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We try to give a theoretical analysis of 2νβ−β− decay to the final
excited 2+ states by considering SU(4) symmetry restoration within the
framework of quasi-particle random phase approximation (QRPA). Pya-
tov’s method is used to restore the symmetry violations stemming from
the mean-field approximation. A comparison of the calculated decay rates
with other calculations and the corresponding experimental data is given.
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1. Introduction

The predictions related to the existence of the Majorana neutrino mass,
the existence of a right-handed leptonic current, the existence of a massless
Goldstone boson, the super-symmetry [1–8] depend on the nuclear struc-
ture calculations containing the nuclear matrix elements. Hence, it is very
important to improve the accuracy of these matrix elements by developing
corrected or new approaches. The theoretical description of the nuclear ma-
trix elements for the 2νββ decay process plays a crucial role in testing the
accuracy of the models.

The proton–neutron quasi-particle random phase approximation
(pnQRPA) has been considered the most powerful method for single- and
double-beta transition calculations of nuclear systems which are far away
from closed shells. According to this method, the nuclear matrix element
consists of the contributions coming from the virtual intermediate excita-
tions. As known, the dominant contribution to the nuclear matrix element
comes from the spin–isospin excitations (Gamow–Teller excitations) in in-
termediate nuclei. Hence, it is very important to restore SU(4) symmetry
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violations stemming from the mean-field approximation in order to give a re-
liable prediction of the spin–isospin (1+) excitations. The restoration of the
symmetry violations leads to a remarkable quenching on the nuclear matrix
element for 2νβ−β− decay to the final ground state [9–11]. The difference of
the present work from our recent works can be summarized as follows: The
2νβ−β− decay to the final excited 2+ states are described within the SU(4)
symmetry restoration. The present results are compared with other calcula-
tions in the literature and the corresponding experimental data. Thus, the
effect of the symmetry restoration on the decay to the final excited states
can be clearly understood.

2. Theoretical formalism

Let us consider a system of nucleons in a spherical symmetric average
field with pairing forces. The single quasi-particle Hamiltonian of the system
is given by

Hsqp =
∑
jm

εj(a)α
†
jm(a)αjm(a) , (a = n, p) , (1)

where εj(a) is the single quasi-particle (sqp) energy, and α†
jm(a) (αjm(a)) is

the quasi-particle creation (annihilation) operator.
The effective interaction potential for 2+ excitations in final nuclei con-

sists of isoscalar and isovector parts and is defined as follows:

h = G
∑
a,η

K†
η(a)Kη(a) +Gpn

∑
η

(
K†

η(p)Kη(n) +K†
η(n)Kη(p)

)
, (2)

where Kη(a) (η = 0,±1,±2) is a electric quadrupole transition operator
as defined in [12]. The electric quadrupole excitations in final nuclei are
represented by a phonon creation operator in the following form:

Q†
k(η)|0⟩ =

∑
a′a

[
Zk
a′aA

†
a′a(η)−W k

a′aAa′a(η)
]
|0⟩ , (3)

where A†
a′a(η) and Aa′a(η) are quasi-boson creation and annihilation opera-

tors for charge-conserving transitions, respectively.
The Gamow–Teller (GT) transition operator is described as a combina-

tion of β− and β+ decay operators

F ρ
µ = 1

2

(
T+
µ + ρ(−1)µT−

−µ

)
, (ρ = ±, µ = 0,±1) . (4)

β+ and β− decay operators are given as T+
µ =

∑A
i=1 σµ(i)t+(i) and T−

µ =

(T+
µ )†, respectively. Here, σµ and t+ (t−) are the Pauli spin and isospin
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raising (lowering) operators, respectively. The charge-exchange effective
interaction in particle–hole channel is defined within Pyatov’s restoration
method. As known, SU(4) is not a good symmetry due to Coulomb (Vc)
and spin–orbit terms (V

l⃗s⃗
) in total Hamiltonian[
H −

(
Vc + V

l⃗s⃗

)
, F ρ

µ

]
= 0 . (5)

