H′ of physical transversal states. The
decomposition of H′ associated to B can, in principle, be extended over the
space of homogeneous functions on the cone. If, in addition, restrictions
of these functions to the unit sphere S2 belong to L2(S2), then this de-
composition will allow us to make some statements concerning positivity of
the form (4) as defined on homogeneous of degree −1 four-vector functions
summable on S2.

Namely, recall that the ordinary one particle state, i.e. a four-component
function ϕ̃µ on the cone — an element of the Hilbert spaceH′, has the unique
decomposition

ϕ̃ = w1
+f̃+ + w1

−f̃− + wr−2 f̃0+ + wr2 f̃0− .

Here, the four-component functions w, are given above and are at each point
p of the cone O1,0,0,1 equal to the eigenvectors of the 4×4 matrix B(p) given
above. The complex valued functions f̃+, f̃− are square integrable on the
cone with respect to the invariant measure d3p

2|p| on the cone, and the scalar

function f̃0+ is square integrable with respect to the measure d3p
|p|3 . Finally,

the complex valued function f̃0− is square integrable on the cone with respect
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to the measure |p|d3p. The subspace H′tr of physical (one particle) states
consists precisely of all those functions ϕ̃ which have the decomposition

ϕ̃ = w1
+f̃+ + w1

−f̃− .

Note, in particular, that the elements of H′tr are transversal in the stronger
sense, i.e. not only pµϕ̃µ = 0 but p1ϕ̃1 + p1ϕ̃2 + p3ϕ̃3 = 0. Let now the
(four-component) function ϕ̃ be replaced with a function f̃ on the cone,
homogeneous of degree χ = −1 + iν, ν ∈ R. In this case, f̃ likewise has the
unique decomposition

f̃ = w1
+f̃+ + w1

−f̃− + wr−2 f̃0+ + wr2 f̃0− ,

where in this decomposition the functions f̃+, f̃−, f̃0+, f̃0− are homogeneous
of degree χ = −1+iν, as the functions w1

+, w1
−, wr−2 , wr2 are homogeneous

of degree zero functions on the light cone. We assume that the functions f̃
are regular enough in having the restrictions to the unit sphere S2 which
belong to L2(S2). In this case, the decomposition of f̃ can be used to the
analysis of the positivity of (4) on the linear space of homogeneous of degree
χ = −1 + iν states, or in particular on homogeneous of degree −1 states of
the form (3) which can be transversal, i.e.

N∑
i

αi = 0

or not necessary transversal, i.e.

N∑
i

αi 6= 0 .

In particular, we can consistently define the physical subspace (E∗)tr of
homogeneous states as the space of all those functions on the cone which
can be represented as the linear combination

w1
+f̃+ + w1

−f̃− + wr−2 f̃0+

with f̃+, f̃−, f̃0+ homogeneous of degree χ = −1 + iν, and restrictions to
S2 belonging to L2(S2). Note, in particular, that the elements of (E∗)tr are
transversal: pµf̃µ = 0.

Observe that for homogeneous transversal states f̃µ of homogeneity de-
gree of χ = −1 + iν, or for any f̃µ ∈ (E∗)etr of the general form (3) with

N∑
i

αi = 0 ,
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the bilinear form (4) is non-negatively defined. Indeed, any such element
can be decomposed into the three components

f̃µ = w1
+
µf̃+ + w1

−
µf̃− + wr−2µf̃0+ ,

(the fourth component of the general decomposition is lacking due to the
transversality). On the other hand, the components w1

+
µf̃+, w1

−
µf̃−,

wr−2µf̃0+ are orthogonal with respect to (4), the bilinear form (4) is posi-
tive (for the first two components w1

+
µf̃+, w1

−
µf̃−) or zero (for the last

wr−2µf̃0+). Thus, non-negativity on transversal homogeneous of degree
χ = −1 + iν as well as positivity on the states (3) follows whenever

N∑
i

αi = 0 .

Thus, we may summarize the results in the following:

Lemma 1. The invariant Hermitian bilinear form (4)(
f̃ , f̃

)
J

=

∫
S2

(
f̃(p), Jp̄f̃(p)

)
C4

d2p = −
∫
S2

f̃µ(p)f̃µ(p) d2p

is non-negatively definite on the linear space (E∗)tr of transversal homoge-
neous of degree χ = −1+iν states as well as on the space (E∗)etr of transversal
electric-type states

f̃µ(p) =
N∑
i

αi
uiµ
ui · p

,

N∑
i

αi = 0 , ui · ui = 1 , i = 1, . . . , N .

