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We study the theoretical foundations of the recently developed large-
momentum effective theory (LaMET) approach to the transverse-momen-
tum-dependent parton distribution function (TMDPDF). We first show
that the quasi-TMDPDF can be consistently defined and it relates to the
physical TMDPDFs through a factorization formula in the large-momentum
limit. We show that the factorization involves the intrinsic soft function
which is related to the off-lightcone soft functions for the Drell–Yan process
and can be realized as a form factor. We also study properties of the off-
lightcone soft functions, such as IR safety, analyticity, rapidity divergence,
etc. Universality classes of the off-lightcone soft functions are discussed. Fi-
nally, we show that the intrinsic soft function can be extracted by combining
a light-meson form factor with large-momentum transfer and quasi-TMD
wave functions for the light meson.
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1. Introduction

The transverse-momentum-dependent (TMD) parton distribution func-
tions (TMDPDFs) are important in understanding the experimental pro-
cesses where the transverse momenta of final state particles are measured,
which will be one of major purposes of the upcoming Electron-Ion Collider
(EIC) in US. In Drell–Yan (DY) processes (lepton pair and W,Z produc-
tions) and e+e− → γ∗ → 2 jets +X, it is known that the differential cross
section dσ/dQ2

⊥ normally peaks at relatively small transverse momentum
(k⊥ ≪ Q), where the large logarithms logQ/k⊥ and nonperturbative effects
(k⊥ ∼ ΛQCD) spoil the collinear factorization. Therefore, the TMD factor-
ization was developed to analyze such processes [1–5]. For semi-inclusive
deep inelastic scattering (SIDIS) processes in small Q⊥ region, the TMD
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factorization can also be applied [6, 7]. For these processes, it was shown
that the cross section can be factorized in the form of σ = σ̂ ⊗ f ⊗ f ⊗ S,
where σ̂, f , S are hard, collinear, and soft contributions.

The unsubtracted TMDPDF f is defined with lightlike gauge links point-
ing to infinities which results in a new type of divergence, the rapidity diver-
gences (also called lightcone singularities), due to gluon radiation collinear to
the gauge links. Therefore, a rapidity regulator is needed and its renormal-
ization results in a rapidity scale whose evolution is governed by the so-called
Collins–Soper kernel [1]. Unlike the standard collinear factorization, a TMD
soft function S is also required to capture soft-gluon radiations from the fast
moving color charges. Here, the TMD soft function S(b⊥, µ, Y ) is defined as
a vacuum expectation value (VEV) of a Wilson loop composed of lightlike
gauge links and usually depends on three variables: the rapidity regulator Y ,
the transverse separation b⊥ (conjugate to transverse momentum), and the
renormalization scale µ associated to the cusps of gauge links. Similar to the
unsubtracted TMDPDF, the lightlike gauge links in S lead to the rapidity
divergences as well. Later, the TMD factorization was reinvestigated in the
framework of soft-collinear effective theory [8–10]. A standard definition of
physical TMDPDFs which is a rapidity divergence-free combination of un-
subtracted TMDPDF and soft function, was proposed in Refs [8, 11–13].
Within the standard formalism, the perturbative calculations of TMDPDFs
and the soft functions have proceeded to 2-loops [14–17] and recently to
3-loops [18]. Also, the property of rapidity divergences has been extensively
studied, including [19] which builds the rapidity factorization with the use
of conformal transformations.

Besides the importance of understanding the high-energy experiments,
the TMDPDFs are also important by themselves for their crucial role in un-
derstanding hadron structures. Under a Lorentz boost, the longitudinal size
of hadron contracts, but the transverse directions remain unchanged. Thus,
one can simultaneously probe the fast-moving collinear physics from the
longitudinal x-dependencies and the rest-frame-like nonperturbative physics
from the transverse k⃗⊥-dependencies. Moreover, unlike the k⊥-integrated
collinear PDFs, the TMDPDF is sensitive to soft radiations. Therefore, the
physics in the presence of transverse degrees of freedom is rather rich. This is
particularly the case in studies of spin-dependent phenomena where one can
define more TMDPDFs through the Lorentz decompositions. One example
is the Sivers function for an unpolarized parton in a transversely polarized
proton, f⊥1T(x, k⊥), which is time-reversal odd and is predicted to change
the sign between the DY and SIDIS processes [11]. Similar properties also
exist in the Boer–Mulders function h⊥1 (x, k⊥) [20] concerning a transversely
polarized parton in an unpolarized proton. These two functions are related
to the single transverse spin asymmetry.
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Regardless of the fact that the TMD factorization has been established, it
is difficult to extract the TMDPDFs accurately due to the limited amount of
available experimental data. There are many efforts on global analysis [21–
30], however, the fitting still suffers from relatively large uncertainties in the
nonperturbative region, k⊥ ∼ ΛQCD. It is expected to be much harder to ob-
tain a global fit for spin-dependent TMDPDFs. Although the future EIC will
make up the gap and produce more data for TMD observable measurements,
it is still important to develop first-principle methods for the determination
of nonperturbative TMDPDFs, which can serve as a comparison or provide
useful inputs to constrain the models in global fits.

The recent development of the large-momentum effective theory (LaMET)
proposed in Refs. [31, 32] has opened up a possibility of directly calculating
TMDPDFs on lattice. The essence of LaMET is as follows: the lightcone
time-dependencies at the operator level can be transmuted into the fast-
moving external hadrons state, from which the lightcone physics can be ex-
tracted through the large-momentum factorization of equal-time correlation
functions. LaMET has been successfully applied to collinear PDFs, distri-
bution amplitudes (DAs), and the generalized parton distribution functions
(GPDs), see Ref. [33] for a review. Early studies [34–37] have made an ef-
fort constructing a quasi-TMDPDF that is calculable on the lattice, but its
relation to the physical TMDPDF is expected to be nonperturbative due to
complications in the soft function. Nevertheless, the Collins–Soper kernel
can be extracted by taking the ratio at two different momenta to cancel the
soft contributions [36, 38, 39]. In order to match the physical-TMDPDFs, we
must study its factorization property at large hadron momentum and prove
that it is indeed related to the targeting TMDPDFs. The recent works in
Refs. [33, 40–42] provide a Euclidean formulation of soft functions and other
TMD-related quantities so that a perturbative matching formula can be es-
tablished between the quasi- and physical TMDPDFs, and thus allow for a
complete determination of the latter from the lattice QCD.

In this note, we provide a careful investigation of the theoretical prop-
erties of the quasi-TMDPDFs and the soft functions in the lightcone limit.
In Sec. 2, we make a brief introduction to the lightcone TMDPDFs and
related TMD soft functions. In Sec. 3, we first study IR divergences of
the quasi-TMDPDF, which factorizes into physical TMDPDF and intrinsic
soft function by analyzing the leading region in 1/(b⊥Pz) expansion in the
lightcone limit. Various one-loop results and some two-loop predictions are
also presented. In Sec. 4, we investigate the TMD soft function in the off-
lightcone scheme, which has not been extensively studied as the on-lightcone
one. The off-lightcone scheme helps to understand how the lightcone physics
emerges from the off-lightcone observable in lightcone limit. We find that
the soft function for the DY process can be formulated in the heavy quark
effective theory (HQET) as a form factor, which allows the Euclidean real-
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ization. A classification of off-lightcone soft functions is provided. In Sec. 5,
we discuss the intrinsic soft function which is a crucial quantity to match
the quasi-TMDPDF to the physical TMDPDF. An alternative method to
extract the intrinsic soft function is through the light-meson form factor
and the TMD wave function (TMDWF). The cross section of DY process
in small-k⊥ region can be obtained from the first-principle using the quasi-
TMDPDF and the intrinsic soft function. Discussions and conclusions are
given in Sec. 6.

2. Basic properties of TMDPDF

Let us onsider the quark unpolarized TMDPDF (it is straightforward to
include a spin-dependent component or generalize to gluon distribution) as
an example. Without taking into account the theoretical subtleties, such as
rapidity divergence, the unsubtracted TMDPDF is defined as

f
(
x, b⃗⊥

)
=

1

2P+

∫
dλ

2π
e−iλx

×⟨P|ψ̄
(
λn+ b⃗⊥

)
γ+Wn

(
λn+ b⃗⊥

)
ψ(0)|P⟩ , (1)

where x is the longitudinal momentum fraction, λ is the invariant length
ξ ·P = ξ−P+, ξ± = (ξt±ξz)/

√
2 are the lightcone coordinates, and Wn(λn+

b⃗⊥) is the staple-shaped gauge link of the form of

Wn(ξ) = W †
n(ξ)W⊥Wn(0) , (2)

Wn(ξ) = P exp

−ig −∞∫
0

dλn ·A(ξ + λn)

 , (3)

along the lightcone direction nµ = 1√
2P+ (1, 0⃗⊥,−1) in the (t, ⊥⃗, z) coordi-

nate, as shown in Fig. 1. The W⊥ is a transverse gauge link at infinity to
maintain gauge invariance. The staple Wn is defined with the past-pointing
lightlike gauge link from 0 to −∞ in accordance with the DY kinematics.
Similarly, for SIDIS, we can define the future-pointing version of the gauge
link staple W+

n simply by changing −∞ to ∞ in the definition, as shown
in Fig. 1. For unpolarized TMDPDFs, there is no distinction between the
two choices, but for the spin-dependent TMDPDFs, there are physical con-
sequences based on the time-reversal symmetry.

There exists a new type of singularity, called the rapidity divergence,
associated with the infinitely long lightlike gauge links. These divergences
are caused by radiation of gluons collinear with the lightlike gauge link and
cannot be regularized by the standard UV regulators. The physical inter-
pretation of TMD observables is then obscured by the complicated pattern
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Fig. 1. The spacetime picture of TMDPDF for DY and SIDIS processes. The ⊗
sign denotes the quark-link vertices.

of rapidity regulator dependencies. However, the rapidity divergence to the
lightcone physics is as fundamental as the UV divergence to the quantum
field theory. The former is caused by approximation of the hadron in infinite
momentum frame (infinite rapidity limit), and the latter is due to quantum
fluctuation at short distance (continuum limit). An example is the following
integral in dimensional regularization (DR) [37]:

I =

∫
dk+dk−

f (k+k−)

(k+k−)1+ϵ
=

1

2

∫
dy

y

∫
dm2 f

(
m2
)

m2+2ϵ
, (4)

where y = k+/k− is the rapidity-related variable and m2 = k+k−. The
divergences in y arise from large and small y where the integral cannot be
regulated by DR.

To regulate the rapidity divergences, a number of methods have been
introduced in the literature (for a review see [37]). They can be categorized
into two classes: on-lightcone and off-lightcone regulators. In the former
case, the gauge links are kept along the lightcone direction nµ after reg-
ularization. For example, the δ regulator [15, 43] modifies the gauge link
as

Wn(ξ) →Wn(ξ)|δ− = P exp

−ig −∞∫
0

dλA+(ξ + λn) e
− δ−

2p+
|λ|

 , (5)

and similarly for the conjugate direction. The δ regulator breaks the gauge
invariance, but preserves the boost invariance δ± → e±Y δ±, where Y is the
rapidity of the Lorentz boost. Other on-lightcone regulators include the
exponential regulator [10], η regulator [44], analytical regulator [45], etc.
In the rest of this section, we will use the δ regulator as a representative
whenever we need an on-lightcone regulator.
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The off-lightcone regulator was introduced in [1, 6, 7, 11]. This type of
regulator chooses the Wilson lines tiled in the off-lightcone direction to avoid
the rapidity divergence. One can, for instance, deform the gauge links into
the spacelike region

n→ nY = n− e−2Y p

(P+)2
, (6)

where p = P+
√
2
(1, 0, 0, 1) such that n · p = 1. Here, Y plays the role of a

rapidity regulator, as nY → n when Y → ∞. In certain cases, one can also
deform nY into a timelike region [46].

To avoid lightcone divergences, from now on we include the rapidity
regulator in the definition of the unsubtracted TMDPDFs

f(λ, b⊥, µ, δ
−) = ⟨P|ψ̄

(
λn+ b⃗⊥

)
γ+Wn

(
λn+ b⃗⊥

)
|δ−ψ(0)|P⟩ . (7)

Due to rotational invariance, the unpolarized TMDPDF defined above is
a function of b⊥ = |⃗b⊥|. The subscript δ− denotes that the staple-shaped
gauge link W is regulated by the δ regulator in the lightcone minus direction.
The TMDPDF f diverges logarithmically as δ− → 0, and the finite part also
depends on the rapidity regulator. The above TMDPDF must remove all its
rapidity divergences and regularization scheme dependencies to define the
physical TMDPDF, in a way similar to the removal of UV divergences in
physical quantities.

The rapidity divergence for TMDPDFs can be removed by the soft func-
tion, which also plays an important role in the TMD factorization. Intu-
itively, the soft function represents a cross section for fast-moving charged
particles emitting soft gluons into final states. It has the rapidity divergence
associated with the lightcone direction. The TMD soft function consistent
with the Drell–Yan process is defined [15, 47] as

S
(
b⊥, µ, δ

+, δ−
)

=
Tr⟨0|T̄Wp

(⃗
b⊥

)
|δ+W †

n

(⃗
b⊥

)
|δ−TWn(0)|δ−W †

p (0)|δ+ |0⟩
Nc

=
Tr⟨0|Wn

(⃗
b⊥

)
|δ+W†

p

(⃗
b⊥

)
|δ− |0⟩

Nc
, (8)

where T /T̄ stands for time/anti-time ordering. The first equality defines
the soft function in terms of cut-diagrams as an amplitude square. Since
the soft function for the DY process is independent of the time-ordering
because every two points on the Wilson loop are either spacelike or lightlike
separated, one can also define it with a single time-ordering or no time-
ordering, leading to the second equality. The staple-shaped gauge link Wn
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is defined in Eq. (2), while Wp is defined similarly with the replacement
n → p. The soft function is shown in Fig. 2 as a Wilson loop in Minkowski
space.

0

~b⊥

p n
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z

t

DY
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n

Fig. 2. The spacetime picture of the soft function S(b⊥, µ, δ+, δ−) as a Wilson loop
arising in the factorization of DY and SIDIS processes.

If the rapidity divergences are multiplicative in nature, one can use S
as the rapidity renormalization factor for the TMDPDF. In on-lightcone
schemes such as the δ regularization, it has been argued in [19] based on
the conformal transformation that the rapidity divergences are indeed mul-
tiplicative. For each of the staple-shaped lightlike gauge link, the rapidity
divergence is proportional to

e
− 1

2
K(b⊥,µ) ln

µ2

(δ±)2 , (9)

where K(b⊥, µ) is known as the nonperturbative Collins–Soper evolution
kernel. Thus at small δ±, we can write

S
(
b⊥, µ, δ

+, δ−
)
= eK(b⊥,µ) ln

µ2

2δ+δ−+D2(b⊥,µ) , (10)

where D2(b⊥, µ) is a b⊥-dependent but rapidity-independent function. The
soft function in δ regularization satisfies the renormalization group equation
(RGE)

µ2
d

dµ2
lnS

(
b⊥, µ, δ

+, δ−
)
= −Γcusp(αs) ln

µ2

2δ+δ−
+ γs(αs) , (11)

where Γcusp(αs) is the lightlike cusp anomalous dimension and the γs(αs) is
the soft anomalous dimension. They are all known to 3-loops [18, 48]. Re-
cently, the cusp-anomalous dimensions have been calculated to 4-loops [49].
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The Collins–Soper kernel and the rapidity-independent part D2 satisfy the
RGEs

µ2
d

dµ2
K(b⊥, µ) = −Γcusp(αs) , (12)

µ2
d

dµ2
D2(b⊥, µ) = γs(αs)−K(b⊥, µ) . (13)

At one-loop, the soft function S(b⊥, µ, δ+, δ−) is given by [37]

S
(
b⊥, µ, δ

+, δ−
)
= 1 +

αsCF

2π

(
L2
b − 2Lb ln

µ2

2δ+δ−
+
π2

6

)
, (14)

where

Lb = ln
µ2b2⊥
4e−2γE

. (15)

Therefore, at the leading order,

K(b⊥, µ) = −αsCF

π
Lb , (16)

D2(b⊥, µ) =
αsCF

2π

(
L2
b +

π2

6

)
, (17)

Γcusp =
αsCF

π
, (18)

γs = O
(
α2
s

)
. (19)

The kernelsK and D2 (hence S) are known to 3-loop order in the exponential
regularization scheme [18]. With the above soft function, we can take its
square root to perform rapidity renormalization for the unsubtracted TMD
correlator. The square root can be explained as follows: S contains two
staples, while f contains only one, thus the rapidity divergences, as well
as scheme dependencies in S, are squared as those in f . This leads to the
following definition of the renormalized physical TMDPDF [8, 12]:

fTMD (x, b⊥, µ, ζ) = lim
δ−→0

f (x, b⊥, µ, δ
−)√

S (b⊥, µ, δ−e2yn , δ−)
, (20)

where the rapidity scale reads

ζ = 2
(
xP+

)2
e2yn , (21)

and 2yn originates in the off-lightcone scheme [11, 47] but an arbitrary pa-
rameter to track rapidity scale in the on-lightcone scheme. The rapidity
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dependence in the numerator f has the form of exp[−1
2K(b⊥, µ) ln

(δ−)2

(xP+)2
],

while in the denominator, it behaves like exp[12K(b⊥, µ) ln
µ2

2(δ−)2e2yn
] [15, 19].

