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The texture of phase-space and bifurcation diagrams of two-dimensional
discrete maps describing a lattice of interacting oscillators, confined in bi-
stable potentials with deformable double-well shapes, are examined. There
are considered two bistable potentials that belong to a family of hyper-
bolic nonlinear on-site potentials whose double-well shapes can be tuned
differently: one has a variable barrier height and the other has variable min-
ima positions. However, the two hyperbolic double-well potentials reduce
to the well-known canonical ϕ4 field, familiar in the studies of structural
phase transitions in centro-symmetric crystals and bistable processes in bio-
physics. It is shown that although the parametric maps are area-preserving,
their routes to chaos display different characteristic features: the first map
exhibits a cascade of period-doubling bifurcations with respect to the po-
tential amplitude, but period-halving bifurcations with respect to the shape
deformability parameter. On the other hand, the first bifurcation of the
second map always coincides with the first pitchfork bifurcation of the ϕ4

map. However, an increase of the deformability parameter shrinks the re-
gion between successive period-doubling bifurcations. The two opposite
bifurcation cascades characterizing the first map, and the shrinkage of re-
gions between successive bifurcation cascades which is characteristic of the
second map, suggest a non-universal character of the Feigenbaum-number
sequences associated with the two discrete parametric double-well maps.

DOI:10.5506/APhysPolB.53.3-A1

1. Introduction

Real physical systems exhibit extremely complex structures and a broad
range of unexpected behaviors due to the collective motion of their constitu-
ents mediated by competing effects of many-body and one-body interactions.

(3-A1.1)
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Figure 1 represents a discrete chain of identical atoms of mass m, interact-
ing via springs of a spring constant K. The figure is a representative of
a large variety of physical systems observed in nature, ranging from solid-
state physics to biophysics and chemistry [1–4]. In these physical systems,
Fig. 1 provides a simple representation of the lattice structures of atomic or
molecular crystals, the structures of organized cellular populations in tissues
and embryonic cells, the organization of glycolitic oscillations in suspensions
of yeast cells in unison, the structure of an assembly of pacemaker cells in
the sino-atrial node, to name these few physical contexts [3]. Although they
share in common the mutual interactions of their elementary constituents
(e.g. atoms, molecules, cells in tissues, chemical species, etc.), every physical
system possesses a unique feature that stems from feedback functions charac-
terizing the system [3]. These feedback functions are governed by one-body
forces which are typically nonlinear, in the specific context of Hamiltonian
systems they are conservative forces that derive from one-body potentials.

Fig. 1. Sketch of a 1D chain of oscillators interacting via identical springs. Xn de-
notes the displacement of the nth oscillator with respect to the equilibrium.

Several potentials are found in the literature, each of them resulting from
efforts to provide a realistic description of a specific physical process. How-
ever, the two most common types of potential used in nonlinear Hamiltonian
dynamics are the periodic potentials with infinitely degenerate extrema and
piecewise potentials with finite numbers of extrema. Of the first type the
sine-Gordon potential is best known and probably the most studied [5, 6].
It was proposed to model systems in which ordered states are governed by
periodic forces. This is for instance the case of the emergence of incommen-
surate orders due to dislocations in the Frenkel–Kontorova crystals [7, 8],
commensurate and incommensurate orders in chiral liquid crystals [9], the
incommensurate charge-density-wave order mediated by phasons in low-
dimensional conductors [10], the formation and propagation of fluxons in
Josephson-junction superconductors [11], the equilibrium configuration of
finite masses suspended on periodically aligned coupled pendula, etc. As
for potentials with finite extrema, the polynomial-type potentials are the
most popular among them the canonical ϕ4 potential [12–14]. It was intro-
duced initially in the study of ferroelectric transitions in one-dimensional
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(1D) centro-symmetric crystals such as perovskites, and later on general-
ized to second-order phase transitions [12, 15, 16]. In this last context, the
ϕ4 potential stands for the Ginzburg–Landau energy functional, whose two
degenerate minima separated by a potential barrier are assumed to mimic
orderings of atoms/molecules in crystals with an inversion (or point) sym-
metry [15, 16]. However, the applicability of the ϕ4 potential goes beyond
second-order phase transitions in 1D crystals, in fact, the ϕ4 model is a
paradigm for bistable systems which can be found in biophysics [17, 18],
chemistry [18], economy [18, 19], population dynamics [18], and so on.