3. Positivity of the invariant kernel 〈·|·〉 on the Lobachevsky space

Now, we construct a continuous and invariant kernel 〈·|·〉 on the Lobach-
evsky space L3, which is of considerable importance for the Staruszkiewicz
theory. We give a proof of its positivity. In order to achieve this result, we
use the linear subspace L[Fχ=1] of states homogeneous of degree −1.

For this reason, consider now the specific homogeneous of degree −1
state (Fourier transform of the Dirac homogeneous of degree −1 solution
restricted to the positive-energy sheet of the cone) of the form of

f̃ |u〉µ (p) =
uµ
u · p

(6)
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with a fixed unit time-like vector u in the Lobachevsky space. Then construct
the linear span L[Fχ=1] of all such (6) with u ranging over the Lobachevsky
space L3 of unit time-like vectors u, u · u = 1. In other words, we consider
the space L[Fχ=1] spanned by all Lorentz transforms

Λ(g)−1f̃ |u〉(Λ(g)p) = f̃ |u
′〉(p) =

u′

u′ · p
, u′ = Λ(g)−1u ,

g ∈ SL(2,C)

of one single state of the form of f̃ |u〉. Here, we have used the natural
antihomomorphism g → Λ(g) from the SL(2,C) into the group of Lorentz
transformations.

Note that this Lorentz transformation is induced by the linear dual of
the (conjugated) Łopuszański transformation acting in the Fock space of
the quantum field Aµ. Namely, we put the natural formula for the invariant
pairing(

f̃ , ϕ̃
)

pairing
=
(
f̃ , J′ϕ̃

)
= −

∫
O±1,0,0,1

f̃µ(p)ϕ̃µ(p) dµO±1,0,0,1
(p)

=

∫
O±1,0,0,1

(
f̃(p), Jp̄ϕ̃(p)

)
C4

dµO±1,0,0,1
(p) . (7)

The space L[Fχ=1] contains the transversal electric-type homogeneous
states (respectively, homogeneous of degree −1 solutions of the d’Alembert
equation) of the form of (3) with

N∑
i

αi = 0

along with the longitudinal solutions of the form of (3) with∑
i

αj 6= 0 .

The space of invariant kernels 〈·|·〉 on L3 is rather reach. However, in
this particular case of positive definite kernels on the Lobachevsky space
L3
∼= SL(2,C)/SU(2,C) acted on by SL(2,C) the invariant kernels are fully

classified, compare e.g. [1]. The manifold L3 can also be realized by 2 × 2
Hermitian complex matrices û = σµu

µ, where σ0 = 12 and σi, i = 1,2,3, are
the Pauli matrices and u · u = 1. Next we consider the smooth left action
SL(2,C)×L3 3 g× û→ g · û ∈ L3 of SL(2,C) on L3 defined by the formula

g · û = gûg∗ = ̂Λ (g−1)u , g ∈ SL(2,C) , û ∈ L3 .
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Then, L3 is equal to the orbit O
û

= {g · û, g ∈ SL(2,C)} of the point û with
u = (1, 0, 0, 0). The isotropy group at the point û with u = (1, 0, 0, 0)
is equal to the maximal compact subgroup K = SU(2,C) of SL(2,C).
Therefore, L3 = O

û
, u = (1, 0, 0, 0), is diffeomorphic to the space L3

∼=
SL(2,C)/SU(2,C) of left cosets qK, q ∈ SL(2,C), with the above left ac-
tion, which coincides, under this diffeomorphism, with the ordinary left ac-
tion g × qK → gqK on the left cosets qK. To the coset eK of the identity
element e ∈ SL(2,C), there corresponds the point û, u = (1, 0, 0, 0), invariant
under SU(2,C). Choosing various invariant positive definite kernels 〈·|·〉 on
L3, we achieve in this way various cyclic spherical unitary representations U
of the SL(2,C) group on the completion of L[Fχ=1] with respect to the inner
product defined by the invariant kernel. Let K = SU(2,C) be the maximal
compact subgroup of SL(2,C). Let a unitary representation U of SL(2,C) be
called K-spherical (or merely spherical) if the decomposition of the restric-
tion of U to K contains the trivial representation k → 1 of K. Equivalently,
U is spherical whenever there is a unit vector v ∈ HU such that Ukv = v
for all k ∈ K. Then, in particular, it follows by the classification results (or
Gel’fand’s theory of spherical functions and his generalization of Bochner’s
theorem for semi-simple Lie groups, in particular for SL(2,C) group) [1],
that each unitary cyclic and spherical representation U of SL(2,C) can be
reached by the respective choice of the invariant kernel on the Lobachevksy
space, or to each such representation there exists the corresponding invariant
kernel.