The δ− dependence cancels out and leaves exp[−1
2K(b⊥, µ) ln

µ2

ζ ] depending
on the rapidity scale ζ, which is controlled by the Collins–Soper evolution
equation

2ζ
d

dζ
ln fTMD(x, b⊥, µ, ζ) = K(b⊥, µ) . (22)

The ζ dependence comes from the initial-state quark radiation and is intrin-
sically nonperturbative for large b⊥. fTMD(x, b⊥, µ, ζ) is the target object
to be matched to in LaMET.

We should emphasize that although fTMD is free from rapidity diver-
gences, it does contain collinear contributions from soft radiations due to
the charged particles in the external state. This can be seen by consider-
ing Feynman diagrams for the unsubtracted TMDPDF f and applying the
soft approximation to gluons. At one-loop level, this has been demonstrated
in [37], and the scheme-independent one-loop TMDPDF for an external
quark state reads

fTMD(x, b⊥, µ, ζ) = δ(1− x)+
αsCF

2π

{
F (x, ϵIR , b⊥, µ)θ(x)θ(1− x)

+δ(1−x)
[
− 1

2
L2
b+

(
3

2
−ln

ζ

µ2

)
Lb +

1

2
− π2

12

]}
, (23)

where

F (x, ϵIR , b⊥, µ) =

[
−
(

1

ϵIR
+ Lb

)
1 + x2

1− x
+ 1− x

]
+

. (24)

The two-loop order results for quarks and gluons can be found in [48].
The physical TMDPDF also satisfies the RGE

µ2
d

dµ2
ln fTMD(x, b⊥, µ, ζ) =

1

2
Γcusp(αs) ln

µ2

ζ
− γJ(αs) ≡ γf (αs) , (25)

where γJ is the rapidity-independent part of anomalous dimension. At one-
loop, the cusp and hard anomalous dimensions are

Γcusp(αs) =
αsCF

π
; γJ(αs) = −3αsCF

4π
. (26)

Beyond one-loop, they have been calculated up to 3-loops [18, 48].
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Combining the RGE and the rapidity evolution equation for the TMD-
PDF, one obtains the consistency condition

µ2
d

dµ2
K(b⊥, µ) = −Γcusp(αs(µ)) (27)

from which one finds a resummed form for the Collins–Soper kernel

K(b⊥, µ) = −2

µ∫
1/b⊥

dµ′

µ′
Γcusp

(
αs

(
µ′
))

+K

(
αs

1

b⊥

)
. (28)

Here K(αs(1/b⊥)) contains all the nonperturbative contributions when
1/b⊥ ∼ ΛQCD. The TMDPDFs at different scales are then related by

fTMD(x, b⊥, µ, ζ) = exp

[
1

2
K(b⊥, µ) ln

ζ

ζ0

]

× exp

 µ∫
µ0

dµ′

µ′
γf
(
µ′, ζ0

) fTMD(x, b⊥, µ0, ζ0) . (29)

With the scheme-independent physical TMDPDF defined above, the DY
cross section at small Q⃗⊥ can be factorized as

dσ

dQ2
⊥

=

∫
dxAdxBd

2⃗b⊥e
i⃗b⊥·Q⃗⊥ σ̂ (xAxBs, µ)

×fTMD
A (xA, b⊥, µ, ζA) f

TMD
B (xB, b⊥, µ, ζB) + . . . , (30)

where s is the center-of-mass energy and the rapidity scales satisfy ζAζB =
Q4 = (xAxBs)

2, which can be obtained using Eq. (21). The . . . are power
corrections or “higher-twist” contributions, and its general behavior should
be (Λ2/Q2)α lnβ(Λ2/Q2) with α ≥ 1 and Λ being a soft-scale [50]. The QCD
hard cross section σ̂ at the one-loop level reads

σ̂(xA, xB) =

∣∣∣∣1 + αsCF

4π

(
−L2

Q + 3LQ − 8 +
π2

6

)∣∣∣∣2 , (31)

where LQ = ln −Q2−i0
µ2

and higher-order expressions can be found in [13, 51,
52]. Similarly for the SIDIS process, we have

dσ

dQ2
⊥

=

∫
dx dz d2⃗b⊥e

i⃗b⊥·Q⃗⊥Ĥ(x, z, µ,Q)

×fTMD(x, b⊥, µ, ζA)D
TMD(z, b⊥, µ, ζB) + . . . , (32)

where Ĥ is the hard kernel and DTMD is the TMD fragmentation function.
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3. TMDPDF in LaMET

After the introduction of LaMET, there are attempts to include TMD-
PDFs into the framework [34–37]. Unlike the case of quasi-PDFs, the quasi-
TMDPDF and the targeting physical TMDPDFs all contain contributions
from soft radiations. Therefore, a proper treatment of the soft function sub-
traction and matching is essential. Furthermore, the quasi-TMDPDFs as
well as soft functions, defined with spacelike gauge links, suffer from addi-
tional complications due to the self-interactions of the staple-shaped gauge
link. Recently, Refs. [33, 40, 41] provide a Euclidean realization of quasi-
TMDPDFs and soft functions which include the proper treatment of those
subtleties, capture the IR physics to all-orders, and allow for a perturbative
matching to the physical TMDPDFs.

In this section, we discuss how to define and factorize quasi-TMDPDFs.
The next sections are organized as follows: In Sec. 3.1, we review the defi-
nition of quasi-TMDPDF and discuss its new type of divergence, the pinch-
pole singularity. In Sec. 3.2, we investigate the physical nature of pinch-pole
singularity of quasi-TMDPDF, which can be removed by a rectangular Wil-
son loop using the exponentiation property. In Sec. 3.3, the ultra-soft mode
of quasi-TMDPDF caused by two infinite long parallel gauge links with the
opposite color flow is discussed. In Sec. 3.4, we provide a heuristic argument
for factorization of quasi-TMDPDFs by observing that quasi-TMDPDFs are
equivalent to TMDPDFs in the off-lightcone scheme. In Sec. 3.5, we per-
form the power-counting analysis of quark quasi-TMDPDFs and obtain the
leading region of IR divergences in the large momentum limit. In Sec. 3.6,
we provide the result of quasi-TMDPDF factorization in the on-lightcone
scheme based on the leading region analysis. In Sec. 3.7, we present one-
loop results and use RGE to make predictions for the two-loop hard kernel.
A calculation strategy beyond the two-loop order is also suggested.

3.1. Definitions and basic properties

We define the quasi-TMDPDF with staple-shaped gauge link along the
z direction [34, 35, 37, 41] as

f̃(x, b⊥, µ, ζz) = lim
L→∞

1

N

∫
dλ

2π
eiλx

⟨P|Õz(λ, b⊥, L)|P⟩√
ZE(2L, b⊥, µ)

, (33)

where µ and ζz = (2xPz)2 are the renormalization and rapidity scales of the
quasi-TMDPDF,

Õz(λ, b⊥, L) = ψ̄

(
λẑ

2
+
b⃗⊥
2

)
ΓWz

(
λẑ

2
+ b⃗⊥;L

)
ψ

(
−λẑ

2
− b⃗⊥

2

)
, (34)



4-A2.12 Y. Liu

ẑ = (0, 0⃗⊥, 1), the normalization factorN = |Tr(/PΓ )|/2, the invariant length
λ = zPz, and

Wz(ξ;L) = W †
z (ξ;L)W⊥Wz(−ξz ẑ;L) , (35)

Wz(ξ;L) = P exp

[
− ig

L−ξz∫
0

dλẑ ·A(ξ + ẑλ)

]
. (36)

Here, ξz = −ξ · ẑ. The transverse gauge link W⊥ is inserted at z = L to
maintain the explicit gauge invariance, and

√
ZE(2L, b⊥, µ) is the square

root of the VEV of a rectangular spacelike Wilson loop along the z direction
with length 2L and width b⊥

ZE(2L, b⊥, µ) =
1

Nc
Tr⟨0|W⊥Wz

(⃗
b⊥; 2L

)
|0⟩ , (37)

where the subscript ‘E’ denotes that it is equivalent to the Euclidean Wilson
loop. The definition in Eq. (33) is for DY process, whereas, for the SIDIS
process, one should choose −z direction for the staple-shaped gauge links.
For a depiction of f̃ and ZE, see Fig. 3.

t

C

⊥

z

P

P

A

2L

b⊥

B

t

C

⊥

z

P

P

A

2L

b⊥

B

Fig. 3. The quasi-TMDPDF (left) and the Euclidean Wilson loop ZE(2L, b⊥, µ)

(right): A = λẑ/2 + b⃗⊥/2, B = −λẑ/2 − b⃗⊥/2, and C = Lẑ + b⃗⊥/2. The ⊗ sign
denotes the quark-link vertex.

The factor ZE serves many purposes. First, it subtracts out the “pinch-
pole singularity.” At large L, the naïve quasi-TMD correlator in the numera-
tor of Eq. (33) contains divergences that go as e−LE(b⊥,µ), where E(b⊥, µ) =
2δm+ V (b⊥, µ) is the ground-state energy of a pair of static heavy quarks.
The factor δm is the linear divergent mass corrections part and V (b⊥, µ)
is the heavy-quark potential. In the perturbation theory, the “pinch-pole
singularity” raised from interaction between two parallel non-lightlike gauge
links with infinite length is equivalent to the heavy-quark potential term in
E(b⊥, µ) [53]. Second, ZE removes the self-interactions of the gauge links
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and the cusp UV divergences from the gauge-link junctions. Therefore, we
introduce the square root of ZE(2L, b⊥, µ) to cancel the above divergences.
The existence of the L → ∞ limit will be proved formally based on a gen-
eralization of the exponentiation property of Wilson loops [54] in the next
section.

We emphasize that since the quasi-TMDPDFs are defined by operators
with purely spacelike separation, the time ordering is irrelevant. Therefore,
we can interpret it in a single time-ordering as an amplitude, or in double
time-ordering as the squared amplitude. The former and the latter can be
evaluated in uncut and cut diagrams, respectively.

The quasi-TMDPDFs defined in Eq. (33) still contain logarithmic UV
divergences associated with quark-Wilson-line vertices, and satisfy the fol-
lowing RGE:

µ2
d

dµ2
ln f̃(x, b⊥, µ, ζz) = γF(αs(µ)) , (38)

where γF is the anomalous dimension for the heavy-to-light quark current,
which has been calculated to three loops [55–59]. In the MS scheme, the one-
loop quasi-TMDPDF in an external quark state with momentum (pz, 0, 0, pz)
reads [35, 37]

f̃(x, b⊥, µ, ζz) = δ(1− x) +
αsCF

2π

{
F (x, ϵIR, b⊥, µ)θ(x)θ(1− x)

+δ(1−x)
[
− 1

2
L2
b+Lb

(
5

2
−Lz

)
− 3

2
− 1

2
L2
z+Lz

]}
, (39)

where F and Lb are defined in Eqs. (24) and (15), and

Lz = ln
ζz
µ2

. (40)

As one can see, the L dependence has been canceled in the large-L limit.
Since there is no lightlike gauge link in f̃ , no additional rapidity regulator is
needed. Instead, there is an explicit dependence on the hadron momentum,
which is similar to the momentum RGE for the collinear quasi-PDF.

3.2. Pinch-pole singularity and exponentiation

In order to classify the diagrammatic structures of the pinch-pole singu-
larity for the spacelike staple-shaped gauge link, we first consider a one-loop
example shown in Fig. 4, then generalize to all orders. This diagram, called
dipolar amplitude, can be understood as the elastic scattering of two color
sources propagating in imaginary time, see Appendix A for more details
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~b⊥

~0⊥

Fig. 4. The Feynman diagram of dipolar amplitude.

about analytic continuation between spacelike and timelike gauge link sta-
ples. The Feynman integral for the diagram is∫

dk0 dkz

(2π)2
1

kz + i0

1

kz − i0

1

(k0)2 − (kz)2 − k2⊥ + i0
. (41)

The kz = 0 poles for the two eikonal propagators are pinched due to opposite
i0 prescriptions. Notice that the eikonal part can be rewritten as

1

kz+i0

1

kz−i0 =

∞∫
0

dz1 e
i(kz−i0)z1

∞∫
0

dz2e
−i(kz+i0)z2

=

∞∫
0

dz2

z2∫
0

dz1 e
i(kz+i0)(z1−z2) +

∞∫
0

dz1

z1∫
0

dz2 e
i(kz−i0)(z1−z2)

=

(
1

kz + i0
− 1

kz − i0

)
1

−2i0
. (42)

We rearrange the ordering of z1 and z2 to obtain the last line. The first
term corresponds to z1 > z2 ordering while the second term corresponds to
z2 > z1. Since the gluon propagator is symmetric under kz → −kz, we can
make a change of variable to make the two terms identical. Therefore, we
obtain a one-gluon exchange diagram

1

−i0

∫
dk0 dk

z

(2π)2
1

kz + i0

1

(k0)2 − (kz)2 − k2⊥ + i0
. (43)

This result is almost identical to one particle irreducible (1PI) self-energy
diagrams of a single gauge link except for an extra factor 1/i0, which makes
the pinch-pole manifest. The spirit of the above manipulation is that since
a spacelike staple is independent of time ordering, we can include ordering
of the z coordinates for the two gauge link staples at once, instead of doing
it separately. Therefore, we introduce a composite gauge link, drawing in a
single-line notation, to represent two parallel gauge links, see Fig. 5.
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1 2

~b⊥

~0⊥

2 1

2

1

Fig. 5. The original Feynman diagram can be ordered in z coordinate (upper two),
which can be represented using a single line (lower two).

In general, all the Feynman diagrams and their integrals for the staple-
shaped gauge link can be represented using the single-line notation. How-
ever, the gluon-link vertices are distinguished into two types (1 for 0⃗ and 2 for
b⃗⊥). For each diagram we need to sum over all different assignments of the
vertices. For every type 2 vertex, there is an extra minus sign corresponding
to the opposite color charge and an e−ik⃗⊥ ·⃗b⊥ factor taking into account the
transverse separation. To obtain the correct color factor, we first multiply
all the color factors for type-1 vertices according to the path-ordering of the
single line, then multiply with color factors for the type-2 vertices according
to anti-path-ordering. See Fig. 6 for an example.

1a 2b 1c 1b 1d 2c 2d 2a

Fig. 6. To obtain the correct color factor (T bT cT dT a)(T dT bT cT a): First
multiply the color factors for type-1 vertices according to the path-ordering
(a→ c→ b→ d), and then for type-2 vertices according to the anti-path-ordering
(a→ d→ c→ b).

The purpose of introducing the single-line notation is to make the phys-
ical meaning clear: a pair of parallel gauge links with the opposite color
flow can be treated as a composite particle propagating along the link direc-
tion. The timelike gauge link can be viewed as a heavy quark propagator in
HQET, while the spacelike gauge link can be identified as an analytic con-
tinuation of the timelike link into imaginary time, see Appendix A for more
details. In this single-line notation, the pinch-pole singularity is due to the
link propagators between the self-interaction insertions becoming on-shell.
This is similar to a single on-shell particle with the self-energy insertions,
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which need to be resumed to generate a field renormalization factor Z as
well as a divergent imaginary time evolution factor limt→∞ e−Et, where E
is the energy of the on-shell particle, calculated as the pole of the resumed
one-particle propagator. To calculate a scattering amplitude, the external
legs should be amputated by subtracting the time evolution phase factor
and multiplying with the factor Z−1/2 to maintain unitarity. This is the
imaginary time version of the Lehmann–Symanzik–Zimmermann (LSZ) re-
duction formula. Similar to the single-particle case, the subtraction using√
ZE in Eq. (33) removes the divergent time evolution factor and removes a

Z1/2 factor. This is a generalization of the (LSZ) reduction formula for the
staple-shaped gauge link.