Despite their popularity, the ability of the sine-Gordon and ϕ4 poten-
tials to provide a fair description of physical processes for which they were
proposed has been questioned in a great number of physical contexts. In
crystal lattices, for instance, structural transitions occur in an environment
where characteristic features of the lattices are subjected to frequent changes.
These changes are caused by constraints that are manifest in variations of
the equilibrium configurations of atoms/molecules along the crystal lattice,
or of their characteristic energies at equilibrium (i.e. the energy barrier),
and so on. Some concrete physical situations are the variations in hydro-
static pressures (due, for instance, to isotopic substitutions or chemical re-
actions), change in temperature of the system, etc. that induce changes in
bond lengths (bond stretching or compressions), in the activation energy
in barrier-crossing processes (lowering or increasing of the potential bar-
rier), and so on [20–25]. To account for the latter processes, improved vari-
ants of the sine-Gordon and ϕ4 potentials with tunable shape profiles have
been proposed. Thus, Remoissenet and Peyrard introduced a family of peri-
odic potentials (the well-known Remoissenet–Peyrard potentials) [2], whose
characteristic features such as the period, the potential amplitude, and the
steepness of the potential walls can be controlled by a deformability parame-
ter. Concerning the ϕ4 potential, parametrized double-well (DW) potentials
have been proposed including polynomial potentials [26, 27] and hyperbolic
DW potentials [28–30]. While these parametrized DW potentials have de-
formable shape profiles, their link with the standard ϕ4 model is not always
easy to establish. To effectively deal with a parametrized DW potential that
can be reduced smoothly to the ϕ4 model, in some previous works, we pro-
posed a family of hyperbolic potentials whose DW shapes could be tuned
distinctively, admitting the canonical ϕ4 potential as a specific limit [31–34].
Peculiar features of some of these parametrized DW potentials (hereafter
referred to as the Dikandé–Kofané double-well (DKDW) potentials) have
been pointed out in recent studies [35–39].

In Ref. [40], Jensen et al. established that although the ϕ4 model on
a lattice is not integrable, the associate continuum periodic-kink solution
could be generic of a chaos-free 2D discrete map with the Schmidt substrate
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potential [27]. Later on, this result was extended [41, 42] to two members
of the family of DKDW potentials, leading to two chaos-free maps [41, 42]
that turned out to be two parametrized forms of the Schmidt map [27] and,
remarkably, belong to the well-known family of Quispel–Roberts–Thompson
maps [43] characterized by discreteness, low dimensionality, and complete
integrability [44]. Yet, even if members of the family of DKDW models
on a lattice are non-integrable in the sense of Quispel–Roberts–Thompson
integrability criteria [43–45], the fact that the models are parametrized intro-
duces the perspective of a possible control of the occurrence of unstable and
chaotic orbits in the associate phase space. In particular, the deformability
parameter could be chosen in such a way that the map is always chaos free,
similar to recent studies [38, 39] in which we established that exact eigen-
states (eigenfunctions and corresponding energy eigenvalues) of the transfer
operator associated with the statistical mechanics of one of the DKDW mod-
els could be found for specific values of the deformability parameter. In the
present context, the possibility to control the occurrence of unstable trajec-
tories and chaotic orbits would imply a non-universal character of route to
chaos in the discrete DKDW maps, non-universal as opposed to the univer-
sal picture related to the discrete ϕ4 map [13]. The non-universality of the
route to chaos will mean a Feigenbaum sequence [14] and the structure of
the bifurcation diagram dependent on the deformability parameter.