It follows that the most general representation U which can be achieved
in this way has the general form [1] of

U =

∫
R

S(m = 0, ρ) dρ⊕
∫

[0,1]⊂R

D(ν) dν , (8)

where S(m, ρ) is the irreducible representation of the principal series de-
noted by the pair (l0 = m

2 , l1 = iρ
2 ), with m ∈ Z and ρ ∈ R in the no-

tation of the book [2], and correspond to the characters χ = (n1, n2) =(
m
2 + iρ

2 ,−
m
2 + iρ

2

)
in the notation of the book [3]. Here, D(ν) are the irre-

ducible unitary representations of the supplementary series denoted by the
pair (l0 = 0, l1 = ν) in the notation of the book [2], and correspond to the
character χ = (n1, n2) = (ν, ν) in the notation of the book [3] with1 the real
parameter ν ∈ (0, 1). Finally, dρ and dν are the arbitrary σ-measures on
the reals R and on the interval [0, 1] ⊂ R, respectively.

However, the classification of positive definite invariant kernels on the
Lobachevsky space, as presented e.g. in [1], requires a considerable work

1 In the notation of Gel’fand and Neumark works, the parameter ν numbering the
supplementary series D(ν) is twice as ours ν and ranges over the interval (0, 2).
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in each particular case, needed to give a more concrete form to the pos-
sible kernels, compare e.g. the example of positive definite kernels on the
Lobachevsky plane

L2 =
SL(2,R)

SO(2)

invariant under SL(2,R). Unfortunately, the case of

L3 =
SL(2,C)

SU(2)

has not been worked out in [1] in explicit form. Therefore, we prefer to
construct the required kernel, which is of particular importance, with the
help of the Hermitian form (4).

Recall that for two points u, v of the Lobachevsky space, we have(
f̃ |u〉, f̃ |v〉

)
J

= −4πλ cothλ ,

where λ is the hyperbolic angle between u and v: coshλ = u ·v, compare [7].
The Hermitian bilinear invariant form (4) is not positive definite on the
linear space L[Fχ=1] of states spanned by the states f̃ |u′〉 of the form (6)
with u′ ranging over the Lobachevsky space L3. Nonetheless, it defines (after
addition of the constant term 4π and changing the sign) the “polarization”
of a Lévy–Schoenberg kernel on the Lobachevsky space L3 = SL(2,C)/K =
SL(2,C)/SU(2,C) (we are using the terminology of [1]). Namely, the kernel

u× v 7→ −
((

f̃ |u〉, f̃ |v〉
)

J

+ 4π

)
on L3 = SL(2,C)/SU(2,C) preserves the conditions (2.16)–(2.19) of [1]. In
particular, (2.19) of [1] means in our case that for each positive real number t,

u× v 7→ 〈u|v〉t = e
t

(
(f̃ |u〉,f̃ |v〉)

J
+4π

)
= e−t4π(λ cothλ−1) (9)

is an invariant positive definite kernel on the Lobachevsky space and thus
defines positive definite and invariant inner product on the linear space S
spanned by f̃ |u〉 and all its Lorentz transforms f̃ |u′〉 defined by (6) with u′
ranging over the Lobachevsky space. Here, λ is the hyperbolic angle between
u and v.