In the standard double line notation of gauge link, it is the dipolar 2PI
amplitudes insertions on the staple that generates the pinching, see Fig. 7.
After the amputation of the dipolar amplitudes, the quark-link 2PI vertex
is free from the pinching. This can also be shown by analyzing the pinching
condition for the original eikonal propagators in the double line representa-
tion using other methods such as the Landau equation.

...
...

Fig. 7. The 2PI decomposition of quasi-TMDPDF. The elliptic blob is the quark-
link 2PI vertex, and the rectangular box is the dipolar 2PI amplitude (also called
self-interaction). The left figure uses the standard double line notation for gauge
link, while the right one uses the single-line notation to represent a gauge link pair.

With the exponentiation property of gauge link, we show that the pinch-
pole singularities can be removed by the Euclidean subtraction factor ZE.
It has been known that a vacuum expectation value of a Wilson loop can be
exponentiated with a modified color factor [54, 60]

Tr⟨0|W (C)|0⟩ = e
∑

webs Φweb(C) = eΦ(C) , (44)

where Φ(C) = ∑webs Φweb(C) is the contribution from all web diagrams for
an arbitrary contour C. The web diagrams are 2PI diagrams for the Wilson
loop with the modified “maximal non-Abelian” color factor. For example,
at the two loop level, one normally encounters the color factor T bT aT bT a =
CF(CF−CA

2 ) in which we only keep the maximal non-Abelian part −CFCA/2

in web diagrams, while the C2
F term will combine with the non-2PI diagram

to form the exponential of one-loop contribution. In Appendix B, we briefly
summarize the replica method to derive the exponentiation of Wilson loop.
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Furthermore, we prove a stronger statement in Appendix B, namely the
gauge link of arbitrary shape in a correlation function of a bilinear operator
can be exponentiated. For example, consider the correlation function of the
form of

F
(
C, x, x′

)
= Tr

〈
O(x)W

(
C, x′ → x

)
O′ (x′)〉 , (45)

where O and O′ are operators; the color indices are summed by taking the
trace; W (C, x′ → x) is a Wilson line of arbitrary shape, starting from x′

and ending at x. Using diagrammatic methods, one can prove a partial
exponentiation, which indicates that although the quantity inside the corre-
lation functions is not a Wilson loop, the webs for the gauge link W (C) still
factorize

F
(
C, x, x′

)
= eΦ(C)Tr

〈
O(x)W

(
C, x′ → x

)
O′ (x′)〉

2PI
. (46)

Here, eΦ(C) is the VEV of W (C) with an overall trace, and Tr⟨. . . ⟩2PI consists
of the 2PI part of interactions of Os and gauge link with modified color
factors. Given the partial exponentiation, we can apply it to the quasi-
TMDPDF

⟨P|Õz(λ, b⊥, L)|P⟩ = eΦ(Wz)⟨P|Õz(λ, b⊥, L)|P⟩2PI , (47)

where Õ is defined in Eq. (34), and Φ(Wz) stands for the webs for the staple-
shaped gauge links. As shown in Fig. 7, the quark-link 2PI vertex is free from
pinching, all the pinch-pole singularities are included in eΦ(Wz) = ⟨0|Wz|0⟩.
The VEV of a pair of spacelike gauge links can be interpreted as a pair of
heavy quarks propagating in imaginary time, and is indeed of the form of
e−LE(b⊥) in the large L limit. Since ZE(2L, b⊥, µ) can also be interpreted as a
pair of such heavy-quarks propagating in twice the imaginary time, its large-
L behavior is of the form of e−2LE(b⊥). Thus, the pinch-pole singularities
are indeed removed by

√
ZE.

This analysis is also helpful for higher-order calculations of quasi-PDFs
and other distributions.

3.3. Ultra-soft mode and IR safety
After subtraction of the pinch-pole singularities, the quasi-TMDPDFs

f̃(x, b⊥, µ, ζz) evaluated to a higher order in perturbation theory are still
not IR safe. This is due to the ultra-soft modes for the gauge link staple,
which is equivalent to a pair of heavy quarks in HQET.

It is known that the ground-state energy of this bound state (known as
the heavy-quark potential) suffers from spurious IR divergences starting at
the α4

s order [61, 62]. To explain such divergences, we first review similar
problems in quantum electrodynamics (QED). Then we move on to the IR
safety problem of the heavy-quark pair bound state. Finally, we discuss the
ultra-soft mode of quasi-TMDPDF.
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In a hydrogen atom, the Bohr radius is of the order of 1/(αeme), where
αe is the fine structure constant and me is the electron mass, but the binding
energy is of the order of α2

eme. The difference in the two scales can result
in deep consequences. To calculate the correction to the binding energy,
one needs to consider the diagram where a soft photon is emitted from the
electron at time t1 and reabsorbed later at t2, between which there can
be arbitrary numbers of Coulomb exchanges between the electron and the
proton. Naïvely evaluating those diagrams to high order in αe will generate
IR divergences, see Fig. 8. After resumming the Coulomb exchanges, the
dressed electron self-energy is regulated by δE, the difference between the
ground and the first excited state, which gives ln(δE/me) ∼ lnαe. This
leads to the famous Lamb shift [63]. In the language of non-relativistic
QED, there are soft gluons with momenta k ∼ meαe as well as the ultra-soft
gluon with momenta k ∼ meα

2
e. It is the exchange of these ultra-soft gluons

as soft as the binding energy that generates the additional logarithms lnαe.
...

Fig. 8. A typical Lamb shift diagram receiving ultra-soft contribution. The spu-
rious IR divergences generated by this diagram are removed after resummation of
external field insertion (indicated by the ⊗ symbol).

For the bound-state formed by a pair of color–anti-color charges (equiva-
lent to a pair of heavy quarks in HQET) with a transverse separation b, simi-
lar to the QED case, we again encounter the ultra-soft contributions generat-
ing additional lnαs after resummation of heavy-quark mutual-interactions,
as shown in Refs. [61, 62]. This is due to similar diagrams where the 2PI
self-interactions are inserted between the soft-gluon emission and absorp-
tion, see Fig. 9. The color charges in the soft-gluon exchanges can be either
in the singlet or the octet channel. Therefore, we expect that there are two
energy scales available: the heavy-quark potential V (b) in the singlet chan-
nel and V8(b) in the octet channel. After exponentiation, however, only their
difference V8 − V contributes to the web diagrams, since the time evolution
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...

...
Fig. 9. Diagrams receiving ultra-soft contribution in binding energy in HQET. The
bound state is formed by color–anti-color sources with a transverse separation.
Similar to the Lamb shift in QED, the spurious IR divergences are removed after
resummation of 2PI self-interactions.

factor in the singlet channel has already been captured by the overall factor
e−iTV (b). Thus, it is the energy difference between the singlet and octet
channels that regulates the IR divergence [61]. In the perturbation theory,
the heavy-quark potential is of the order of αs/b, as well as the ultra-soft
modes after the resummation. Again, the ultra-soft modes are O(αs) smaller
compared to the size of the system b.

For the quasi-TMDPDFs, the staple-shaped gauge links can be viewed
as a pair of color–anti-color charges, therefore, it naturally suffers from IR
divergences associated with ultra-soft modes, see Fig. 10. Beyond three-
loops, they cause power divergences in the high-order calculation, and the
ultra-soft divergence scales as 1/L. The IR safety is restored after the re-
summation of dipolar 2PI amplitude, which corresponds to the self-energy
resummation in the single-line notation. After the resummation, individual
diagrams with the dressed single-line propagator diverge at most logarith-

...
...

Fig. 10. Diagrams receiving ultra-soft contribution in quasi-TMDPDFs. The left
figure is the standard Feynman diagram, while the right one is using the single-
line notation to represent a pair of gauge links. The spurious IR divergences are
removed after resummation of 2PI self-interactions.
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mically, and a leading order analysis is possible. We should emphasize that
in the perturbation theory, the ultra-soft modes after resummation are of
the order of αs/b⊥. For 1/b⊥ ∼ ΛQCD, αs ∼ 1, thus in the completely non-
perturbative situation, we expect that there is no clear distinction between
the soft modes at the energy scale 1/b⊥ and the ultra-soft modes.

3.4. Heuristic argument for the factorization

In this subsection, we study the factorization from quasi-TMDPDFs to
physical TMDPDFs and provide a heuristic argument for the matching for-
mula. The idea lies in the rapidity regularization scheme independence of the
physical TMDPDF fTMD. To define fTMD, one can choose an off-lightcone
scheme such that the gauge links in both unsubtracted TMDPDF f and
soft function S are off the lightcone [11]. In the off-lightcone scheme, there
are pinch-pole singularities for space-like staple-shaped gauge links which re-
quire

√
ZE subtractions similar to quasi-TMDPDFs in Eq. (33). Due to the

Lorentz invariance, the stapled-shaped gauge link Wn as well as the subtrac-
tion factors for f can be boosted to z direction. One then obtains the equal-
ity between the unsubtracted TMDPDFs and the quasi-TMDPDFs with
large momentum external state enhanced by the boost. The off-lightcone
rapidity divergences of the unsubtracted TMDPDFs have been transmuted
into the lnPz dependence of the quasi-TMDPDFs. The Pz evolution of f̃
is therefore equivalent to the rapidity evolution of TMDPDFs. Indeed, the
momentum (rapidity) evolution equation for f̃ is proved in Ref. [1]

Pz d

dPz
ln f̃(x, b⊥, µ, ζz) = K(b⊥, µ) + G

(
ζz
µ2

)
, (48)

where G(ζz/µ2) is perturbative, K(b⊥, µ) is the Collins–Soper kernel, and
K + G is independent of µ [1]. From this equation, it is clear that a correct
matching to fTMD(x, b⊥, µ, ζ) with arbitrary ζ must include (lnPz)K(b⊥, µ)
terms to compensate for the Pz dependence. After subtracting the Pz de-
pendent part, there is still an off-lightcone scheme dependence which is in-
dependent of Pz and must be removed using the off-lightcone soft function.

The soft function for the DY process in the off-lightcone scheme in
Eq. (8) is

SDY

(
b⊥, µ, Y, Y

′) = Tr⟨0|WnY ′

(⃗
b⊥

)
W†
pY

(⃗
b⊥

)
|0⟩

Nc

√
Z ′
E

√
ZE

, (49)

where Y and Y ′ are the rapidities of the off-lightcone spacelike vectors p→
pY = p−e−2Y (p+)2n and n→ nY ′ = n−e−2Y ′ p

(p+)2
; WnY ′ (⃗b⊥) and W†

pY (⃗b⊥)
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are staple-shaped gauge links in nY ′ , pY directions.
√
ZE is introduced to

subtract the pinch-pole singularities for the off-lightcone staple-shaped gauge
links. At large Y and Y ′, we have

SDY

(
b⊥, µ, Y, Y

′) = exp
[(
Y + Y ′)K(b⊥, µ) +D(b⊥, µ) +O

(
e−(Y+Y ′)

)]
.

(50)
Due to the boost invariance, SDY(b⊥, µ, Y, Y

′) = SDY(b⊥, µ, Y + Y ′, 0). We
discover that the off-lightcone soft function can be formulated in the Eu-
clidean space as a form factor, see Sec. 4 for a detailed discussion.

Since the rapidity-dependent part proportional to K has been taken into
account by the (lnPz)K terms introduced before, the square root of the
rapidity-independent part eD(b⊥,µ) is exactly what is needed to cancel the
remaining rapidity-scheme dependence. We define it as the intrinsic soft
function

SI(b⊥, µ) ≡ e−D(b⊥,µ) . (51)
We emphasize that SI is defined only in the off-lightcone scheme. In Secs. 4.4
and 5, we will show that SI is rapidity-scheme-independent, while the rapid-
ity-independent part of the soft function is, in general, scheme-dependent.

With the above ingredient, we can write down the matching formula
between the quasi-TMDPDF and the physical TMDPDF

f̃(x, b⊥, µ, ζz)
√
SI(b⊥, µ) = H

(
ζz
µ2

)
e

1
2
ln
(

ζz
ζ

)
K(b⊥,µ)fTMD(x, b⊥, µ, ζ)

+O
(
Λ2
QCD

ζz
,
M2

(Pz)2
,

1

b2⊥ζz

)
. (52)

The above relation except for the definition of SI(b⊥, µ) was argued to hold
in [37] and recently confirmed in [41, 64].

The perturbative matching kernel H
(
ζz
µ2

)
is responsible for the large

logarithms of Pz generated by the G
(
ζz
µ2

)
term of the momentum evolution

equation. Unlike the quasi-PDFs, the momentum fractions of the quasi-
TMDPDF and the physical TMDPDF are the same. This is due to the
fact that at leading power in 1

ζz
expansion, the k⊥ integral is naturally cut-

off by the transverse separation around k⊥ ∼ 1
b⊥

≪ Pz. Therefore, the
momentum fraction can only be modified by collinear modes for which there
are no distinction between x = kz

Pz and x = k+

P+ . This is also consistent with
the fact that the momentum evolution equation for quasi-TMDPDF is local
in x instead of being a convolution.

From the momentum evolution equation, the factor exp[ln(ζz/ζ)K(b⊥, µ)]
is required to match the TMDPDFs at arbitrary ζ. An important implica-
tion of this property is that one can obtain the Collins–Soper kernelK(b⊥, µ)
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by constructing the ratio of quasi-TMDPDFs at two different momenta or
ζzs [36]

f̃(x, b⊥, µ, ζz,1)

f̃(x, b⊥, µ, ζz,2)
=
H
(
ζz,1
µ2

)
H
(
ζz,2
µ2

) (ζz,1
ζz,2

)K(b⊥,µ)

. (53)

Thus, given the f̃s at the two rapidity scales, the Collins–Soper kernel
K(b⊥, µ) can be obtained.

3.5. Leading region analysis

We now perform the leading region analysis for the quark quasi-
TMDPDFs with a lightlike external state. The structure of IR divergences
can be obtained by solving the Landau equation, see Appendix C. There are
collinear divergences associated with the external state, and soft divergences
caused by soft-gluon radiations from the fast moving color-charges and/or
the gauge link staples. The pinch-pole singularities for the staple-shaped
gauge links correspond to a different type of solution to the Landau equa-
tion. As we have seen, they have been removed by the subtraction factor ZE.
We first discuss the power-counting in 1/(b⊥Pz) of the hard, collinear, and
soft contributions, then show that there is only one collinear direction cor-
responding to that of the external state, whereas the gauge link propagator
cannot participate in the collinear divergences.

We first discuss the scaling behavior and then determine the power-
counting formula between the different regions. In the collinear region, the
momentum is of the order of (1, λ2, λ) in (+,−,⊥) coordinate where λ ∼
1/(b⊥Pz) is the power-counting parameter. The soft region at the individual
order of αs can be very complicated. The standard soft momentum scale
as (λ, λ, λ), but there can also be an ultra-soft momentum scale as 1/L
where L is the length of the staple shaped gauge link. As we have seen in
Sec. 3.3, after resummation of the gauge link self-energy in the single-line
notation, the ultra-soft modes scale as αs(λ, λ, λ). Since αs ∼ 1, the soft and
ultra-soft cannot be distinguished anymore. Besides the soft/ultra-soft and
collinear propagators, there are hard propagators scaling as (1, 1, 1) around
the quark-link vertexes. If a collinear gluon inserts into a gauge link, then
the momentum of the gauge link is of the order of 1/Pz, which is hard, see
Fig. 11. A gauge link sourced by a soft gluon is still soft.