This commutativity is broken in the mean-field approximation[
Hsqp −

(
Vc + V

l⃗s⃗

)
, F ρ

µ

]
̸= 0 . (6)

The SU(4) symmetry violations in the mean-field level of approximation are
restored by including an effective interaction potential in the following form:

hGT =
∑
ρ=±

1

4γρ

∑
µ=0,±1

[
Hsqp − Vc − V

l⃗s⃗
, F ρ

µ

]† [
Hsqp − Vc − V

l⃗s⃗
, F ρ

µ

]
. (7)

The strength parameter of the residual interaction can be found from the
following condition: [

Hsqp + hGT − Vc − V
l⃗s⃗
, F ρ

µ

]
= 0 (8)

and taken out to be a free parameter

γρ =
ρ(−1)µ

2
⟨0|

[[
Hsqp −

(
Vc + V

l⃗s⃗

)
, F ρ

µ

]
, F ρ

µ

]
|0⟩ . (9)

The spin–isospin effective interaction in the particle–particle channel is de-
fined in the following form:

hpp = −2gpp
∑
µ

(Pµ)
† Pµ . (10)

The spin–isospin excitations in intermediate nuclei are described as follows:

Γ †
m(µ)|0⟩ =

∑
pn

[
Xm

pnC
†
pn(µ)− Y m

pnCpn(µ)
]
|0⟩ , (11)

where C†
pn(µ) and Cpn(µ) are quasi-boson creation and annihilation opera-

tors for charge-exchange transitions, respectively.
The nuclear matrix elements for 2νβ−β− decay to the final ground and

excited 2+ states are defined as follows:

MGT

(
0+gs

)
=

∑
m

〈
0+gs

∣∣στ− |1+m⟩ ⟨1+m|στ−
∣∣0+gs〉(

W
(
0+gs

)
/2 + E

(
1+m

)
−Mc2

)
/ (mec2)

, (12)
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MGT

(
2+k

)
=

1√
3

∑
m

〈
2+k

∣∣στ− |1+m⟩ ⟨1+m|στ−
∣∣0+gs〉[(

W
(
2+k

)
/2 + E

(
1+m

)
−Mc2

)
/ (mec2)

]3 . (13)

The mathematical expressions of the reduced matrix elements of single β
virtual transitions are given in Ref. [9, 13]. The overlap integral is not
considered in the calculation of the decay amplitudes. Instead, the 2νβ−β−

decay amplitude is determined as an average of two different amplitudes
which are obtained according to the initial and final basis. The energy
denominator depends on the intermediate state energies and decay energies.
W (0+gs) corresponds to the energy for 2νβ−β− decay to the final ground
state. The energy for 2νβ−β− decay to the final excited states is represented
by W (2+k ) = W (0+gs) − E(2+k ) (k = 1, 2). E(1+m) represents intermediate
state energies with respect to the initial ground state. M corresponds to the
mass difference which is adjusted so that the calculated energy for the first
intermediate state becomes equal to the measured one. The 2νβ−β− decay
half-lives are determined by using the following expression:

1

T1/2
= f2ν |MGT|2 , (14)

where f2ν is a phase-space factor for 2νβ−β− decay transitions.

3. Results and discussions

The calculated results related to the 2νβ−β− decay to the final excited
2+ states are given in this section. The Woods–Saxon potential with the
Chepurnov parametrization [12] is used as a mean-field basis. The proton
and neutron pairing gaps are defined as ∆p = Cp/

√
A and ∆n = Cn/

√
A,

respectively [14]. The pairing strength parameters (Cp and Cn) are chosen
according to the corresponding experimental pairing gaps [15].