Our objective in the present work is to explore the phase-space texture
and the structure of bifurcation diagrams for 2D discrete bistable maps,
by considering two different parametrized DKDW potentials. We examine
analytically the first bifurcations around the trivial fixed point and estab-
lish conditions (where applicable) for a controllable route to chaos. A global
analysis of the two maps in phase space and with the help of bifurcation dia-
grams will be carried out numerically for selected values of the deformability
parameter.

2. Discrete Hamiltonian and the family of 2D parametric maps

Consider a 1D periodic lattice of N identical oscillators of mass m, in-
teracting them and others via identical springs of a spring constant K. The
equilibrium configuration of the system under the linear two-body interac-
tions, sketched in Fig. 1, is one in which oscillators are equally separated
(hereafter the lattice spacing will be set to unity). In addition to the two-
body interactions, each oscillator is assumed to experience a one-body force,
generated by an on-site potential created by the specific background sub-
strate of the physical system. The substrate potential will tend to keep
individual oscillators at their equilibrium positions on the lattice sites n,
thus opposing their displacements due to two-body forces (springs here can
be interatomic or intermolecular bonds, etc.).
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Let un be the displacement of the nth oscillator relative to its equilibrium
position at the bottom of one of the two energetically degenerate potential
wells. For such discrete systems, the total Hamiltonian can be expressed

H =

N∑
n=1

[
m

2

(
dun
dt

)2

+
K

2
(un+1 − un)

2 + Vµ(un)

]
, (1)

where t is the time variable and Vµ(un) is the substrate potential. Here, we
are interested in a substrate potential with a double-well shape, correspond-
ing to physical systems with bistable energy landscapes. The most familiar
of such potential energy is the ϕ4 potential, its canonical form is (see e.g.
[2, 5, 12])

V (u) =
a

4

(
u2 − 1

)2
, (2)

where the potential amplitude a is real and constant. The ϕ4 field in Eq. (2)
possesses two degenerate minima u1,2 = ±1 and a maximum u0 = 0, where
the potential V (0) = a/4. As its characteristic parameters (i.e. its extrema
and its maximum value) indicate, the ϕ4 field has two fixed minima and
an extremum for which the value of the potential depends only on the real
parameter a. In the context of second-order phase transition, a depends on
temperature and is expected to vanish at the critical point. However, in real
physical contexts the parameter a will not always depend only on tempera-
ture. Indeed, in the most real contexts of atomic or molecular crystals, the
equilibrium positions of atoms or molecules will constantly change as a re-
sult of variations of bond lengths and strengths, and hence of characteristic
bond energies. Such changes are induced by a variation of hydrostatic pres-
sures in the crystals or interatomic/intermolecular pressures caused by iso-
topic substitutions, the presence of chemical catalyzers or chemical reactions
occurring concomitantly with the structural transition [46]. Ideal systems
in which such processes are expected include hydrogen-bonded atomic and
molecular crystals prone to ferroelectric and antiferroelectric phase tran-
sitions [47–50]. To take into consideration the possible variations of the
potential amplitude and positions of the two potential minima, a family of
parametrized double-well potentials was proposed in Refs. [31–34]. In one
version, the two degenerate minima can be tuned by varying a deformability
parameter without changing the height of the potential barrier [31], in the
other version [32], the barrier height can be changed continuously without
changing positions of the two degenerate minima, and in the third version,
both the degenerate minima and the barrier height can change simultane-
ously [34]. This family of parametrized double-well potential will be referred
to as the Dikandé–Kofané potentials. The DKDW potential with a variable
barrier height but fixed minima was considered recently by Bazeia et al.
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[36] in their study of oscillons induced by kink–antikink scatterings in a
double-well system with complex double-well shape profiles. In Ref. [35],
Zhou et al. established that quantum Hamiltonians with the DKDW po-
tential with fixed minima and variable potential barrier provide an ideal
model for bistable systems that can display simultaneously first-order and
second-order transitions in quantum tunnelings.