Given the scaling behavior of propagators, we present the power-counting
formula. We adopt the single-line notation of the gauge link staple in
Sec. 3.2. The vertexes around 0⊥ or b⊥ are hard. The hard sub-diagram
which contains the quark-link vertex is denoted as H. Other hard sub-
diagrams, not connected to H, containing no gauge link insertion are de-
noted as H ′, otherwise they are labeled H ′′, see Fig. 12. Both H ′ and H ′′
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C

H
S

Fig. 11. The gauge link of TMDPDF with gluon insertion. The gauge link sourced
by a collinear gluon is hard, and by a soft gluon is still soft.

are called the isolated hard kernels. The collinear sub-diagram is denoted
as C, according to the Landau equation, the collinear region associated with
the external hadron must be connected. The soft sub-diagram is denoted
as S.

C

S

H
S

H ′′

H ′

H ′

Fig. 12. Examples of the isolated hard kernels H ′ and H ′′.

To obtain the power-counting formula, we use the single-line notation of
the staple defined in Sec. 3.2 to avoid complications caused by the ultra-soft
modes from gauge links in the standard Feynman diagrams. Notice that
the staple in the single-line notation has mass dimension 3/2. Based on the
standard dimensional analysis and a boost argument, the power-counting
formula is of the form of

λF (H)λF (SC)λF (H′)λF (H′′) , (54)

where F (H), F (SC), F (H ′), and F (H ′′) are the power-counting exponents
associated to H, soft to collinear, H ′, and H ′′ sub-diagrams. We use the
N(CH, d, s) to denote the connection numbers of the collinear to hard from
a particle with the mass dimension d and spin s. For d = 1, there are gluons
(s = 1) and ghosts (s = 0); For d = 3/2, there are quarks (s = 1/2) and
staple in single-line notation (s = 0). Other connection numbers, such as
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N(CH ′, d, s) and N(SC, d, s), are defined similarly. The Pz dependence in
factors F s must be compensated by the soft scale b⊥, since the overall mass
dimension of quasi-TMDPDF is a constant. Therefore, we can obtain the
power-counting in λ by only considering Pz. The factors are derived as
follows:

— Hard kernel sub-diagrams H.

F (H) = −D(H)−B(H) + 1 , (55)

where D(H) is the mass dimension of the hard kernel counted as the
amputated Feynman diagram, and B(H) is the boost enhancement
factor of the operator insertion to the hard kernel. Since the momenta
inside the hard core is of the order of Pz, the contribution of the hard
core is proportional to (Pz)D(H). The mass dimension D(H) reads

D(H) = 9
2 −Nidi , (56)

where 9/2 is the mass dimension of the quark-link vertex in the single-
line notation, and it comes from two external quarks operator (2×3/2)
and the gauge link in the single-line notation (3/2). Ni and di are
the numbers and mass dimensions of collinear and soft propagator
insertions for a given type i. Since the staple does not contribute
to collinear divergence (see Appendix C), we consider quarks, gluons,
gauge link staple, and ghosts∑

i

Nidi =
∑
si=0,1

[
N(CH, 1, si) +N(SH, 1, si)

]
+3

2N
(
CH, 32 ,

1
2

)
+

∑
si=0,

1
2

3
2N
(
SH, 32 , si

)
. (57)

Besides the mass dimension, there is a boost enhancement factor B(H)
associated with the total spin of collinear particles inserted into the
hard core. For the spin-0 particle (ghost), there is no enhancement
factor. For each of the spin-1/2 fermions, we receive a (Pz)

1
2 enhance-

ment from the Dirac spinor. For the longitudinal polarized gluon, A+

component gets Pz enhancement and A− component receives 1/Pz

suppression, while for the transverse polarized gluon, no enhancement
appears in A⊥. We have

B(H) = N(CH, 1, ℓ) + 1
2N
(
CH, 32 ,

1
2

)
, (58)
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where ℓ denotes the longitudinal component of gluon. Finally, there
is an overall normalization factor 1/Pz, which gives an extra +1 in
F (H). Thus, we obtain

F (H) =
∑
si=0,1

[
N(CH, 1, si) +N(SH, 1, si)

]
+N

(
CH, 32 ,

1
2

)
+
∑

si=0,
1
2

3
2N
(
SH, 32 , si

)
−N(CH, 1, ℓ)− 7

2 . (59)

— Soft-to-collinear sub-diagrams.
Since the gauge link staple does not participate in collinear divergence,
we consider soft particles (gluons, quarks, and ghosts) inserted into the
collinear sub-diagram. There is a 1/Pz factor caused by the collinear
propagator in the soft-to-collinear approximation (kC + kS)

2 ≈ 2kC ·
kS ∼ Pzk−S where kC and kS are generic collinear and soft momenta
and the boost enhancement factor is (Pz)s for the spin s particle.
Therefore, we have

F (SC) = 1
2N
(
SC, 32 ,

1
2

)
+N(SC, 1, 0) . (60)

— Isolated hard kernel sub-diagrams H ′.
Without gauge link insertion, they can be classified into three types
of sub-diagrams for H ′, F (H ′) = F (SH ′) + F (CH ′) + F (SCH ′), see
Fig. 13 for an example.

H ′S S

S

H ′C C

C

(a) Soft propagator insertions. (b) Collinear propagator insertions.

H ′C C

S

(c) Soft and collinear propagator insertions.

Fig. 13. Isolated hard region H ′ without gauge link insertion. S and C denote soft
and collinear propagator insertions. In (a), (b), and (c) cases, the hard region can
be absorbed into the soft, collinear, and soft-to-collinear regions.
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1. Only soft propagator insertions.
The hard momentum inside the isolated hard kernel H ′ can only
come from UV sub-divergences. UV sub-divergences generate
additional logarithms unless they are power-divergent, which is
forbidden in QCD due to the gauge invariance and chiral sym-
metry. Such logarithmic divergences can be removed by renor-
malization. Thus, F (SH ′) = 0 and H ′ can be absorbed into the
soft region.

2. Only collinear propagator insertions.
Since there is one collinear direction (we will prove it later), we
can perform a boost, such that all the collinear propagators be-
come soft. Based on the same argument, the UV sub-divergences
can be removed by renormalization, and F (CH ′) = 0. Therefore,
this sub-diagram can be absorbed into the collinear region.

3. Soft and collinear propagator insertions.
Since there is only one collinear direction, the collinear propa-
gator insertion cannot generate a hard scale. Thus, H ′ comes
from UV sub-divergences which can be removed by renormal-
ization. Since the Lorentz structure of quark–gluon and gluon–
gluon vertices is unchanged by renormalization, the soft insertion
into H ′ still receives the same Lorentz enhancement as the soft-
to-collinear insertion. Thus, the power-counting of F (SCH ′) is
identical to F (SC)

F (SCH ′) = F (SC) . (61)

Therefore, one can absorb F (SCH ′) into the soft-to-collinear
region, F (SC).

In conclusion, since the divergence of the isolated hard kernel can
always be absorbed into anther region, H ′ cannot contribute to power
counting, F (H ′) = 0.

— Isolated hard kernel sub-diagrams H ′′.
With the gauge link insertion, if there is also collinear propagator inser-
tion, see Fig. 14 (a), there will be contradiction to the Landau equation
and N(CH ′′, di, si) = 0. Diagrammatically, this can be obtained by
analyzing the gauge link propagators. The momentum kz integration
for the gauge link propagator between H and H ′′ can always be de-
formed away due to the iϵ prescriptions in the link propagator. Next,
we are left with an isolated hard region with the soft propagator inser-
tion, see Figs. 14 (b) and 14 (c). The hard scale must come from the
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UV sub-divergence, and thus can be removed by renormalization. For
more detailed analysis, take the case with no other propagator inser-
tion as an example, see Figs. 14 (c). This isolated hard region can be
removed by self-energy resummation in the single-line notation. Such
self-energy contribution in standard Feynman diagrams actually cor-
responds to two cases, one is gauge link self-energy, and the other is
interaction between two gauge links; we can remove the divergence by
renormalization of gauge link in the former case, and resummation of
the gauge link propagator in the latter case. In summary, this type of
isolated hard kernel cannot contribute to power counting, F (H ′′) = 0.
We emphasize that the isolated hard region without other propagator
insertion can induce the ultra soft region, see Fig. 10, scaling as 1/L,
as discussed in Sec. 3.3.

C

H ′′S S

C

H ′′S S

S

(a) Collinear propagator insertions. (b) Soft propagator insertion.

S SH ′′

(c) No other propagator insertion.

Fig. 14. Isolated hard regionH ′′ with gauge link insertions. In Fig. (a), the collinear
propagator insertion is not allowed. In Figs. (b) and (c), the hard region can be
absorbed into the soft regions. The H ′′ in Fig. (c) can induce ultra-soft divergence,
which can be removed by resummation.

Based on the power-counting formula above, we need further discussions
to obtain the leading region for the quark quasi-TMDPDFs. First, we have
assumed that there is only one collinear direction, which needs to be jus-
tified. Second, we show that there is no “super leading” region. Finally,
we show that the hard sub-diagram is homogeneously hard, namely all the
components of the momentum scale as Pz.
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We first show that collinear divergence can only be in p direction associ-
ated with the external state (we also show this result based on the Landau
equation in Appendix C). This property is straightforward using the un-
cut diagram. To cause collinear divergence, the on-shell particles carrying
collinear momenta must propagate to infinity. However, there are only ex-
ternal states moving in p direction. Thus, there is no other possibility to
have a different collinear direction. Alternatively, we can use a cut diagram
to argue this property (the equivalence of an uncut and cut diagram for
quasi-TMDPDFs is explained in Sec. 2). For individual cut diagram, since
there is large momentum transfer at the vertex, there may be additional
collinear divergences caused by on-shell particles passing through the cut.
See Fig. 15 for example, at t = 0, two collinear particles with three-momenta
p⃗1 and p⃗2 are emitted by the gauge link at z⃗ and the vertex, respectively.
If pz1 = 0, the gauge link also participates in the collinear singularity. At
t > 0, the particles collide and participate in the isolated hard region H ′,
and then create two collinear particles with three-momenta p⃗ ′

1 and p⃗ ′
2 pass-

ing through the cut. However, following the “sum-over-cuts” argument [11],
all the collinear divergences except the one in p direction canceled between
diagrams. Therefore, we are left with only one collinear region C, and the
gauge link propagators decouple from collinear divergences.

H

H ′~p1

~p2

~p ′
1

~p ′
2

~p

t = 0

t

~z

Fig. 15. An example of a possible sub-diagram with more than one collinear direc-
tion in the cut diagram. The particles collide at an isolated hard region H ′, and
then create two collinear particles. The three-momenta p⃗1, p⃗2, p⃗ ′

1, and p⃗ ′
2 can be

in different directions. If pz1 = 0„ the gauge link segment z⃗ also participates in
the collinear singularity. As required by the Landau equation, the displacement z⃗
relates to the particle momenta through p⃗1

Ep⃗1
t+ z⃗ = p⃗2

Ep⃗2
t, where t > 0 is the time

where the two collinear particles collide. The collinear divergences other than the
one in p direction are canceled between diagrams.
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Second, we show that there is no “super leading” region which means
the exponents of the power-counting formula become negative. For the hard
region F (H), since there are always two external quarks inserted into this
region, N

(
CH, 32 ,

1
2

)
+ 3

2N
(
SH, 32 ,

1
2

)
≥ 2 (the equality satisfies if both

quarks are collinear). There is also away one external soft staple in single-
line notation inserted into H, 3

2N
(
SH, 32 , 0

)
= 3

2 . Besides, N(CH, 1, 1) −
N(CH, 1, ℓ) ≥ 0, and therefore, F (H) ≥ 0. For soft-to-collinear sub-
diagrams, it is obvious that F (SC) ≥ 0. Thus, there is no super leading
region.

Finally, we should mention that although there is a special direction z,
in which the Lorentz invariance is broken by the gauge link propagator, the
hard region is still homogeneously hard, namely, all components of hard
momenta in H are of the order of Pz. The previous power-counting result
relies on this homogeneity assumption. To show the above statement, the
gauge link propagators with momenta pi in the hard region H can always
be written in the form of

N∏
j=1

1∑N
k=j p

z
k + i0

, (62)

where pz1 to pzN are momenta of hard gluons inserted into the gauge links
labeled according to the path ordering. Inside the 2PI vertex in Fig. 7, one
can write pzi s to be linear combinations of loop momenta kj , such that

pi =
∑
l

aijkj , (63)

where aik ≥ 0 and at least one aij is non-zero for any i. In this case,
the contour integration for all the kzj can be deformed away from kzj = 0

region into the upper half-plane, similar to the reason that H ′′ allows no
collinear insertion. Therefore, in the hard region the gauge link propagators
are not pinched in the small kz region. pinching means that there is no IR
contribution. Therefore, the hard kernel is homogeneously hard. The same
representation also leads to the absence of the Glauber region (k+k− ≪ k⊥)
at small k+ and k−. By writing

√
2kz = k+−k−, the Glauber region can be

avoided by deforming k+ into the upper half-plane. Thus, the deformations
that one chooses to get rid of the small kz modes inside the hard region are
essentially identical to avoiding the Glauber region.
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Thus, based on the above analysis for quark quasi-TMDPDFs, we sum-
marize the power-counting of the leading region

N
(
CH, 32 ,

1
2

)
= 2 , (64)

N
(
SH, 32 , 0

)
= 1 , (65)

N(CH, 1, ℓ) = arbitrary , (66)
N(SC, 1, 1) = arbitrary , (67)
N(others) = 0 . (68)

The leading region is then shown in Fig. 16 in the single-line notation and
in Fig. 17 using the standard Feynman diagram notation.

C

S

H
S

Fig. 16. The leading region of the quasi-TMDPDF in the single-line notation.

C

H

H

S

Fig. 17. The leading region of the quasi-TMDPDF in the standard Feynman dia-
gram notation.
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3.6. Factorization in on-lightcone regulator

Given the structure of the leading region in Figs. 16 and 17, we can
use standard soft-to-collinear and collinear-to-hard approximations [11] to
factorize the leading soft and collinear contributions of quasi-TMDPDFs.
The soft-to-collinear approximation is possible since the Glauber region can
be deformed away, as shown in Sec. 3.5. Here, we briefly summarize the soft-
to-collinear approximations. For a soft gluon with momentum kS inserted
into the collinear diagram, the integrand can be written in the form of

Sµ(kS)Cµ(kS + kC) . (69)

Here, the Sµ denotes the contribution of the soft sub-diagram, and µ is the
Lorentz index. Cµ(kS+kC) is the contribution of the collinear sub-diagram,
where kC is a generic collinear momentum. The leading contribution is
given by

S−(kS)C
+(kS + kC) ∼ Sµ(kS)

pµ
kS · p(kS · p nν)Cν(kS · p n+ kC) . (70)

In the formula, we keep only the largest components of the collinear sub-
diagram C+ ∝ nνCν and the soft momentum k−S ∝ kS · p. By writing
k̄S = kS ·p nν , the (kS ·p nν)Cν(kS ·p n+kC) can be written as a longitudinal
insertion

(kS · p nν)Cν(kS · p n+ kC) = k̄νSCν
(
k̄S + kC

)
. (71)

We then fix the soft sub-diagram S and sum over all possible insertions
into the collinear sub-diagram. Ward-identities shall be used to simplify the
longitudinal insertions and factorize the soft contributions into soft functions
following the arguments in [11]. Following this approach, the soft radiations
of quasi-TMDPDFs between the gauge link staple in z direction and the
external state is factorized using the soft function

S(b⊥, µ, δ
+, ẑ) =

⟨0|Wz

(⃗
b⊥;L

)
W†
p

(⃗
b⊥

)
|δ+ |0⟩√

ZE(2L, b⊥, µ)
, (72)

where δ+ is a generic on-lightcone rapidity regulator, and ẑ in the argu-
ment indicates that the gauge link staple is pointing to z direction. This
soft function contains pinch-pole singularity of the staple in z direction,
which requires subtraction

√
ZE, while the other lightcone staple is free from

such divergence. Similar to the soft-to-collinear approximation summarized
above [11], the collinear contribution of quasi-TMDPDF can be obtained
using the collinear-to-hard approximation, which leads to the TMDPDFs
with soft function subtraction

f (x, b⊥, µ, δ
−)

S (b⊥, µ, δ+, δ−)
, (73)
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where S(b⊥, µ, δ+, δ−) is defined in Eq. (8). In conclusion, by performing
the leading region analysis, we find the following factorization formula:

f̃(x, b⊥, µ, ζz) = H

(
ζz
µ2

)
f(x, b⊥, µ, δ

−)

S(b⊥, µ, δ+, δ−)
S
(
b⊥, µ, δ

+, ẑ
)
, (74)

where H is the hard kernel. By expressing the above equation in terms of
the physical TMDPDFs, we found that

f̃(x, b⊥, µ, ζz)
√
SI(b⊥, µ) = H

(
ζz
µ2

)
e
K(b⊥,µ) ln

ζz
ζ fTMD(x, b⊥, µ, ζ) , (75)

where exp [K(b⊥, µ) ln(ζz/ζ)] takes into account the rapidity dependence
between f̃ and fTMD, and√

SI(b⊥, µ) = lim
δ+→0

√
S(b⊥, µ, δ+, δ− = δ+)

S(b⊥, µ, δ+, ẑ)
(76)

is again called the intrinsic soft function. Although the definition of SI in
Eq. (76) looks quite different from Eq. (51), in Secs. 4.4 and 5, we will show
that they are equivalent .