Indeed, that the conditions (2.16)–(2.18) of [1] are preserved is immedi-
ate. We need only show that (2.19) of [1] is preserved, i.e. that the kernel (9)
is positive definite. However, in order to see this, note that∑

i

αif̃
|ui〉,

∑
j

αj f̃
|uj〉


J

≥ 0
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whenever ∑
i

αi = 0

for f̃ |u〉 defined by (6), as we have already shown that the bilinear form (·, ·)
J

is positive definite on the linear space of electric-type transversal states (3),
compare the Lemma of Section 2. This means that the function

u× v 7→ −
((

f̃ |u〉, f̃ |v〉
)
J

+ 4π

)
is a conditionally-negative definite kernel on the Lobachevsky space in the
sense of Schoenberg [6], compare also [5], §9.1. Thus by the classical result
of Schoenberg [6] (compare e.g. also [5], §9.1, Theorem 9.7)

u× v 7→ 〈u|v〉t = e
t

(
(f̃ |u〉,f̃ |v〉)

J
+4π

)
= e−t4π(λ cothλ−1)

is a positive definite kernel on the Lobachevsky space for all positive t. Its
invariance follows from the invariance of the bilinear form (·, ·)

J
and the

transformation rule for f̃ |u〉 defined by (6).
This positivity result is of particular importance in the theory of Starusz-

kiewicz, so we state it as a separate

Theorem 1. For each positive real number t, the function

u× v 7→ 〈u|v〉t = e
t

(
(f̃ |u〉,f̃ |v〉)

J
+4π

)
= e−t4π(λ cothλ−1)

defines a positive definite invariant kernel on the Lobachevsky space L3 of
unit time-like vectors u. Here, λ is the hyperbolic angle between u and v
in L3.

We can choose u× v 7→ 〈u|v〉t as the invariant kernel defining the inner
product 〈·|·〉

J,t
on the linear space L[Fχ=1] of states spanned by f̃ |u′〉 defined

by (6), with u′ ranging over the Lobachevsky space, by the formula〈
m∑
i=1

αif̃
|ui〉

∣∣∣∣∣
m∑
i=1

βj f̃
|vj〉

〉
J,t

=

m∑
i,j=1

ᾱiβj〈ui|vj〉t , (10)

and define the Hilbert space completion Ht * E∗ of it. Then, we recover
the unitary representation Ut of the SL(2,C) group induced by the action
the dual of the (conjugate) of the Łopuszański representation on the linear
space L[Fχ=1] of states and its Hilbert space completion Ht. Indeed, by
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comparing this construction with the result of [9] and [11], we obtain the
following formula:

Ut =


D(ν0)

⊕ ∫
ρ>0

S(m = 0, ρ)dρ , ν0 = 1− 4πt , if 0 < 4πt < 1 ,∫
ρ>0

S(m = 0, ρ) dρ , if 1 < 4πt ,

(11)
where dρ is the ordinary Lebesgue measure on R+, compare (2).

4. Positivity of the weight function K(ν; z)

Now let us go back to the consistency of the axioms of the Staruszkiewicz
theory [8]. This consistency is equivalent to the existence (proved by explicit
construction) of the unitary representation U of the SL(2,C) which makes
the phase field S(x) a scalar field on the de Sitter hyperplane. Construction
of this U is based (compare [9, 10, 14]) on the fact that the mapping (1)
is equal to an invariant positive definite kernel on the Lobachevsky space.
Positivity of (1) would, of course, immediately follow from the consistency
of the Staruszkiewicz theory [8], but of course to show the consistency we
should prove that (1) is an invariant positive definite kernel independently
of the consistency assumption. However, as we have shown in Section 3,
the function (1) defines indeed an invariant positive definite kernel on the
Lobachevsky space, using Schoenberg’s theorem on conditionally negative
definite functions. Thus, the consistency of the axioms of [8], is thereby
proved.

Moreover, also positivity of K(ν; e2/π) follows from the positive def-
initeness of the invariant kernel (1) i.e. from the theorem of Section 3.
Indeed, it follows on application of the generalization of Bochner’s theo-
rem2, extended to the relation between positive measures on the set of ir-
reducible K-spherical unitary representations of semi-simple Lie groups G
and the corresponding positive definite kernels on G/K × G/K (or pos-
itive definite functions on G, corresponding to positive definite kernels on
G/K×G/K), compare e.g. [1], with G = SL(2,C), K = SU(2,C) and with
the Lobachevsky space G/K = L3 as the homogeneous Riemannian man-
ifold. Recall, please, that a continuous function ϕ on G is called positive
definite iff ∑

i,j

ϕ
(
g−1
i gj

)
αiᾱj ≥ 0

for any finite set of complex numbers αi, and any finite set of gi ∈ G; and
that ϕ is K-spherical iff ϕ(k1gk2) = ϕ(g), for all g ∈ G, k1, k2 ∈ K ⊂ G.