In this work, we shall focus on two particular members of the family of
DKDW potentials, i.e. the one with a variable barrier height but fixed min-
ima and the one with variable minima but a fixed barrier height. Starting, let
us write down the general expression of the family of DKDW potentials [34]

Vµ(u) =
aµ
4

[
1

µ2
sinh2 (αµu)− 1

]2
, (3)

where aµ and αµ are two real functions. For the two members we have
chosen to study, these functions are defined as:

— DKDW potential with a variable potential barrier but fixed positions
of the two degenerate minima [31]

aµ = a
µ2

(1 + µ2) arsinh2(µ)
, αµ = arsinh(µ) . (4)

— DKDW potential with a fixed barrier but variable positions of the two
degenerate minima [32]

aµ = a , αµ = µ . (5)

In these functions, the quantity µ is the deformability parameter, it is real
and defined such that Eq. (3) reduces to the ϕ4 potential (2) when µ → 0.
The two different DKDW potentials Vµ(u), given in Eqs. (4) and (5), are
plotted in Fig. 2 for some arbitrary values of the deformability parameter
µ listed in the caption. The left graph shows the DKDW potential with
a variable barrier height but fixed positions of the potential minima i.e.
u1,2 = ±1, while the right graph presents the DKDW potential with a fixed
barrier height but variable positions of the two degenerate minima given by

u1,2 = ±arsinh(µ)

µ
. (6)

As our main interest is the spatial configurations of the system of N
oscillators favored by the competition between the two-body and one-body
forces, we shall ignore the kinetic energy term in the total Hamiltonian.
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Fig. 2. Parametrized double-well potential Vµ(u) versus u, for different values of
µ. Left panel: DKDW potential with a variable barrier and fixed minima (from
highest to lowest potential barriers, µ = 0, 0.5, 2, 4). Right panel: DKDW potential
with variable minima and a fixed barrier height (from the minima nearest to u = 0

to the farthest, µ = 4, 2, 0.5, 0).

With this consideration, the equilibrium configurations of the system will
be determined by minimizing the discrete Hamiltonian Eq. (1) with respect
to un, which yields

un+1 − 2un + un−1 =
1

K

∂Vµ(un)

∂un
, (7)

which is a nonlinear difference equation. Instructively, this nonlinear differ-
ence equation stands in principle as a generalization of the ϕ4 model and
hence is not expected to be integrable, even in the continuum limit. Note
that in this last limit, the nonlinear difference equation (7) possesses [35, 42]
a periodic-kink solitary-wave solution. However, to efficiently address the
issue of integrability of the current problem in the presence of deformability,
it is more enriching to resort to an analysis of the texture of trajectories in
phase space as well as of the structure of bifurcation diagrams characteriz-
ing routes to chaos in the system. To this end, we transform the nonlinear
difference equation (7) into a 2D discrete map of the form of

Tµ : un+1 = 2un − vn +
1

K

∂Vµ(un)

∂un
,

vn+1 = un . (8)

In the language of dynamical system theory, the last system represents a
2D discrete map with the DKDW potential. Since the underlying nonlinear
function is parametrized, we shall refer to the 2D system as a parametric
map. Note that when µ → 0, the discrete parametric map reduces to the
map studied by Bak and Jensen in Ref. [14], and by Bak and Prokovsky in
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Ref. [13] in the context of the metal–insulator transition in half-filled Peierls
systems. In the next section, we examine fixed points of the map includ-
ing their stability and the influence of shape deformability of the potentials
on the two first bifurcations for the two maps. Although the parametriza-
tion complexifies the problem and hence restricts the ability for analytical
formulation of aspects such as the generation of Feigenbaum number se-
quences associated with successive period-doubling bifurcations [14], we will
be satisfied with the analytical formulation of the parametric dependence
of characteristic values of the ratio a/K forming the Feigenbaum sequences.
This parametric dependence clearly indicates a non-universal character for
these sequences in the particular case of the two parametric maps studied
in this work.