The G and Gpn strength parameters for electric quadrupole interactions
are proportional to A−7/3 as given in [12]. The Gpn interaction parameter is
10 times lower than G parameter due to the dominance of isoscalar (pp or nn)
configurations. The fixed value of G interaction constant is determined from
the agreement of the calculated first 2+ energy with the experimental one
(see Fig. 1). The corresponding quadrupole transition probabilities for the
fixed G values are given in Table 1. The quadrupole transition probabilities
in Table 1 are computed according to the bare charges (ep = 1, en = 0). As
seen, the transition probabilities obtained with bare charges are close to the
experimental probabilities except for the 128Xe isotope. The probability for
this isotope can be obtained using the effective charges as ep = 1 + δ, en =
δ. In this case, the experimental quadrupole excitation probability can be
reproduced by a reasonable effective charge as δ = 0.28.
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Fig. 1. The determination of strength parameter in (pp+nn)QRPA calculations.
The horizontal lines indicate the experimental energies [16].

Table 1. The calculated and experimental quadrupole transition probabilities.

Nuclei B
(
E2; 0+gs → 2+1

)
cal

(W.u.) B
(
E2; 0+gs → 2+1

)
exp

(W.u.) [16]

128Xe 14.95 40.20
130Xe 33.48 30.80
134Ba 27.58 32.63
136Ba 20.31 19.87

The spin–isospin excitations in intermediate nuclei are obtained within
pnQRPA method. The spin–isospin effective interaction in the particle–hole
channel is included in such a way that SU(4) symmetry violations stem-
ming from mean-field approximation are restored. Thus, the mathematical
formalism related to the charge-exchange excitations becomes free of the
particle–hole strength parameter. As known, the existence of 2νβ−β− de-
cay transitions is attributed to the fact that SU(4) is not an exact symmetry
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of the total Hamiltonian. However, the extra-symmetry violations in the
mean-field level of approximation lead to a serious increment of the decay
amplitude. Hence, it is important to restore these symmetry violations in
order to make a reliable prediction of the decay amplitude. Nevertheless, the
restoration of symmetry violations leads to a significant quenching on the
decay amplitude to the final ground state. In other words, the calculated am-
plitudes for the decay to the final ground state get closer to the experimental
amplitudes due to the quenching effect of restoration. The charge-exchange
effective interaction potential in the particle–particle channel can be added
to the restored Hamiltonian in order to reproduce the experimental data re-
lated to the 2νβ−β− decay to the final ground state. However, it can be said
that the decay amplitudes obtained for a zero value of the particle–particle
strength parameter are very close to the corresponding experimental ampli-
tudes (see Fig. 2). For A = 128 and 136 decay systems, a small contribution
of particle–particle interaction is enough to reproduce the experimental de-
cay amplitude. The experimental amplitude for A = 130 decay system can
be reproduced by a repulsive contribution of particle–particle interaction.

Fig. 2. The determination of the particle–particle strength parameter in pnQRPA
calculations. The horizontal lines indicate the experimental amplitudes [17, 18].
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In this case, the nuclear matrix element for the decay to the final excited 2+

states of 130Xe should be computed for a zero value of the particle–particle
strength parameter. This is not a serious problem because of good agreement
with the experimental data. For A = 134 decay system, the particle–particle
constant is taken equal to zero due to lack of the experimental data.

The calculated values of the nuclear matrix elements for the decays to
the final excited 2+ states are presented in Table 2. The calculations give
us a remarkable amplitude for the decay to the excited state of 128Xe. For
a detailed analysis, the energy spectrum of the decay amplitudes for A =
128 system is presented in Fig. 3. Let us note that the above and below
graphs represent the calculated distributions according to the initial and
final basis, respectively. It can be clearly seen that the first intermediate
state plays a key role in the determination of the decay amplitude. The
higher intermediate states than the first one make a negligible contribution
to the decay amplitude for the final excited state. It is possible to check the
wave function of the first 1+ state for 128I by making a comparison of the
calculated log(ft) values with the corresponding experimental values [19].

Table 2. The nuclear matrix elements for 2νβ−β− decay to the final 2+ states.