2 Due to Krein, Naimark, and Gel’fand [4], §31.10.
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ϕ is called normalized iff ϕ(e) = 1. Recall that a unitary representation U
of G is called K-spherical if there exists a unit vector v ∈ H(U) such that
U(k)v = v for each k ∈ K. Recall further that to any K-spherical uni-
tary representation U of G, there corresponds the K-spherical continuous
normalized and positive definite function ϕ(g) = (U(g)v, v), where (·, ·) is
the inner product in the Hilbert space H(U) of the representation U . If
the K-spherical representation U is cyclic, with the cyclic vector v which is
invariant under U(k), k ∈ K, then the correspondence between the unitary
equivalence class of U and the spherical function ϕ(g) = (U(g)v, v) is bi-
unique. This is, in particular, the case for irreducible K-spherical U . If the
K-spherical representation U is irreducible, then the correspondingK-spher-
ical normalized and positive definite function ϕ is called elementary. Recall
that each positive definite kernel κ on G/K × G/K can be lifted to the
bi-uniquelly corresponding positive definite function ϕ on G through the
formula ϕ(g) = κ(gK, eK) (compare e.g. [1]). Let K be a maximal compact
subgroup of a semisimple G. Finally, let ν ∈M be all equivalence classes of
all irreducible K-spherical representations Uν of a semisimple Lie group G
and let ϕν be the elementary normalized positive definite K-spherical func-
tions corresponding to the irreducible representants Uν , one for each unitary
equivalence class. Then we have the following generalization of Bochner’s
theorem (compare §31.10, Eq. (4), p. 426 of [4], or Theorem 3.23 in [1]):

Theorem 2 (Generalized Bochner’s theorem). Let ϕ be a continuous
positive definite K-spherical function on G. Then, there exists a unique
nonnegative measure µ on M such that

ϕ(g) =

∫
M

ϕν (g) dµ(ν) , g ∈ G .

The Fourier transform of the kernel (1) found in [9] (or decomposition (8)
of the representation corresponding to the kernel (1) or equivalently to the
kernel (9) with 4πt put equal e2/π) applied to the spherical positive definite
function ϕ corresponding to the kernel (1) gives decomposition of ϕ into the
elementary spherical functions ϕν with the same measure µ on the set of
equivalence classes of spherical unitary irreducible representations of G =
SL(2,C) as in (2). On the set of spherical representations of the principal
series, it is given by the Lebesgue measure dν on R+ with the weight function
equal to (2π2)−1ν2K(ν; e2/π): dµ(ν) = (2π2)−1ν2K(ν; e2/π)dν. Therefore,
the generalized Bochner’s theorem (Eq. (4), p. 426 of [4] or Theorem 3.23
of [1]) implies positivity of the measure dµ(ν) = (2π2)−1ν2K(ν; e2/π)dν.
Thus, positivity of the weight function K(ν; e2/π) in (2) follows for almost
all ν. By the analyticity of K(ν; e2/π) in both arguments (compare [9])
positivity of K(ν; e2/π) in the ordinary sense follows. Let us explain it in
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more detail. Please, recall that the unitary irreducible representations of the
principal series S(m = 0, ν), ν ∈ R, and of the supplementary series D(ν0),
ν0 ∈ [0, 1] exhaust all irreducible equivalence classes of all spherical unitary
irreducible representations of G = SL(2,C). Next, recall that the Fourier
decomposition of the kernel κ(u, v) = 〈u|v〉, given by (1) and found in [9], is
equal to

〈u|v〉 =
1

(2π)3

∞∫
0

dν ν2K(ν; z)

∫
S2

d2p (p · u)iν−1(p · v)iν−1

+
(1− z)2(2e)z

16π2

∫
S2×S2

d2p d2k

(p · k)z
(p · u)z−2 (k · v)z−2

= κ(u, v) = κ (gK, eK) = ϕ(g) ,

u = gv = Λ
(
g−1
)
v , v = (1, 0, 0, 0) , g ∈ SL(2,C) , (12)

here with e in front of the second integral equal to the basis of natural
logarithms and with e equal to the unit in SL(2,C). Recall that the d2p
integral over S2 in the first summand is equal to the inner product of two
functions

p→ (p · u)iν−1 , p→ (p · v)iν−1

homogeneous of degree iν − 1 on the positive cone p · p = 0, p0 > 0, in
the Hilbert space of the unitary spherical representation of the principal
series S(m = 0, ν), realized as the closure with this inner product of all
homogeneous of degree iν− 1 continuous functions on the cone. The double
integral d2p × d2k over S2 × S2 of the second summand in (12) is equal to
the inner product of two functions