3. Stability of fixed points and the two first bifurcation cascades

The transformation Tµ maps a point in the phase space (u, v) onto an-
other point in the same phase space. The map Tµ possesses a fixed point at
(u, v) = (0, 0), where the substrate potential Vµ(un) is maximum whatever
the value of the deformability parameter µ is, we call it a trivial fixed point.
In addition, there are two fixed points at (u, v) = ±(1, 1), corresponding
to minima of the parametrized substrate potential. In the previous study
dealing with the ϕ4 map [14], it was pointed out that the most interest-
ing and richest dynamical processes associated with bistable systems were
those associated with the fixed point (0, 0). In this previous study, it was
shown that the ϕ4 map was area-preserving and that for a = 4K, the fixed
point (0, 0) undergoes a transition from an elliptical fixed point to a hyper-
bolic fixed point, via a pitchfork bifurcation. At this pitchfork instability,
simple-periodic trajectories in phase space become unstable giving birth to
period-two orbits involving two new fixed points. These new fixed points
are determined by two transformations generating the following equation:

(u, v) = T0 (M0(u, v))

= T 2
0 (u, v) , (9)

which for the ϕ4 map admits two pairs of solutions, namely [14],

(u, v) = ±

(√
1− 4

ã
,−
√
1− 4

ã

)
, ã =

a

K
. (10)

Consider the same problem for the 2D parametric map given by Eq. (8),
assuming the fixed point (0, 0). In this goal, we start by observing that
the first bifurcation associated with this fixed point is best formulated by
linearizing Eq. (8) around (0, 0) and analyzing the set of tangent space
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orbits [51] (δu, δv) around the fixed point generated by the 2 × 2 linear
matrix equation

(δun+1, δvn+1) = Mµ (δun, δvn) , (11)

where

Mµ =

(
2 + 1

K
∂2Vµ(un)

∂u2
n

−1

1 0

)
(12)

is the 2 × 2 transformation matrix. This matrix possesses two eigenvalues
which can be expressed most generally, in terms of its trace Tr [Mµ] and its
Jacobian det [Mµ] as follows:

λ1,2 =
Tr [Mµ]±

√
(Tr [Mµ])

2 − 4 det [Mµ]

2
. (13)

According to Greene [51], any 2D discrete mapping for which det(Mµ) ≤ 1
is area-preserving. This is the case for the 2×2 matrix of Eq. (12) for which
det(Mµ) = 1. It follows that eigenvalues of this matrix will depend only on
its trace, i.e. the pair of eigenvalues given by Eq. (13) simplifies to

λ1,2 =
Tr [Mµ]±

√
(Tr [Mµ])

2 − 4

2
, (14)

where the trace

Tr [Mµ] = 2 +
1

K

∂2Vµ(u)

∂u2

∣∣∣
u=0

. (15)

Learning from formula (14), it follows that period-one orbits around the
fixed point (0, 0) will be stable provided the condition

(Tr [Mµ])
2 − 4 ≤ 0 . (16)

For the discrete DKDW map with a variable barrier height and fixed minima,
the stability condition (16) implies that the first bifurcation will occur for
values of ã determined by the relation

µ2 =
ã

4
− 1 , (17)

with a and µ positives. For the DKDW map with a fixed barrier height
and variable minima, the stability condition (16) suggests that the first
bifurcation will occur at ã = 4 as with the ϕ4 map [14].

When starting this section we recalled that for the ϕ4 map, the two fixed
points of period-two orbits generated from the instability of period-one orbits
around the fixed point (0, 0) were obtained from two iterations (i.e. Eq. (9))
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and were given by the two pairs of points obtained analytically in Eq. (10).
Finding similar analytical expressions for the two parametric maps under
study is not an easy task, nevertheless, we can exploit symmetry properties
of the map, which reveal that these two new fixed points, that we denote
(u0, v0), obey (u, v) = ±(y,−y), where y is a real and positive function of ã
and µ. With this assumption, the period-two fixed-point equation (9) leads
to the following transcendental equation:

2y +
1

K

∂Vµ(y)

∂y
= 0 , (18)

the roots of which determine y. To extract these roots, we make use of the
Brent algorithm [52], a robust root-finding rule that combines the bracketing,
bisection, and inverse quadratic interpolation methods [52]. Brent’s scheme
turns out to be very efficient when seeking for roots of non-polynomial func-
tions, which may display multiple singularities. Figure 3 shows the numeri-
cal solution to Eq. (18) for the parametric map with the DKDW potentials
(3)–(4) (left graph) and (3)–(5) (right graph).