The method given here can be applied to other quasi-TMD observables.
As an example, in Sec. 5, we will consider the TMDWFs for a light meson.

3.7. One-loop results and two-loop predictions

Based on the renormalization property of Wilson loop, the intrinsic soft
function satisfies the RG equation

µ2
d

dµ2
lnSI(b⊥, µ) = −ΓS(αs) , (77)

where ΓS is the rapidity independent part of the cusp-anomalous dimension
at large rapidity separation Y + Y ′ for the off-lightcone soft function

µ2
d

dµ2
lnSDY

(
b⊥, µ, Y, Y

′) = −(Y + Y ′)Γcusp(αs) + ΓS(αs) . (78)

Notice that γs in Eq. (11) is different from ΓS since the rapidity-regulator-
independent part of the soft function is scheme dependent. At leading order,
S
(0)
DY(b⊥, µ, Y, Y

′) = 1. At one-loop level [37],

S
(1)
DY(b⊥, µ, Y, Y

′) =
αsCF

π

[
1−

(
Y + Y ′)]Lb , (79)

Γ
(1)
S (αs) =

αsCF

π
, (80)
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where Lb is defined in Eq. (15). Based on the RGE, the intrinsic soft function
at the two-loop level can be predicted to be

lnS
(2)
I (b⊥, µ) = c2 − Γ

(2)
S Lb + α2

s

β0CF

2π
L2
b , (81)

where

Γ
(2)
S =

α2
s

π2

[
CFCA

(
−49

36
+
π2

12
− ζ3

2

)
+ CFNF

5

18

]
is the two-loop anomalous dimension for S−1

I [65], β0=−(113 CA−4
3NfTF)/(2π)

is the coefficient of one-loop β-function, and c2 is a constant to be determined
by explicit calculation.

Therefore, by combining the RGEs of the quasi-TMDPDF f̃ , the intrinsic
soft function SI and physical TMDPDF fTMD [Eqs. (38), (77), and (25)],
we obtain the RGE of the matching kernel H

(
ζz
µ2

)
µ2

d

dµ2
lnH

(
ζz
µ2

)
=

1

2
Γcusp(αs) ln

ζz
µ2

+
γC(αs)

2
, (82)

where γC = 2γF − ΓS + 2γJ . The matching kernel is closely related to the
perturbative part of the rapidity evolution kernel G

(
ζz
µ2

)
through

2ζz
d

dζz
lnH

(
ζz
µ2

)
= G

(
ζz
µ2

)
. (83)

In fact, the above equation demonstrates that the unsubtracted TMDPDF
in the off-lightcone scheme is equivalent to quasi-TMDPDF up to a Lorentz
boost, as the argument we used in Sec. 3.4. Combining Eqs. (82) and (83), we
can see that the anomalous dimension of G is the cusp anomalous dimension
Γcusp

µ2
d

dµ2
G
(
ζz
µ2

)
= Γcusp(αs) . (84)

Collecting all the above results, one obtains the one-loop matching ker-
nel [35, 37]

H

(
ζz
µ2

)
= 1 +

αsCF

2π

(
−2 +

π2

12
− L2

z

2
+ Lz

)
, (85)

where Lz is defined in Eq. (40). The two-loop matching kernel is predicted
to be

lnH(2)

(
ζz
µ2

)
= c′2 −

1

2

(
γ
(2)
C − α2

sβ0c1

)
ln
ζz
µ2

−1

4

(
Γ (2)
cusp −

α2
sβ0CF

2π

)
ln2

ζz
µ2

− α2
sβ0CF

24π
ln3

ζz
µ2

, (86)
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where c1 = CF
2π

(
−2 + π2

12

)
and c′2 is again a constant to be determined in

the perturbation theory at the two-loop level.
We should mention that beyond the three-loop level, the quasi-TMDPDFs

start to develop power IR-divergences due to the ultra-soft modes discussed
in Sec. 3.3. Fortunately, to obtain the matching kernel, one only needs vir-
tual diagrams which are free from ultra-soft modes. The ultra-soft modes
only contribute to real diagrams which have no overall UV divergences.

4. Off-lightcone soft functions

The soft function, which takes into account the soft radiation from fast-
moving charged particles, naturally appears in TMD factorization. The
naïve definition of the soft function using lightlike gauge links suffers from
the rapidity divergence due to infinitely long gauge links in the lightlike
direction. In factorization formulas, the soft function is always combined
with another TMD observable which suffers from the same type of rapidity
divergences. There are two major classes of rapidity regulators, on-lightcone
and off-lightcone regulators, which are discussed in Sec. 2. The regulator
dependencies then cancel between the soft functions and TMD observables
to maintain scheme independence of the total cross section. This allows the
definition of physical TMD observables where soft functions play the role of
“rapidity renormalization” factors.

In the LaMET framework, spacelike staple-shaped gauge links are chosen
to define the lattice calculable quasi-TMD observables. To match the phys-
ical TMDPDFs, all the artifacts and scheme dependencies associated with
the off-lightcone staples must be removed by an appropriate soft function,
which must be off-lightcone as well. However, the time dependence in S
cannot be removed with a Lorentz boost, since there are two staple-shaped
gauge links in conjugate lightlike directions. Recently [33, 40], we found that
such an off-lightcone soft function can be simulated by a form factor of a
fast-moving heavy-quark pair state. In this section we study the off-lightcone
soft function relevant to the matching between the quasi-TMDPDF, quasi-
Wave Function(WF) to the physical one. The major results of the section
are:

— We first define two specific off-lightcone soft functions. The first one
is defined with spacelike gauge links for the DY process in the double
time-ordering. The second one is defined with timelike vectors in a
single time-ordering. Being in single time-ordering, the second one
can be represented as a form-factor for a pair of fast-moving color
charges, thus can be formulated in the Euclidean space. We will state
a lemma which asserts that although one is defined for cross section
and one for the form factor, they are equal.
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— We then study their properties. We show that although they suffer
from IR divergences starting from the 3-loop level due to the presence
of the “ultra-soft” modes known in the literature of HQET, the IR di-
vergences are artifacts of perturbative calculation and can be resolved
after an exact resummation of gauge link self-interactions. We care-
fully analyze the relevant modes in the lightcone limit and show that
they factorize into the product of two TMDWFs for the color-charge
pairs.

— We then study other possible off-lightcone soft functions, defined with
different time-orderings and vectors. We will show that all the single-
time-ordered off-lightcone soft functions relate with each-other through
a single analytic function of the rapidity and are universal in the light-
cone limit. The lemma in the first subsection is related to the analyt-
icity and proved here.

— Once the timelike gauge links are involved, in the double time-ordering
the universality is less transparent. Based on a factorization argument,
in the lightcone limit, all the off-lightcone soft functions with timelike
vectors can be expressed in terms of three independent ingredients:
TMDPDF for a “single quark-state”, fragmentation for a “single quark-
state” and lightcone wave function of a heavy-quark pair. In principle,
they can be quite different.

— Although the major part of the section is on the off-lightcone soft func-
tions, we prove in Appendix H that the SIDIS and DY soft functions
defined in delta regulator equal to each other by using an analyticity
argument. This is similar to the universality of spacelike off-lightcone
soft functions.

4.1. Definitions and basic properties

The TMD factorization in DY and SIDIS processes involves soft functions
with two staple-shaped gauge links. To discuss the properties of such kind of
soft functions in an off-lightcone scheme, we define the generic off-lightcone
Wilson loop vacuum expectation value

W (ℓ1, ℓ2, b⊥, µ, q1, q2) =
1

Nc
Tr ⟨Ω|T

[
W†
q2

(⃗
b⊥,−ℓ2

)
Wq1

(⃗
b⊥, ℓ1

)]
|Ω⟩ ,

(87)
where ℓs are the length of the staple, µ is the renormalization scale, qs are
unit vectors indicating the direction of the staple, |Ω⟩ is the vacuum state,
T is the time ordering operator. The gauge link staple is defined by

Wq(ξ, ℓ) =Wq(0, ℓ)W⊥W
†
q (ξ, ℓ) , (88)
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where

Wq(ξ, ℓ) = Pexp

−ig 0∫
−ℓ

ds q ·A(s q + ξ)

 . (89)

is a gauge link along the q direction, and the W⊥ is a transverse gauge link
to maintain manifest gauge-invariance.

In the definition of Eq. (87), we used the single time-ordering in the
correlation function. There is another type of correlation functions defined
by the cut diagram which contains the double time-ordering

Wcut(ℓ1, ℓ2, b⊥, µ, q1, q2) =
1

Nc
Tr ⟨Ω|T̄W †

q1

(
ℓ1, b⃗⊥

)
Wq2

(
−ℓ2, b⃗⊥

)
W⊥

TW⊥W
†
q2(−ℓ2, 0)Wq1(ℓ1, 0)|Ω⟩ . (90)

Similar to quasi-TMDPDF, the off-lightcone gauge link staple contains
Wilson line self-interactions, which can be removed by the rectangular
Wilson loops

Z(2ℓ, b⊥, µ, q) = W (ℓ, ℓ, b⊥, µ, q, q) , (91)
Zcut(2ℓ, b⊥, µ, q) = Wcut(ℓ, ℓ, b⊥, µ, q, q) . (92)

The soft functions are defined by taking the large ℓ1 and ℓ2 limit using
rectangular Wilson loop subtractions in Eqs. (87) and (90)

S(b⊥, µ, q1, q2) = lim
ℓ1→∞
ℓ2→∞

W (ℓ1, ℓ2, b⊥, µ, q1, q2)√
Z(2ℓ1, b⊥, µ, q1)Z(2ℓ2, b⊥, µ, q2)

, (93)

Scut(b⊥, µ, q1, q2) = lim
ℓ1→∞
ℓ2→∞

Wcut(ℓ1, ℓ, b⊥, µ, q1, q2)√
Zcut(2ℓ1, b⊥, µ, q1)Zcut(2ℓ2, b⊥, µ, q2)

. (94)

The existence of the limit will be shown in Sec. 4.2.
Throughout this section, we will use the timelike unit vectors

v = γ(1, β, 0⃗⊥) and v′ = γ′(1,−β′, 0⃗⊥) in (t, z, ⊥⃗) coordinate, and the
spacelike unit vectors u = γ(β, 1, 0⃗⊥) and u′ = γ′(−β′, 1, 0⃗⊥). We assume
0 < β < 1 and γ = 1/

√
1− β2. For large β, v is approaching the lightcone

plus direction, while v′ is approaching the lightcone minus direction.
As an example, we consider the following soft functions related to DY

process.

DY soft function: Both staples are tilted in spacelike directions: q1 = u
and q2 = u′.
This soft function was proposed by Collins [11]. For large Y and Y ′,

SDY

(
b⊥, µ, Y, Y

′) = S
(
b⊥, µ, u, u

′) = Scut
(
b⊥, µ, u, u

′) , (95)
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where Y = tanh−1 β is the rapidity regulator. Notice that in this case,
the time-orderings are irrelevant since any two points on the Wilson
loop are spacelike.

Form-factor soft function: Both staples are tilted in timelike direc-
tions: q1 = v and q2 = v′.
We define the following single-time-ordered soft function, which can
be interpreted as a form factor

S
(
b⊥, µ, Y, Y

′) = S
(
b⊥, µ, v, v

′) . (96)

The parallel gauge links with transverse separation b⃗⊥ in timelike v
direction can be viewed as a pair of color charges separated by b⃗⊥
traveling at speed v in +z direction. At t = 0, the junctions of gauge
links can be seen as the color charge receives a large momentum trans-
fer, and then continue to propagate to −z direction. Therefore, it can
be viewed as a form factor and formulated by heavy-quark pairs in
HQET

S
(
b⊥, µ, Y, Y

′) = v′

〈
Q̄Q

(⃗
b⊥

)∣∣∣ J (b⊥, v′, v) ∣∣∣Q̄Q (⃗b⊥)〉
v
, (97)

where J (⃗b⊥, v′, v) = Q̄†
v′ (⃗b⊥)Q

†
v′(0)Q̄v (⃗b⊥)Qv(0) is the transition cur-

rent and |Q̄Q(⃗b⊥)⟩v is the heavy quark pair bound state with velocity v.

Timelike DY soft function: Both staples are tilted in timelike direc-
tions: q1 = v and q2 = −v′.
This soft function is proportional to the total cross section for the DY
process participated by two incoming heavy-quarks Q(v) and Q̄(v′)
travelling at velocity v and v′

Scut
(
b⊥, µ, v,−v′

)
∼
∑
n

∫
dΠn

∣∣〈n ∣∣j (v′, v)∣∣ Q̄v′Qv〉∣∣2 , (98)

where j(v′, v) = Q̄v′(0)Qv(0) is a heavy-quark pair annihilation oper-
ator. Here, the soft function Scut is in double time-ordering because
the corresponding timelike TMDPDFs are naturally defined in cut di-
agrams.

The first and third types of soft functions correspond to choosing space-
like and timelike rapidity regulator of TMDPDFs in the factorization the-
orem. Although they look differently, one can prove that the first two soft
functions are equal

SDY

(
b⊥, µ, Y, Y

′) = S
(
b⊥, µ, Y, Y

′) . (99)

The proof of the equality will be given in Sec. 4.5.
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4.2. Pinch-pole singularity subtraction

For the single-time-ordered soft functions, the pinch-pole singularity
arises due to gauge link self-interactions. As discussed in Sec. 3.2 and
Appendix A, the spacelike and timelike staples differ by an analytic con-
tinuation. In the infinite length limit, both cases generate divergent evolu-
tion factors, e−V L and e−iEt for spacelike and timelike staples, where V is
the heavy-quark potential and E is the bound-state energy. On the other
hand, for timelike staple in the double-time-ordered soft function, there is
no pinch-pole singularity, see Appendix D. Therefore, we focus the following
discussion on the single-time-ordered soft functions.

Given the exponentiation property for the Wilson loop (see Appendix B),
we now examine the subtraction of pinch-pole singularity in the single-
time-ordered soft function. Consider the webs Φ for Wilson loop amplitude
W =eΦ

lnW (ℓ1, ℓ2, b⊥, µ, q1, q2) = Φvertex(ℓ1, ℓ2, b⊥, µ, q1, q2)

+ΦW⊥ (ℓ1, ℓ2, b⊥, µ, q1, q2) + Φself(ℓ1, b⊥, µ, q1) + Φself(ℓ2, b⊥, µ, q2) , (100)

which contains two gauge link staples with lengths ℓ1 and ℓ2 in arbitrary
off-lightcone q1 and q2 directions. Here, Φvertex consists of 2PI vertex webs,
which contain interactions between staples in q1 and q2 directions. Φself

consists of self-interacting webs, which contain self-energy of gauge links
and interactions between parallel gauge links. Φ⊥ consists of all the webs
that involve the transverse gauge links.