p→ (p · u)z−2 , p→ (p · v)z−2

homogeneous of degree z − 2 on the positive cone p · p = 0, p0 > 0, in the
Hilbert space of the unitary spherical representation of the supplementary
series D(ν0 = 1 − z), realized as the closure with this inner product of all
homogeneous of degree 2 − z continuous functions on the cone. It is easily
seen that the function

p→ 1√
4π

(p · v)iν−1 , v = (1, 0, 0, 0)

represents the unit state invariant under the action of all elements of K =
SU(2,C) in the Hilbert space of the K-spherical irreducible representation
S(m = 0, ν) of the principal series, in the realization stated above. Similarly,

p→
(

(1− z)2z

16
√

2π5/2

)1/2

(p · v)z−2 , v = (1, 0, 0, 0)



Positivity of the Invariant Kernel Underlying Quantum Theory . . . 2-A5.15

is the function representing the unit state invariant under the action of all
elements of K = SU(2,C) in the Hilbert space of the K-spherical represen-
tation D(ν0 = 1 − z) of the supplementary series, in the realization stated
above. Therefore, the elementary positive definite and normalized spherical
functions ϕν and ϕν0 corresponding, respectively, to the spherical represen-
tations of the classes S(m = 0, ν) and D(ν0 = 1− z) are, respectively, equal
to

ϕν (g) =
1

4π

∫
S2

d2p (p · u)iν−1(p · v)iν−1 ,

v = (1, 0, 0, 0) , u = gv = Λ
(
g−1
)
v ,

ϕν0 (g) =
(1− z)2z

16
√

2π5/2

∫
S2×S2

d2p d2k

(p · k)z
(p · u)2−z(k · u)z−2 ,

v = (1, 0, 0, 0) , u = gv = Λ
(
g−1
)
v .

Inserting these formulas into (12), we obtain

ϕ(g) =

∫
R+

ϕν (g)dµ(ν) +

∫
[0,1]

ϕν0 (g)dµ(ν0)

=
1

2π2

∞∫
0

ϕν (g) ν2K(ν; z)dν +
(1− z)ez√

2π
ϕν0 (g) , (13)

with the restriction of the measure dµ(ν) to the set R+ of the equivalence
classes ν ∈ R+ of the spherical representations of the principal series S(m =
0, ν) equal to

dµ(ν) =
1

2π2
ν2K(ν; z)dν ,

and with the restriction of the measure dµ(ν0) to the set [0, 1] of the equiva-
lence classes ν0 ∈ [0, 1] of the spherical representations of the supplementary
series D(ν0) equal to the discrete measure concentrated at the single point
ν0 = 1− z, and giving the measure

(1− z)ez√
2π

to the single point set {ν0 = 1 − z}. Recall that the second discrete term
in (13) is present if and only if 0 < z < 1. In (13) and in the last formula,
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e is equal to the basis of natural logarithms. Thus, from the generalized
Bochner theorem positivity of the weight function ν → K(ν; z) follows for
all z, ν > 0.

Thus, using the theorem of Section 3 and the generalized Bochner’s the-
orem, we have proved

Theorem 3. The weight function ν → K(ν; z = e2/π) in the Fourier de-
composition (2) is non-negative.

Let us emphasize that our proof is independent of the axioms of [8],
thereby proving (relative) consistency of the axioms of [8], i.e. we have
proved that the consistency of the axioms of the Staruszkiewicz theory [8]
is equivalent to the consistency of the harmonic analysis for the semisimple
Lie group SL(2,C).

One can find out that there exists a small positive ε such that ν → K
(ν; z = e2/π) is a non-negative function for e2/π in the interval 0 < e2/π < ε,
on using explicit inspection, compare [12]. Thus, in this asymptotic case
e2/π � 1, positivity of the weight K follows by explicit inspection, and then
positivity of the kernel (1) for e2/π � 1, by the generalized Bochner’s theo-
rem. Note here that the experimental value of e2/π is ≈ 0.0023. Numerical
calculations [12] confirm positivity of the weight K(ν; e2/π).

The author is indebted for helpful discussions to Prof. A. Staruszkiewicz.
The author wishes to acknowledge the support of the Bogoliubov Laboratory
of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna.
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