Fig. 3. Variation of y extracted numerically from Eq. (18), as a function of the ratio
ã = a/K for different values of µ. Left panel corresponds to the DKDW potential
with a variable barrier height and fixed minima, and the right panel corresponds to
the DKDW potential with variable minima but a fixed barrier height. Left graph,
from left to right curves: µ = 0, 0.2, 0.5, 0.9, 1.2. Right graph, from top to bottom
curves: µ = 0, 0.2, 0.5, 0.9, 1.2.

More explicitly, the two graphs of Fig. 3 represent y as a function of ã, for
µ = 0, 0.5, 1, 1.5. The left graph shows that when µ = 0, the variation of y
with the ratio ã reproduces the analytical expression y =

√
1− 4

ã present
in Eq. (10). As the deformability parameter µ is increased, fixed points
of period-two orbits are gradually shifted forward. This is also the case
for values of ã for which the first bifurcation is expected, indeed Eq. (17)
clearly indicates that values of ã at the first bifurcation will be increased as
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we increase µ. On the other hand, the right graph of Fig. 3 suggests that
fixed points of period-two orbits for this map will always vanish at a = 4K
whatever the value of µ is. However, when a > 4K, increasing µ contracts
the region between the instability points of period-one orbits (i.e. a = 4 for
any µ) and period-two orbits.

4. Phase-space texture and structures of bifurcation diagrams

In the previous section, we discussed characteristic features of the fixed
point (0, 0) for the two 2D discrete parametric maps, as well its stability and
the influence of shape deformability of the double-well potentials on the two
first bifurcations of the corresponding parametric maps. However, a global
evolution of the two maps is required to gain a full understanding of the
overall texture of the phase space and the structure of bifurcation diagrams
of these maps taking into account their distinct parametrizations. We first
consider the phase-space dynamics of the two maps, starting from µ = 0
and increasing the ratio ã around its critical value ãc = 4 corresponding to
the first period-doubling bifurcation point of the ϕ4 map.

Figure 4 represents trajectories around the fixed point (0, 0) for the
DKDW map with variable barrier height but fixed minima, when µ = 0
corresponding to the ϕ4 map. Graph (a) features a stable elliptic fixed point
(ã = 3.5), in graph (b) elliptical trajectories are nearly decaying (ã = 3.9),
graph (c) shows a nascent hyperbolic orbit around two distinct fixed points
(ã = 4.1), in graph (d) the fixed point (0, 0) has now given birth to two
new elliptical fixed points (ã = 4.35). In the graph, these two new fixed
points are approximately at ±(0.2,−0.2), in agreement with the symmetry
considerations that led to the transcendental equation in y given by (18),
the solution of which was obtained numerically using Brent’s algorithm. It is
remarkable that in graph (d) of Fig. 4, the separatrix consists of dense orbits
intersected by forbidden islands which enclose sparse, isolated orbits trapped
inside the islands. Many other interesting motifs can be generated in the
texture of phase space, as obtained in Ref. [14] for higher values of a/K.
However, this is not our objective here, let us rather see how the texture in
Fig. 4 is affected by the deformability of the double-well substrate.