At large ℓ1 and ℓ2, Φvertex and Φ⊥ have no IR divergence, see Sec. 4.3
and Appendix D. Thus, we will omit the ℓ1 and ℓ2 dependencies for Φvertex.
However, the self-interacting webs contain linear IR divergences proportional
to ℓ1 and ℓ2 caused by the time evolution of the heavy-quark pair state.
Such linear divergence includes the Wilson line self-energy and the pinch-
pole singularity. The pinch-pole divergences can be removed by considering
the rectangular Wilson loop, which poses a similar web expansion

lnZ(2ℓ, b⊥, µ, q) = Φ0(b⊥, µ) + ΦZ⊥(2ℓ, b⊥, µ, q) + 2Φself(ℓ, b⊥, µ, q) , (101)

where Φ0(b⊥, µ) = Φvertex(b⊥, µ, q, q) because Φ0 is independent of q due
to the Lorentz invariance. This can also be obtained by the substitutions
ℓ1, ℓ2 → ℓ and q1, q2 → q in W (ℓ1, ℓ2, b⊥, µ, q1, q2). Thus, we obtain the soft
function defined in Eq. (93)

S(b⊥, µ, q1, q2) = lim
ℓ1→∞
ℓ2→∞

W (ℓ1, ℓ2, b⊥, µ, q1, q2)√
Z(2ℓ1, b⊥, µ, q1)Z(2ℓ2, b⊥, µ, q2)

= eΦvertex(b⊥,µ,q1,q2)−Φ0(b⊥,µ) , (102)
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where in the last line ΦW⊥ (ℓ1, ℓ2, b⊥, µ, q1, q2) − 1
2Φ

Z
⊥(2ℓ1, b⊥, µ, q1)

− 1
2Φ

Z
⊥(2ℓ2, b⊥, µ, q2) → 0 in the ℓs → ∞ limit, see Fig. 18.

1 2 3 1 2 3

Fig. 18. Different types of web diagrams containing interaction to transverse gauge
link. Left and right figures are ΦW

⊥ and ΦZ
⊥. In the large-ℓ limit, type 2 and type 3

web diagrams approach zero, and the rest type 1 web diagrams cancel in the equa-
tion limℓs→∞ ΦW

⊥ (ℓ1, ℓ2, b⊥, µ, q1, q2)− 1
2Φ

Z
⊥(2ℓ1, b⊥, µ, q1)− 1

2Φ
Z
⊥(2ℓ2, b⊥, µ, q2) = 0.

Next, we can define the physical TMDPDF in single time-ordering in the
off-lightcone scheme. First, we consider an unsubtracted TMDPDF in the
off-lightcone scheme whose gauge link staple is pointing to a nearly lightlike
direction, nY = (−e−2Y , 1, 0⃗⊥) in (+,−, ⊥⃗). The correlation function in the
off-lightcone scheme contains pinch-pole singularity as well as gauge link self-
energy, which are similar to quasi-TMDPDFs. Therefore, further subtraction
is needed and the correlation function is defined similar to Eq. (33), and its
web-diagram decomposition is similar to Eq. (47)

eΦself(L,b⊥,µ,nY )+ΦW
⊥ (L,b⊥,µ,nY )⟨P|ÕnY (λ, b⊥, L)|P⟩2PI . (103)

Therefore, before the Fourier transformation, we have

lim
L→∞

⟨P|Õq(λ, b⊥, L)|P⟩√
Z(2L, b⊥, µ, nY )

= V2PI(λ, b⊥, µ, nY )e
− 1

2
Φ0(b⊥,µ) , (104)

where ΦW
⊥ (L, b⊥, µ, nY )− 1

2Φ
Z
⊥(2L, b⊥, µ, nY ) → 0 in L→ ∞ limit, and

V2PI(λ, b⊥, µ, nY ) = lim
L→∞

⟨P|ÕnY (λ, b⊥, L)|P⟩2PI , (105)

see Fig. 19 for details. Before taking the lightcone limit, we need to perform
the soft function subtraction

S(b⊥, µ, nY , pY ) = eΦvertex(b⊥,µ,nY ,pY )−Φ0(b⊥,µ) , (106)
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1 2

3

Fig. 19. Different types of web diagrams of the unsubtracted TMDPDF in the off-
lightcone scheme. Type 1 web-diagram is ΦW

⊥ (L, b⊥, µ, nY ); Type 2 and type 3 web
diagrams are ⟨P|ÕnY

(λ, b⊥, L)|P⟩2PI. In the large L limit, type 2 web diagram ap-
proaches zero, and V2PI(λ, b⊥, µ, nY ) = limL→∞⟨P|ÕnY

(λ, b⊥, L)|P⟩2PI. We omit
the Φself(L, b⊥, µ, nY ) web diagram in the figure.

where pY =(1,−e−2(Y+yn), 0⃗⊥) is a nearly lightlike direction conjugate to nY .
According to Eq. (20), we have

f̃ TMD(x, b⊥, µ, ζ, ζY ) =
1

2P+
lim
Y→∞

∫
dλ

2π
eiλx

×V2PI(λ, b⊥, µ, nY ) e−
1
2
Φvertex(b⊥,µ,nY ,pY ) , (107)

where ζ = 2(xP+)2 e2yn and ζY = 2(xP+)2 e2Y . There is still one step
away from the physical TMDPDF because there is a hard scale ζY which
generates hard contribution and requires perturbative matching [11], similar
to the argument in Sec. 3.4. After subtracting out the hard contribution,
we obtain the physical TMDPDF

fTMD(x, b⊥, µ, ζ) = H−1

(
ζY
µ2

)
f̃ TMD(x, b⊥, µ, ζ, ζY ) , (108)

where the hard kernel H is related to the perturbative part of the rapidity
evolution kernel of quasi-TMDPDF, which is discussed in Secs. 3.4 and 3.7.

For the double-time-ordered soft function Scut, if the gauge link staple
is spacelike, the time ordering is irrelevant and Zcut = Z. In this case, the
subtraction factor works in the same way as that of the single-time-ordered
soft function. If the gauge link staple is timelike, there is no pinch-pole
singularity (See Appendix D). However, the subtraction factor Zcut still
serves to remove linear divergence of the Wilson line self-energy.
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4.3. Ultra-soft modes

As we have shown in Refs. [33, 40], S can be viewed as scattering ampli-
tudes of fast-moving bound states formed by a pair of color charges at fixed
transverse separation. In comparison, the double-time-ordered soft functions
are cross sections for single heavy quarks. Since the internal structure of a
heavy-quark pair is more complicated than that of a single heavy quark, S
is expected to carry more physical information relevant or not relevant to
high-energy scattering. Notice also that spacelike separations are insensi-
tive to time-orderings, thus we expect that the soft function defined with
spacelike gauge links contains information of the bound states as well, even
defined with two time-orderings.

As shown in the previous section, in the rest frame of the heavy-quark
pair or a spacelike staple, there are indeed subtleties caused by “ultra-soft”
modes scale as αs

b⊥
. By boosting into large rapidity, we naturally expect that

there are soft-collinear modes corresponding to their boosted versions. As in
the case of quasi-TMDPDF, for αs ∼ 1, there is no need to distinguish them.
The binding energy after the boost, however, is of the order of αs e

−Y /b⊥.
This “ultra–ultra” soft scale is rapidity-dependent and can be very dangerous
since any logarithms in it would naturally lead to Y dependencies which can
break factorization. We now show that such modes cannot exist. There are
two arguments. The first and the simplest one is that for large Y , this scale
is much softer than the confinement scale, therefore, it will be suppressed
by the mass gap of theory. Second, we argue that after resummation of the
effective link self-energy consistently, such modes cancel after summation
over diagrams.

As an example, let us consider the “lamb-shift” diagrams in Fig. 20. At
the individual diagram level, if the number of ladders is larger than 1, there
are power-IR divergences and even the color cancellation has been taken into
account. The reason can be explained as follows. The soft-gluon momentum
provides a time scale where the heavy-quarks can propagate. Then, there
should be a factor of the form of e−

V
|k| . By expand the exponential we then

obtain the 1
|k| factors which make the integral divergent. Thus, we expect

a resummation of the ladder would be sufficient to make the integral IR
finite. We now sum over the ladders. To obtain the web diagram, we need
to treat the color factor carefully. The full color factor of the diagram is
CF(CF− CA

2 )N if there are N ladders, but to form the web diagram, one can
show that only the “maximal non-Abelian” part CF(−CA/2)

N will be kept.
The integration after the resummation of webs then reads

∫
d4−4ϵk

1

k · v + i0

ei⃗b⊥·k⊥ − 1

k · v′ −Σ (k · v′, b⊥) + i0

1

k2 + i0
. (109)
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...........

...........

Fig. 20. A typical diagram generating power-IR divergences in single line (left) and
double line (right) representations. The red gluons are collinear to the gauge links,
while the blue one is soft.

Here, the Σ(k · v′) is the self-energy of the heavy-quark pair or the effective
gauge link. In the “ultra–ultra” soft-region, the self-energy can be approxi-
mated as

Σ
(
k · v′ = 0, b⊥

)
∼ e−Y

αsCA

2b⊥
. (110)

This is actually the ground-state energy difference between the heavy-quark
pair in the octet channel and in the singlet channel, consistent with the ob-
servation in the quasi-TMDPDF section. If one expands the dressed prop-
agator 1

k·v′−Σ(k·v′,b⊥)+i0 to any given order in Σ, then one will encounter
integrals of the form of∫

d4−4ϵk
1

k · v + i0

ei⃗b⊥·k⊥ − 1

(k · v′ + i0)n+1Σ
n
(
k · v′, b⊥

) 1

k2 + i0
, (111)

which are power-divergent if n > 3. However, after resummation into the
dressed propagator, the power-IR divergences all cancel. We should also
notice that if there were only the −1 or eb⃗⊥·k⊥ terms in Eq. (109), although
the integral is convergent, the “ultra–ultra” soft region would generate Y
dependent logarithms. However, with the color cancellation between eb⃗⊥·k⊥

and −1, the ultra-soft region is now suppressed by the boost factor. The
softest momentum that one can probe in the vertex diagram is still around
the natural cutoff 1

b⊥
. However, if we were in the rest frame of the gauge

link staple, the so-called soft-collinear modes do exists, although they do not
generate IR divergent logarithms, namely, if we treat this as an independent
scale δE, then we have well-posed limit as δE → 0 of the form δE ln δE. But
in our case, they differ from the collinear modes simply by a factor of αs.
For αs ∼ 1, the contribution is leading.
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There is another type of diagrams that are capable of generating log-
arithmic divergences. Namely, a diagram in which a soft gluon is emitted
from a higher-order vertex diagram of the effective gauge link, see Fig. 21 for
a depiction. In the example above, the soft gluon can be emitted from the

Fig. 21. A typical diagram generating logarithmic IR divergences in single line (left)
and double line (right) representations. The red blobs are collinear to the gauge
links.

ladders. In the single-line representation, the resulting diagram then corre-
sponds to the first-order vertex diagram. When both ends of a soft gluon
are inside such vertex diagrams, there appears to be no color cancellation
available, thus to show the absence of Y -dependent ultra-soft scales, one
must demonstrate the cancellation of such logarithms after summing over
all the diagrams. This can be argued as follows. Since the IR divergence is
logarithmic now, we can only keep the power-leading part of the IR diver-
gence. We now factorize the “ultra-ultra” soft, “ultra” soft and soft modes
into a single soft function from the collinear and soft collinear modes. This
is possible since for all the three modes, the connections to the collinear
and soft collinear sub-diagram can be approximated by the standard soft-
to-collinear eikonal approximation. In order for the Ward-identity argument
to be valid, the resummation must be performed consistently to preserve the
corresponding Ward identities. This can be achieved by first calculating the
self-energy diagram to a given order, then resum to the dressed propagator.
Then we consider only the vertexes formed by insertion of a gluon into these
already resumed self-energy diagrams. If we need more vertexes, then we
need more self-energy diagrams. Then the Ward identity can still be sat-
isfied. This is in fundamental contrast to many “off-shell” regulators where
gauge-invariance has been explicitly broken and no Ward identity is applica-
ble. The resulting soft function, however, is nothing but the standard TMD
soft function, which is clearly free from such Y -dependent “ultra–ultra” soft
modes as well as separate “ultra”-soft modes. The wavelength for the soft
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gluon, therefore, is still bounded by b⊥. It is the applicability of Ward iden-
tity that guarantees the independence of the soft contribution to the internal
structures of a hadron.

In conclusion, the off-lightcone soft function in single time-ordering is
IR finite only after the resummation of gauge link self-interactions, due to
the so-called “ultra”-soft modes in the rest frame of a heavy-quark–anti-
quark pair. These modes carry the energy-scale at the order of the binding
energy αs

b⊥
. After boosting, the ultra-soft modes become the “soft-collinear”

modes. The Y -dependent “ultra–ultra” soft modes at the order of e−Y αs
b⊥

is
suppressed by the color-neutrality condition after summation over diagrams.
Therefore, for the off-lightcone soft function, we obtain the modes listed
below in the unit of b⊥

collinear: kC ∼
(
eY , e−Y , 1, 1

)
/b⊥ . (112)

soft-collinear: kSC ∼ αs

(
eY , e−Y , 1, 1

)
/b⊥ . (113)

soft: kS ∼ (1, 1, 1, 1)/b⊥ . (114)

The absence of the Y -dependent “ultra”-soft modes is crucial for the TMD-
factorization. In the following section, we will factorize the “soft” modes
from the “collinear+soft collinear” modes using lightlike TMD observables
for heavy-quark state. These factorization will build the relation between
on-lightcone and off-lightcone regulators.

4.4. Factorization in the lightcone limit

A crucial property of the soft functions is the factorization of rapidity di-
vergences in the lightcone limit. This is one of the cornerstones of the TMD
factorization formalism and deserves a throughout study. In early 1980s,
Collins and Soper have developed a diagrammatic technic for the deriva-
tion of rapidity evolution equations for TMD observables. When applied
to the off-lightcone soft functions, it was claimed in Ref. [47] that collinear
modes responsible for the rapidity divergences are power-suppressed by the
Feynman rules for the evolution kernel, therefore in the lightcone limit, the
rapidity evolution kernel is a constant. This leads to the rapidity factor-
ization. However, a detailed explanation regarding how the collinear modes
were suppressed to the extent that were sufficient to kill all the rapidity di-
vergences beyond one-loop level is not presented. The nature of the rapidity
divergence has also been studied in Ref. [19] using the conformal transfor-
mation method. It was claimed that the rapidity divergence can be mapped
to UV divergences for Wilson-line cusps, thus can be factorized. In this
subsection, we show that based on the region analysis of the off-lightcone
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soft function, a factorization formula can be found that matches the off-
lightcone soft functions into the lightcone WFs for the external color-charge
state. This implies the rapidity factorization for the off-lightcone soft func-
tions. In Appendix E, a more direct approach will be provided.

The region analysis can be performed similar to the quasi-TMDPDF.
The power-counting parameter is λ = e−(Y+Y ′)/2. In the lightcone limit,
one can consistently label all the eikonal propagators sourced by soft gluons
to be collinear, since in this case one can keep only the k± components of the
soft-gluon momentum in the eikonal propagator. For the power-counting of
the hard kernel, there are no Lorentz contraction or enhancement associated
with the gauge links, since they are now of spin 0. There is Lorentz boost
factor enhancement associated with longitudinal polarized collinear gluons.
The disconnected hard regions can be argued to be non-essential similar
to that of quasi-TMDPDF. Thus in the leading region, there are two hard
cores around 0⃗ and b⃗⊥, two collinear gauge links and arbitrary many collinear
gluons inserted into the hard core. There can be arbitrary many soft gluon
connections to the collinear sub-diagram.

The major distinction from the quasi-TMDPDF is that the hard kernel
is actually trivial, due to the lacking of a natural hard scale. The absence of
the hard kernel can also be shown in the following way. Since all the “real”
diagrams do not contribute to the hard kernel, one can obtain the hard
kernel by calculating with a form factor of two external gauge links. Similar
to the standard calculation of such form factors, to calculate the hard kernel,
one can put the external gauge links on shell with large momentum/enenrgy,
and then subtract out the corresponding IR divergences. However, the on-
shell external momentum will be killed in all the eikonal propagators due
to the linearity of the gauge link propagators. Therefore, the form factor
and, consequently, the hard kernel are independent of the external momenta.
Thus, the hard kernel can only be trivial.