Transition MGT

(
2+1

)
MGT

(
2+2

)
128Te→ 128Xe 0.0458 —
130Te→ 130Xe 0.00013 0.00081
134Xe→ 134Ba 0.0030 —
136Xe→ 136Ba −0.00040 0.00083

Fig. 3. The energy spectrum of nuclear matrix element for the 128Te→ 128Xe
system.
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The β+ decay log(ft) value for 128I is 5.16 and very close to the correspond-
ing experimental value (5.05). The same quantity for β− decay is 6.84 and
not far away from the experimental value (6.09).

The corresponding half-lives for the 2νβ−β− decays to the final 2+ states
should be determined to understand their contributions to the total decay
probability. The calculated half-lives for the decays to the final excited 2+

states are given in Tables 3 and 4. When the phase-space factors in [20]
are used for the decay to the 1st excited state of 128,130Xe and 136Ba, the
corresponding phase-space factor for A = 134 system is taken from [21].
The phase-space factors in [4] are used for the decays to the 2nd 2+ state.
In Table 3, columns 3 and 4 show the calculated results of boson expan-
sion formalism and another work using QRPA, respectively. The restora-
tion of symmetry violations presents shorter decay half-lives in comparison
with boson expansion formalism. Nevertheless, the decay half-lives within
restoration are longer than those of other QRPA calculations except for the
128Te→ 128Xe decay system. As mentioned above, the first intermediate
state for A = 128 system makes a significant contribution to the decay am-
plitude. In Table 4, our calculations present longer half-lives for the decay
to the 2nd 2+ state. The calculated half-lives for 130Te(0+gs) → 130Xe(2+2 ) de-
cay are not very far away from other QRPA results. For the 136Xe→ 136Ba
decay system, the calculated decay rates may be influenced by a semi-magic
structure of the initial nucleus.

Table 3. A comparison of the calculated 0+gs → 2+1 half-lives with other calculations
and experimental data. Half-lives are given in the unit of year.

Emitter Present [21] [22] Exp. [4, 23]

128Te→ 128Xe 5.8× 1026 4.7× 1033 1.6× 1030 > 4.7× 1021

130Te→ 130Xe 3.0× 1026 6.9× 1026 2.7× 1023 > 4.5× 1021

134Xe→ 134Ba 3.8× 1034 5.3× 1035 — —
136Xe→ 136Ba 1.4× 1026 3.9× 1026 2.0× 1024 > 4.6× 1023

Table 4. A comparison of the calculated 0+gs → 2+2 half-lives with other calculations
and experimental data. Half-lives are given in the unit of year.

Emitter Present [22] Exp. [23]
130Te→ 130Xe 8.5× 1026 1.0× 1026 —
136Xe→ 136Ba 4.6× 1028 5.1× 1026 > 9.0× 1023
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4. Conclusion

A theoretical analysis of 2νβ−β− decay to the final excited 2+ states is
presented by considering SU(4) symmetry violations within the framework
of the QRPA method. In this respect, we have previously determined the
suitable values of the effective interaction strength parameters for the final
excited states. Then, the spin–isospin excitations in intermediate nuclei are
obtained within the restoration of SU(4) symmetry violations. The present
pnQRPA calculations are free of the particle–hole strength parameter and
the particle–particle strength parameter has been determined from the agree-
ment of the calculated amplitude with the experimental one for 2νβ−β−

decay to the final ground state. After obtaining the charge-conserving and
charge-exchange strength parameters, the nuclear matrix elements and half-
lives for 2νβ−β− decay to the final excited states are computed by using
these fixed parameters. The main contribution to the nuclear matrix ele-
ments comes from the first intermediate state. Especially, the present results
for the 128Te→ 128Xe decay system may ensure a good motivation for the
experimental research in the future. It is well known that the theoreti-
cal description of nuclear double-beta decay is still important in the field
of nuclear structure theories, and the determination of the nuclear matrix
elements provides a good opportunity to test the nuclear model used. There-
fore, the present calculations within the restoration of symmetry violations
may make a significant contribution to the developments in this area.

We would like to thank Prof. Cevad Selam from the Mus Alparslan Uni-
versity in Turkey for his useful opinions and discussions.
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