To point out the effect of the deformability parameter on the phase-space
texture for this first map, in Fig. 5 we replotted graph (d) of Fig. 4 for µ = 0.2
(left graph) and µ = 0.4 (right graph). One clearly sees that when µ = 0.2,
the texture of phase space is reminiscent of the nascent hyperbolic orbit
observed in graph (c) of Fig. 4 for µ = 0 and ã = 4.1. As the deformability
parameter is increased, namely when µ = 4, the system is taken back to
the phase-space texture dominated by elliptic orbits around the fixed point
(0, 0).
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Fig. 4. Trajectories in phase space for the 2D discrete parametric map with DKDW
having a variable barrier height but fixed potential minima. Graph (a) Elliptic
orbits (ã = 3.5), graph (b) unstable elliptic orbits (ã = 3.9), graph (c) nascent
hyperbolic orbit (ã = 4.1), graph (d) hyperbolic orbits around two well-separated
fixed points (ã = 4.35). Here, µ = 0 coinciding with the ϕ4 map.
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Fig. 5. Plot of graph (d) in Fig. 4, now for µ = 0.2 (left graph) and µ = 0.4 (right
graph).
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Turning to the second map (i.e. the DKDW map with variable minima
but a fixed barrier height), the associated phase-space texture will be similar
to the one of the first maps when µ = 0 (a value at which the two maps reduce
together to the ϕ4 map). Therefore, we shall examine only the influence of
nonzero values of µ on the texture of phase space, focusing on the point
ã = 4 and µ = 0 which is actually the graph in Fig. 4 (d). Thus, in Fig. 6,
we represent the phase space of the DKDW map with variable minima but
a fixed barrier height for ã = 4, with µ = 0.2 (left graph) and µ = 0.4 (right
graph). We see that a variation of µ has relatively less effect on the phase-
space texture compared at least with what we observed for the DKDW map
with a variable barrier height but fixed minima.
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Fig. 6. Texture of phase space for the DKDW map with variable minima and a
fixed barrier, for ã = 1 and µ = 0.2 (left graph), µ = 0.4 (right graph).

The last aspect we shall examine is the structure of bifurcation diagrams
of the two maps, with emphasis on their distinct parametrizations. Fig-
ure 7 displays the bifurcation diagram with respect to ã of the DKDW map
with a variable barrier height for four different values of µ i.e. µ = 0 (a),
µ = 0.2 (b), µ = 0.5 (c), and µ = 1 (d). The main insight from this series of
graphs is the observed forward shift of values of ã at the first period-doubling
bifurcation, as µ is increased. This behavior is, of course, consistent with
the stability condition given analytically in formula (17). For this first map,
we also simulated the bifurcation diagram with respect to the deformability
parameter µ, considering four different values of ã chosen around the first
pitchfork bifurcation. Figure 8 shows that the bifurcation diagram in µ is
dominated by period-halving bifurcations when ã = 3.5, 4, 5, and 6. These
period-halving bifurcations are surely indicative of the fact that an increase
in the deformability parameter µ is expected to delay period-doubling tran-
sitions with respect to ã, as we observed in Fig. 7.
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Fig. 7. Bifurcation diagram in ã, for the DKDW map with a variable barrier and
fixed minima: µ = 0 (a), µ = 0.2 (b), µ = 0.5 (d), µ = 1 (d).

The bifurcation diagrams with respect to ã for the DKDW map with
variable minima are shown in Fig. 9 for the same four different values of µ
as used in Fig. 7. Structures of the bifurcation diagram with respect to ã for
larger values of µ (i.e. µ = 1.5 for left graphs, and 1.8 for right graphs), are
shown in Fig. 9. The bifurcation diagrams with respect to µ for this second
map are plotted in Fig. 11 for four different values of ã.

The bifurcation structures emerging from Figs. 9, 10, and 11 are all con-
sistent with our previous comments regarding the texture of phase space as
well as the analytical prediction on the first and second bifurcation cascades
for the second map. In particular, the figures clearly show that for the second
map, bifurcation diagrams with respect to the two characteristic parameters
are dominated by period-doubling cascades. Here, the first bifurcation in ã
is clearly insensitive to the variation of µ, however, the second bifurcations
leading to period-four orbits occur for values of ã that are shifted backward
more and more as µ increases. Hence an increase of µ shrinks the regions
between successive period-doubling bifurcation cascades, so we can conclude
that as we increase the values of µ, the difference in values of ã at two consec-
utive bifurcation cascades will decrease. So to say, the Feigenbaum number
sequence for the DKDW map is non-universal, the sequence will strongly
depend on values of µ.
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5. Conclusion