With the hard kernel being trivial, the factorization for the form factor
soft function then reads

S
(
b⊥, µ, Y, Y

′) = Ψ † (b⊥, µ, Y ′)Ψ(b⊥, µ, Y ) , (115)

where the lightcone Wave function for the color-charged state reads

Ψ(b⊥, µ, Y ) = lim
δ→∞

〈
0
∣∣∣Q̄v (⃗b⊥)W+

n

(⃗
b⊥

) ∣∣∣
δ
Qv(0)

∣∣∣Q̄Q (⃗b⊥)〉
v√

S(b⊥, µ, δ, δ)
, (116)

in which the lightlike gauge links in W+
n chosen to be future pointing differ

from the past pointing case only by an overall complex conjugation due to
the time-reversal symmetry. We now examine this factorization formula.
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First, we notice that the “un-subtracted” TMDWF for the heavy-quark
pair depends on Y and δ only through the combination e−Y δ due to the
boost invariance. Therefore, we can always boost the Q̄Q state to be purely
static, namely to v = (1, 0, 0, 0). The corresponding un-subtracted WF can
then be interpreted as a soft function with an off-lightcone timelike staple
and a lightlike staple

S(b⊥, µ, δ, t̂) =
⟨0|T Wt

(
b⃗⊥; t

)
W †
p

(
b⃗⊥

)
|δ|0⟩√

Z(2t, b⊥, µ)
, (117)

where Wt is a gauge link staple in t direction pointing to the future. The
self-interaction is removed by

√
Z. It is defined with a single time-ordering

as that of the form factor. Comparing the soft function S(b⊥, µ, δ, ẑ) defined
in quasi-TMDPDF section, which is independent of time-ordering, we find
that the only difference is that the Wz have been replaced by Wt. However,
based on the analyticity property of the single time-ordered soft function to
be discussed later, we can show that they relate to each other through an
analytic continuation〈
0
∣∣∣Q̄v (⃗b⊥)W+

n

(⃗
b⊥

) ∣∣∣
δ
Qv(0)

∣∣∣Q̄Q (⃗b⊥)〉†
v
=S

(
b⊥, µ, δ, t̂

)
= S(b⊥, µ,−iδ, ẑ)

(118)
for δ > 0. In the lightcone limit, the soft function only depends on ln δ and
they are equal up to a phase factor associated with ln δ+ → ln−iδ+, which
will cancel between Ψ and Ψ †. Thus, we will omit the imaginary part and
write∣∣∣ 〈0∣∣∣Q̄v (⃗b⊥)W+

n

(⃗
b⊥

) ∣∣∣
δ
Qv(0)

∣∣∣Q̄Q (⃗b⊥)〉
v

∣∣∣ = e
− 1

2
K(b⊥,µ) ln

µ2

δ2e−2Y +D1(b⊥,µ) ,

(119)
where D1 is the same as that for S(b⊥, µ, δ, ẑ). Using the similar expansion
of the on-lightcone regulator, we found that

|Ψ(b⊥, µ, Y )| = eK(b⊥,µ)Y+D1(b⊥,µ)− 1
2
D0(b⊥,µ) . (120)

Thus, the off-lightcone soft function S has the following expansion:

S
(
b⊥, µ, Y, Y

′) = eK(b⊥,µ)(Y+Y ′)+2D1(b⊥,µ)−D0(b⊥,µ) . (121)

Using the relation S = SDY, we found that

D(b⊥, µ) = 2D1(b⊥, µ)−D0(b⊥, µ) . (122)

This demonstrates the scheme independence of the intrinsic soft function
claimed in the previous section. It also reveals the physical meaning of the
intrinsic soft function: it can be interpreted as the lightcone wave function
for a Q̄Q state.
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4.5. Analyticity in hyperbolic angle

Although the soft function depends on two vectors v1 and v2, in the
single-time-ordered case one only needs a single function to represent all the
choices. This is due to the fact that the single-time-ordered soft function is
an analytic function of the relative hyperbolic angle defined as

θ(v1, v2) = Arcosh
v1 · v2 − i0√

v21 + i0
√
v22 + i0

. (123)

A general proof of this property will be given later. Intuitively, it can be
explained in the following way. The single-time-ordered soft function can
be viewed as a form factor where the external incoming momenta p1, p2
are replaced by v1 and −v2. Thus, we expect it poses similar analyticity
property as that of a form factor. The form factor is an analytic function
of p21 + i0, p22 + i0 and the momentum transfer p1 · p2 + i0. Thus, the soft
function should be an analytic function of three variables v1 ·v2− i0, v21+ i0,
and v22 + i0. However, the soft function is invariant under Lorentz boost
in longitudinal plan and as well as independent rescalings of v1 and v2.
Thus, it can only depend on the ratio −v1·v2+i0√

v21+i0
√
v22+i0

, which enters into the

definition of the hyperbolic angle. The square root and the i0 are introduced
to properly take into account the additional imaginary parts as one moves
from spacelike vector/momentum transfers to the timelike ones.

We now start to prove the analyticity. We first start with the DY shape
soft function. We fix vz1 = vz2 = 1 and v01 = −v02 = v0. We chose to work in
physical gauge where the Hilbert space consists of positive norm states only.
We assume that there is a regularization in which the energy is positive and
satisfies the relation E − βPz ≥ 0 for arbitrary |β| < 1. We further assume
that the Lorentz invariance in t, z plane for gauge-invariant quantities is
preserved by the regularization. Using the definition of the soft function, we
expand the gauge links in terms of gluon fields, and order all the gluon fields
according to the time. The consecutive differences in the time components
then read

v0
(
t− t′

)
, (124)

where 0 > t > t′ > −t0 parameterizing the gauge links. After insertion
of intermediate states, the energy exponentials for the time-differences then
read

e−iEv
0(t−t′) . (125)

Due to the positivity of the energy, E > 0, we can analytically continue in
v0 → vx0 + iv

y
0 with vy0 < 0. We should mention that besides the exponential

decay, which is the most decisive property, the analyticity has also some
moderate regularity requirements on the “spectrum functions”. For more
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details see [66]. For any finite t0 by integrating over the t, t′s we obtain an
analytic function in z = vx0 + ivy0 . We now take the large-t0 limit. Since the
Hilbert space consists of a purely physical state, the energy is assumed to
be uniformly gaped with respect to the regularization (although no one can
prove it!). The t0 → ∞ is then at exponential speed. By performing the
corresponding subtractions using

√
Zs which removes the leading exponen-

tial decay factor, the results converge uniformly in the region vy0 < ϵ < 0
for any ϵ. Thus, we obtain an analytic function f(z) in the lower half-plane
to any order in the expansion. Then, although we cannot claim that the
expansion converges, it is natural to expect that the full result shares the
same analyticity. See Fig. 22 for a depiction of the analytic domain for f(z).

f̄(z̄)

f (z)

−1 1 ℜz

ℑz

SDY
f (− i

v0
)

Fig. 22. A depiction of analytic domain of f(z). The f(z) was extended to upper
half-plane through f̄(z̄) due the reality of f(v0) with −1 < v0 < 1. There are
branch cuts stating at v0 = ±1 to ±∞. The v0 = ∓1 corresponds to the lightcone
singularity.

Similarly, for the form-factor shape soft function, we fix vz1 = −vz2 = 1
and analytically continue in v01. We again obtain an analytic function in
the lower half-plane, this time called g(z). We now consider F (z) = f̄(1z̄ ).
This is again an analytic function in the lower half-plane. We consider
z = −iv0. Then we have F (−iv0) = f̄(− i

v0
). However, with the imaginary

time component, this is simply a Euclidean soft function in the (τ, z) plane.
The ratio between the τ, z components then reads τ

z = 1
v0

. Let us consider
g(−iv0). This is again a Euclidean soft function in the (τ, z). It is of the
same shape up to a Euclidean rotation τ → z, τ → z. Thus, due to the
Lorentz therefore rotational invariance, the two Euclidean Wilson loop must
be real and equal and one has the relation F (−iv0) = g(−iv0) for any v0 > 0.
Due to the uniqueness of analytic continuation the two analytic functions
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must be equal. Therefore, we have

f̄

(
1

z̄

)
= g(z) . (126)

We can actually extend f(z) and g(z) into upper half-plane due to the fact
that they are real for −1 < v0 < 1 and v0 > 1, v0 < −1, respectively. Then
the relation between the two functions reads

g(z) = f

(
1

z

)
. (127)

See Fig. 23 for a depiction of the analytic domain of g(z).

ḡ(z̄) ≡ f (1z) ≡ f̄ (1z̄)

g(z) ≡ f̄ (1z̄) ≡ f (1z)

−1 1 ℜz

ℑz

S
g(−iv0)

Fig. 23. A depiction of analytic domain of G(z). The G(z) was extended to upper
half-plane through ḡ(z̄) due to the reality of f(v0) with v0 > 1, v0 < −1. There
are branch cuts between −1 < v0 < 1. The v0 = ∓1 corresponds to the lightcone
singularity.

Given this relation, we can now show the analyticity in hyperbolic angle.
It suffices to consider ℜ(z) > 0. We define the hyperbolic angle for the DY
case

Cosh(Y ) =
1 + z2

1− z2
, (128)

Y = ln
1 + z

1− z
, (129)

where the branch of ln is −π → π, and for the form-factor case :

Cosh(Y ) =
z2 + 1

z2 − 1
(130)

Y = ln
z + 1

z − 1
. (131)
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Then in the DY case, one can show that the hyperbolic angle with −π <
ℑY < 0 is in one-to-one correspondence to z and in the form factor case one
can choose 0 < ℑY < π. Denote the inverse as zDY(Y ) and zform(Y ), and
we define

f(Y ) = f(zDY(Y )) , (132)
g(Y ) = g(zform(Y )) . (133)

Since we have f̄(1z̄ ) = g(z), we have

f̄(Y ) = f̄ (zDY(Y )) = f̄

(
1

z̄form
(
Ȳ
)) = g

(
Ȳ
)
. (134)

This relation extends the f(z) into the upper plane. Comparing with the
previous definition of the θ(Y ) in terms of the hyperbolic cosine, we found
complete consistency. The analyticity in the case where v1, v2 are both
spacelike or timelike is therefore established. To extend to the case where one
of v1, v2 is spacelike but another one is timelike, one can boost the spacelike
staple to be time-independent and analytically continue in the other vector.
By considering a purely imaginary time component, one again obtains a
Euclidean Wilson loop which relates to the f(−iv0) or g(−iv0) through
Euclidean rotations. Thus, all the soft functions can be connected with each
other through a single analytic function. This finally builds the analyticity
in the hyperbolic angle, see Fig. 24 for a depiction of the analyticity property
of the soft function.

S(Y ) ℜY

ℑY

Sbent

SDY = S

ℑY = π

ℑY = −π

Fig. 24. A depiction of S(Y ), analytic in the shaded strip −π ≤ ℑY ≤ π . The
dots at Y = ±iπ indicate the poles located there. The Sbent denotes the Euclidean
Wilson loop at π

2 angle.
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As a direct consequence of the analyticity relation, we now show that
the DY soft function indeed equals the form-factor soft function. The DY
soft function is given by f(β − iϵ) with z = β − iϵ and β < 1. Based on
the functional equation, it equals to ḡ( 1

β+iϵ) = ḡ( 1β − iϵ/β2). However, g( 1β )
is nothing but the form-factor soft function: the two vectors read ( 1β ,±1)

which differ from v,v′ only by overall re-scalings, therefore are completely
equivalent. By taking the ϵ→ 0 limit and noticing that the two soft functions
are real, we obtain the equality.

One can also see this from the definition of the hyperbolic angle. For the
DY soft function, u = (β, 1, 0, 0) and z = β, therefore, the hyperbolic angle
reads Arcosh(Y ) = 1+β2

1−β2 . For the form factor soft function, v = ( 1β , 1) and

z = 1
β , the hyperbolic angle reads Arcosh(Y ′) = 1+1/β2

1/β2−1
= 1+β2

1−β2 . Therefore,
the hyperbolic angles in the two cases are indeed equal. A list of hyperbolic
angles for various choices of v1 and v2 are given in Table 1.

Table 1. Hyperbolic angles for different off-lightcone vectors.

v1 v2 Orientation of v1 Orientation of v2 Hyperbolic angle

spacelike spacelike past past Y

timelike timelike past past Y − iπ

timelike timelike past future Y

spacelike spacelike past future Y + iπ

timelike spacelike past future Y + iπ
2

timelike spacelike past past Y − iπ
2

Due to the analyticity in hyperbolic angle, one can use the same symbol
S(b⊥, µ, Y + Y ′) to represent all the single-time-ordered soft functions. By
taking the lightcone limit, the single-time-ordered soft functions can then be
written in the universal form

S
(
b⊥, µ, Y + Y ′)=e(Y+Y ′)K(b⊥,µ)+D(b⊥,µ) . (135)

To obtain this formula, we have assumed that the lightcone limit is uniform
in the imaginary part of the rapidity. In the perturbation theory, the power-
suppressed contributions decay exponentially in Y for ℑY = 0,±π

2 ,±π,
which are the only value for which the soft functions can be realized in a
real Minkowski space. For another imaginary part this is also supposed to
be true. Then, by considering the smallest decay speed, the lightcone limit
is indeed uniform in ℑY , in this case, one can show that limY0→∞ lnS(Y0 +
Y ′)− (Y0 + Y ′)K(b⊥, µ) defines an analytic function and equals Y ′K +D.
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We shall also mention that the methods presented here can be slightly
adjusted to show that the “half on-lightcone, half off-lightcone” soft func-
tions using δ regulator in the single time-ordering all relate with each other
through analytic continuation as well. For example, we can show

S (b⊥, µ, δ, ẑ) = S
(
b⊥, µ,−iδ, t̂

)
. (136)

As discussed in the previous subsection, this relation combined with the
TMD factorization of a Q̄Q form factor shows that the two definitions for the
intrinsic soft function are equal. In the mixed time-ordered case, however,
the analyticity is more complicated. The situation is similar to a cross section
evaluated using cut-diagrams, where the left-hand side and the right-hand
side of the cut poses opposite i0 prescriptions in the Feynman propagators,
thus we expect that the analyticity of the left- and right-hand sides “collide
with each other” when one tries to move from the timelike to the spacelike
case, namely, one might encounter logarithms like ln(v1·v2−i0) ln(v1·v2+i0).
However, if one treats the rapidities in the two sides of the cut to be an
independent variable, then one can still reach a certain form of analyticity,
although much more complicated and weaker than that of the single-time-
ordered case.

4.6. Soft functions in double-time-ordering

After introducing the single-time-ordered soft functions, we briefly com-
ment on the double-time-ordered ones, especially those involving timelike
vectors. They can be classified as:

SIDIS soft function. The SIDIS soft function is defined with the same
v, v′ as that of the form factor one, using double time-orderings

SSIDIS

(
b⊥, µ, Y, Y

′) = Smix

(
b⊥, µ, v, v

′) . (137)

This soft function carries a clear physical meaning. It can be inter-
preted as a total cross section for a SIDIS process with incoming and
outgoing heavy quarks

SSIDIS

(
b⊥, µ, Y, Y

′) =∑
n

∫
dΠn|⟨Q

(
v′
)
n|J

(
v, v′

)
|Q(v)⟩|2 , (138)

where |Q(v)⟩ and |Q(v′)⟩ are heavy-quark state and J(v, v′) is a heavy-
quark transition current. In the lightcone limit, based on the factor-
ization theorem for the SIDIS process, it factorizes into TMDPDFs
and TMD fragmentation functions for the heavy-quark state.
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Timelike DY soft function. This soft function is defined as Smix(b⊥, µ,
v,−v′). It is similar to SDY, but with timelike gauge links. It describes
the total cross section of a DY process with a timelike heavy-quark
state.

Spacelike SIDIS soft function This soft function is defined as Smix(b⊥, µ,
u,−u′). In Appendix F, we will argue that in the lightcone limit, it is
equivalent to SDY.

“Quasi-TMD” soft function. This soft function is defined as Smix(b⊥,
µ, v, ẑ), where ẑ = (0, 1, 0, 0). It can be viewed as a quasi-TMDPDF
for a heavy-quark state.

“Quasi-fragmentation” soft function. This soft function is defined as
Smix(b⊥, µ, ẑ, v). It describes the fragmentation of a spacelike gauge
link into a heavy quark and other “hadrons”.

The above enumerates all different classes of off-lightcone soft functions in
the double time-ordering. Similar classification can be made for single-time-
ordered soft functions as well, but as we have shown in detail, all the single-
time-ordered soft functions are universal in the lightcone limit.

4.7. Universality in lightcone limit

In the lightcone limit, the off-lightcone soft function in double time-
ordering is less universal in the case when there are timelike vectors. This
is because timelike gauge links represent physical heavy-quarks propagating
in real time, therefore, we can clearly distinguish between the two distinct
situations, namely they are in the initial or final state along, or they are in
the final-state jet. The former case corresponds to the TMDPDF while the
latter case corresponds to the fragmentation function. There is no natural
physical reason for their equality, therefore, we expect them to be different
in general.