Most physical systems evolve in environments where they are subjected
to multiple equilibria of distinct stabilities. These bistable systems form
a special class, characterized by two energetically equivalent metastable
states and eventually an unstable state where the system undergos struc-
tural changes. Bistability is a quite common feature in biology, and there
are many examples of systems which can operate stably in two completely
distinct modes of equivalent symmetries. This is, for instance, the case for
the well-known lactose operon in the bacteria Escherichia coli [53] or the
phage virus which can exist in either of two states: Under normal conditions,
this virus can exist in a lysogentic state and survive indefinitely within its
host (Escherichia coli). However, under adverse conditions (such as ultravi-
olet radiations), the phage can switch to a reproducible (lytic) mode leading
to bacterial lysis [54]. Yet another example is the complex system of cross-
talking pathways that regulates the decision of cells to enter the process of
programmed cell death, also known as apoptosis, as opposed to continuing
normal development [54]. These processes in biological systems have estab-
lished that most often individual cells only exist in one of two distinct states,
and upon stimulations, the cells undergo a change of state (or a transition)
from one state to another.

To understand how bistable systems in biology as well as other physical
systems such as solid-state materials, biochemical systems, and so on, per-
form complex functions, several mathematical models have been proposed.
These models have in common the existence of an appropriate feedback de-
scribing their bistability and represented by a function with two degenerate
minima. This double-well function, which stands for the characteristic en-
ergy associated with the appropriate bistable feedback process, is most often
represented by the so-called ϕ4 potential. For instance, the feedback force
found in the Duffing model [3] with soft anharmonicity originates from a
ϕ4-like double-well potential, this is equally the case in the logistic model
with two metastable equilibria separated by a wall, etc. However the rigid
profile of the double-well potential is a weakness, for it does not enable one to
take into consideration the many possible changes in characteristic features
of real systems in their living environments. As an improvement to this rigid-
ity, parameterized double-well potentials were proposed [26, 27, 29, 30, 32].

In the present study, we explored the route to chaos for bistable sys-
tems described by a discrete 2D parametric map, with emphasis on two
members of the family of parameterized double-well potentials proposed in
Ref. [33]. We examined the texture of phase space of the two parametric
maps as well as the structure of the associate bifurcation diagrams. One
of the two discrete 2D parametric maps is characterized by a double-well
potential whose barrier height can be tuned continuously, leaving unaffected
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its two degenerate minima. For this first map, we obtained that the shape
deformability allows shifting to higher magnitudes the values of the ratio
a/K = ã where bifurcations are expected to occur. In particular, we found
that the bifurcation diagram in the deformability parameter was dominated
by period-halving cascades, suggesting unambiguously the possible control
of the route to chaos as well as a non-universal character of the Feigenbaum
number sequence for this map. The second studied map has a fixed bar-
rier height but tunable positions of its two degenerate minima. For this
second map, we found that the first bifurcation always coincides with the
first pitchfork instability of the ϕ4 map irrespective of the deformability pa-
rameter. However, an increase of the deformability parameter seemed to
contract the region between consecutive period-doubling cascades. This be-
havior too, clearly indicates a non-universal character of the Feigenbaum
number sequences for this second map.

As we indicated in the introduction, the deformability can be associated
with variability of the living environment of cells and chemical species, as for
instance the change of pressures or characteristic parameters of intermolec-
ular interactions (e.g. changes of reactants in processes involving chemical
reactions), or the change of cell characteristics in the bistability feedback,
in response to temperature variations [55]. The present study particularly
points out to the fact that while the shape deformability for the models
considered here does not change qualitatively intrinsic properties of bistable
systems, quantitative changes can, however, be observed and marked by
non-universalities of characteristic features of their route to chaos as, for
instance, the number sequence associated with the recurrence of period-
doubling cascades leading to chaos.

The author thanks the Ministry of Higher Education of Cameroon for fi-
nancial support through the “Research Modernization Allowances” program.
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