Using lightcone regulators, we found the following factorization formulas:

Smix

(
b⊥, µ, v, v

′) = fTMD(b⊥, µ, Y )DTMD
(
b⊥, µ, Y

′) , (139)

Smix

(
b⊥, µ, v,−v′

)
= fTMD(b⊥, µ, Y )fTMD† (b⊥, µ, Y ′) , (140)

S
(
b⊥, µ, v, v

′) = Ψ † (b⊥, µ, Y ′)Ψ(b⊥, µ, Y ) . (141)

The TMDPDF in the δ regularization scheme is defined as

fTMD(b⊥, µ, Y ) = lim
δ→0

⟨Q(v)|Q̄v
(⃗
b⊥

)
Wn

(⃗
b⊥

)
|δQv(0)|Q(v)⟩√

S(b⊥, µ, δ, δ)
, (142)
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and similarly for the wave function and the fragmentation function. All
other can be expressed in terms of these functions, including those “quasi-
observables”. Therefore, in the lightcone limit, we expect that there are
three independent off-lightcone soft functions in total, each associated with
a natural physical interpretation. As we have seen, the form factor and the
quasi-PDF/TMDPDF all allow Euclidean formulations or can be matched
to Euclidean quantity, but the fragmentation functions are believed to be
not. A list of the classification of off-lightcone soft functions is given in
Table 2.

Table 2. Universality classes of off-lightcone soft functions in the lightcone limit.

Type Time-order v1 v2 Ultra-soft Factorization Euclidean

(orientation) (orientation) formulation

form factor single arbitrary arbitrary yes Ψ†Ψ yes

(arbitrary) (arbitrary)

spacelike DY double spacelike spacelike yes Ψ†Ψ yes

(past) (past)

timelike DY double timelike timelike no fTMD†fTMD yes

(past) (past)

γ∗ → Q̄Q+hadrons double timelike timelike no DTMD†DTMD no

(future) (future)

timelike SIDIS double timelike timelike no DTMDfTMD no

(past) (future)

spacelike SIDIS double spacelike spacelike yes Ψ†Ψ yes

(past) (future)

quasi-TMD double timelike spacelike yes Ψ†fTMD yes

(past) (arbitrary)

quasi-fragmentation double spacelike timelike yes DTMDΨ no

(arbitrary) (future)

5. Intrinsic soft function and TMDWFs

In this section, we show that the intrinsic soft function can be extracted
from combining the LFWFs and the TMD factorization for a light-meson
form factor at large momentum transfer. This section is largely taken from
Ref. [33] and we refer to [42] for more details on the LFWF amplitudes.

Let us consider the following form factor of a pseudoscalar light-meson
state with constituents ψ̄η,

F
(
b⊥,P,P ′, µ

)
=
〈
P ′
∣∣∣η̄ (⃗b⊥)Γ ′η

(⃗
b⊥

)
ψ̄(0)Γψ(0)

∣∣∣P〉 , (143)

where ψ and η are light-quark fields of different flavors; Pµ = (Pt,Pz, 0⃗⊥)

and P ′µ = (Pt,−Pz, 0⃗⊥) are two large momenta which approach two oppo-
site lightlike directions in the limit of Pz → ∞; Γ and Γ ′ are Dirac gamma
matrices, which can be chosen as Γ = Γ ′ = 1 or Γ = γ⊥ and Γ ′ = γ⊥, so
that the quark fields have leading components on the respective lightcones.
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At large b⃗⊥, the form factor factorizes through TMD factorization into
LFWFs. To motivate the factorization, we need to consider the leading
region of IR divergences in a similar way for SIDIS and Drell–Yan [6, 47],
and the result is shown in Fig. 25.

H

CC

H

P ′P

S

Fig. 25. The reduced diagram for the large-momentum form factor F of a meson.
Two H denote the two hard cores separated in space by b⃗⊥, C are collinear sub-
diagrams, and S denotes the soft sub-diagram.

There are two collinear sub-diagrams responsible for collinear modes in p
and n directions, and a soft sub-diagram responsible for soft contributions.
Besides, there are two IR-free hard cores localized around 0 and b⃗⊥. In
the covariant gauge, there are arbitrary numbers of longitudinally-polarized
collinear and soft gluons that can connect to the hard and collinear sub-
diagrams. Based on the region decomposition, we now follow the standard
procedure to make factorization [47].

We first factorize the soft divergences. This can be done with the soft
function S(b⊥, µ, δ

+, δ−). It resums the soft-gluon radiations from fast-
moving colored charges. Intuitively, soft gluons have no impact on the
velocity of the fast-moving color charged partons, and the propagators of
partons eikonalize to straight gauge links along their moving trajectory.

We then factorize the collinear divergences. For the incoming direction,
the collinear divergences are captured by the un-subtracted WF amplitude
for the incoming parton ψ(x, b⊥, µ, δ−

′
) defined with a future-pointing gauge

link staple W+
n as

ψ
(
x, b⊥, µ, δ

−′
)
=

∫
dλ eiλx

4π

〈
0
∣∣∣ψ̄ (λn+b⃗⊥)W+

n

(
λn+b⃗⊥

)∣∣∣
δ−′γ

5γ+ψ(0)
∣∣∣P〉 .
(144)

However, the naive WF amplitude contains soft divergences as well, to avoid
over-counting, we must subtract out the soft contribution from the bared
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collinear WF amplitude with the soft function S(b⊥, µ, δ
+, δ−

′
). This leads

to the collinear function for the incoming direction: ψ(x,b⊥,µ,δ
−′

)

S(b⊥,µ,δ+,δ−
′ )

. Similarly,

for the out-going direction, one obtains the collinear function ψ†(x′,b⊥,µ,δ
+′

)

S(b⊥,µ,δ+
′ ,δ−)

.
Here, we briefly comment on the choices for the gauge link directions

in the soft functions and the WF amplitudes. Naively looking, the gauge
links along the p direction have to be past-pointing. However, similar to
the arguments in Ref. [46] for the SIDIS process, based on the spacetime
picture of collinear divergences, one can choose future-pointing gauge links
along p direction as well. With all the gauge links being future pointing, the
soft function is independent of time-ordering and equals to the standard DY
soft function S, and the WFs for the incoming and outgoing hadrons are in
complex conjugation to each other.

Besides the collinear and soft functions, we still need the hard core
H1(Q

2, Q̄2, µ2), where Q2=xx′P · P ′, Q̄2= x̄x̄′P · P ′, and an integral over
the momentum fractions x, x′ is assumed. Taking together, we have the
TMD factorization of the form factor into hard, collinear, and soft functions

F
(
b⊥,P,P ′, µ

)
=

∫
dxdx′H1

(
Q2, Q̄2, µ2

)
×
ψ†
(
x′, b⊥, µ, δ

+′
)

S (b⊥, µ, δ+
′ , δ−)

ψ
(
x, b⊥, µ, δ

−′
)

S (b⊥, µ, δ+, δ−
′)
S
(
b⊥, µ, δ

+, δ−
)
, (145)

noticing the manifest cancellation of all the rapidity regulators in all the WF
amplitudes and the soft functions.

Let us consider a one-loop example. The incoming hadron state consists
of a free quark with momentum x0P+ and a free anti-quark with momentum
x̄0P+. Similarly, the outgoing state consists of a pair of free quark and anti-
quark with momentum x′0P

′−, x̄′0P
′−, respectively. The spin projection

operator for the incoming state is proportional to γ5γ− and for the out-going
state is proportional to γ5γ+. The tree-level form factor is normalized to
1. At the one-loop level, the pseudo-scalar form factor with vector currents
Γ = γµ, Γ ′ = γµ reads

F
(
b⊥,P,P ′, µ

)
= 1 +

αsCF

2π
F (1)

(
b⊥, Q

2, Q̄2, µ2
)
, (146)

where Q2 = 2x0x
′
0P+P ′−, Q̄2 = 2x̄0x̄

′
0P+P ′−, and

F (1)
(
b⊥, Q

2, Q̄2, µ2
)
= −7 +

(
−1

2
ln2 b2⊥Q

2 +
3

2
ln b2⊥Q

2 +
(
Q→ Q̄

))
.

(147)
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This result can be obtained from the one-loop DY structure function [67] us-
ing the substitution ln2(−Q2b2⊥) → 1

2 ln
2Q2b2⊥+ln2 Q̄2b2⊥ and ln(−Q2b2⊥) →

1
2 lnQ

2b2⊥ + ln Q̄2b2⊥. Similar to the TMD factorization for the SIDIS and
DY processes, one should also notice that the hard kernel H1(Q

2, Q̄2, µ2)
can be obtained from that of the spacelike Sudakov form factor

H1

(
Q2, Q̄2, µ2

)
= HSud

(
−Q2

)
HSud

(
−Q̄2

)
, (148)

where HSud(−Q2) is given in Ref. [13]. At the one-loop level, we then obtain

H1

(
Q2, Q̄2, µ2

)
= 1 +

αs

4π

(
−16 +

π2

3
+ 3LQ + 3LQ̄ − L2

Q − L2
Q̄

)
,

where LQ = ln Q2

µ2
and LQ̄ = Q̄2

µ2
.

Now we construct the Euclidean version of the collinear contributions,
left only with the intrinsic soft function and hard cores. We define the
quasi-WF, similar to the quasi-TMDPDF as

ψ̃
(
x, b⊥, µ, ζ, ζ̄

)
=

∫
dλ

4π
e−ixλ

×
⟨0|ψ̄

(
zẑ/2 + b⃗⊥

)
Γ̃ Wz

(
zẑ/2 + b⃗⊥;−L

)
ψ (−zẑ/2) |P⟩√

ZE(2L, b⊥)
, (149)

where Wz(zẑ/2 + b⃗⊥;−L) is a spacelike gauge link staple pointing to −z
direction. Similar to the quasi-TMDPDF, we can factorize it using quantities
defined in the on-lightcone rapidity scheme,

ψ̃
(
x, b⊥, µ, ζz, ζ̄z

)
= H2

(
ζz
µ2
,
ζ̄z
µ2

)
ψ(x, b⊥, µ, δ

−)

S(b⊥, µ, δ+, δ−)
S
(
b⊥, µ, δ

+
)
. (150)

This factorization is the result of applying a similar leading-region analysis
to the quasi-WF. One should notice that we have chosen the +∞ version
of the quasi-WF where the gauge links along the z direction are point-
ing to −L instead of +L. It simply relates to the +L through a complex
conjugation. The ψ(x,b⊥,µ,δ

−)
S(b⊥,µ,δ+,δ−)

resums all the collinear divergences, while
the “half lightcone half off-lightcone” soft function S(b⊥, µ, δ

+) is the on-
lightcone version of S(b⊥, µ, Y, 0) where one of the off-lightcone directions is
along ẑ. It re-sums the soft divergences of the quasi-WF. The soft functions
S(b⊥, µ, δ

+, δ−) and S(b⊥, µ, δ
+) subtract away the regulator dependencies

introduced in the bared LFWFs. The overall combination on the right-hand
side of Eq. (150) is rapidity-regularization-scheme-independent. One needs
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= ×

Fig. 26. A schematic depiction of the factorization formula of Eq. (150).

to pay attention to the gauge link directions again. Similar to the case of the
form factor, we can choose all the gauge links along the incoming collinear
direction to be future-pointing. See Fig. 26 for a depiction of Eq. (150).

Combining together Eq. (145) and Eq. (150) and using the relation ζζ ′ =
ζzζ

′
z, one notices that all the wave functions and the Collins–Soper kernel

contributions can be removed, left with the intrinsic soft function

SI(b⊥, µ) =
F (b⊥,P,P ′, µ)∫

dx dx′H (x, x′) ψ̃† (x′, b⊥) ψ̃(x, b⊥)
, (151)

where the full expressions for the wave functions read ψ̃†(x′, b⊥) = ψ̃†(x′, b⊥,

µ, ζ ′z, ζ̄
′
z), ψ̃(x, b⊥) = ψ̃(x, b⊥, µ, ζz, ζ̄z), and the matching kernel is given by

H
(
x, x′

)
= H

(
ζz, ζ

′
z, ζ̄z, ζ̄

′
z, µ

2
)
=

H1

(
Q2, Q̄2, µ2

)
H2

(
ζz/µ2, ζ̄z/µ2

)
H2

(
ζ ′z/µ

2, ζ̄ ′z/µ
2
) ,
(152)

where Q2 =
√
ζzζ ′z and Q̄2 =

√
ζ̄z ζ̄ ′z.

Based on the one-loop results for the form factor, the quasi-WF, and the
intrinsic soft function, the one-loop matching kernel for the vector current
can be extracted as

H
(
ζz, ζ

′
z, ζ̄z, ζ̄

′
z, µ

2
)

= 1 +
αsCF

4π

(
−8 + ln2

√
ζz√
ζ ′z

+ ln

√
ζzζ ′z
µ2

+
(
ζ → ζ̄

))

+
αsCF

2
i ln

√
ζz ζ̄z√
ζ ′z ζ̄

′
z

. (153)

Here, we briefly comment on the end-point problem. As x ∼ 1, the hard
kernel diverge logarithmically near the end points as 1 + αs ln

2 x, but the
quasi-WF decay at large or small x linearly, thus the end-point regions
behave as x ln2 x, which is free from those problems for the kT factorization
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for electromagnetic form factor [68]. Moreover, we can fix the z-component
momentum transfer at each of the vertexes to be Pz, which indicates that
x+ x′ = 1. In this case, the end-point behavior is improved to x2 ln2 x.

Finally, we should point out that Eq. (151) can be rewritten in the form
of

F
(
b⊥,P,P ′, µ

)
= SI(b⊥, µ)

∫
dxdx′H

(
x, x′

)
ψ̃† (x′, b⊥) ψ̃(x, b⊥) , (154)

which can be regarded as the gauge-invariant completion of the axial-gauge
factorization [1].

Finally, we make a comment that combining the intrinsic soft function
and the quasi-TMDPDF, one can effectively factorized the DY cross section
in a manifestly regularization-independent fashion

σ =

∫
dxA dxB d2b⊥e

iQ⃗⊥ ·⃗b⊥ σ̂
(
xA, xB, Q

2, µ
)

×f̃ (xA, b⊥, µ, ζA) f̃ (xB, b⊥, µ, ζB)SI(b⊥, µ) . (155)

This can be regarded as the gauge-invariant completion of the axial-gauge
factorization proposed in [1].

6. Discussion and conclusion

We should notice, however, that there are some issues not addressed in
the paper. First, we did not address the issue regarding renormalization
and matching for practical lattice calculations. They will be provided in
a separate publication. Second, we did not study the polarized and gluon
TMDPDFs. Third, we did not carefully discussed the analyticity property in
the double time-ordering case, and we are not clear at this moment whether
the heavy-quark TMDPDF and fragmentation functions are equal to all or-
ders in the perturbation theory. We should also mention that all the proofs
in the paper, except the ones for the analyticity, follow the typical rigorous
standards in the TMD factorization literature. To promote all these “phys-
ical proofs” to fully mathematically consistent proofs at the level of those
works for UV renormalization remains to be an important but difficult task
since one is forced to define and study the rather singular Feynman integrals
directly in Minkowski space and develop a rigorous multi-scale analysis which
allows simultaneous decomposition of the longitudinal and transverse phase
space. A study of these issues is beyond the scope of the paper.

The TMDPDFs are also crucial for understanding the small-x physics.
Small-x or long wavelength gluons intercept the Lorentz-contracted pan-
cake composed of active partons at transverse area ∆S ≈ 1/k⃗

2

⊥. The color
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neutrality of the hadron highly suppresses the fluctuations with ∆S com-
parable to the hadron size, while for small ∆S, the gluon can still probe
the local color imbalance that is less suppressed. Therefore, it is natural
that small-x gluons tend to concentrate at large k⊥ [69]. At the quantum
level, the fast-moving color sources tend to emit soft gluons, which in turn
split into more and more soft gluons at smaller and smaller x. This leads
to the BFKL or the BK evolution equation which controls the evolution of
the soft-gluon population with respect to x and naturally involves the trans-
verse momentum [70–73]. One of the major conjectures of small-x physics is
that at sufficiently large rapidity or small-x, the intrinsic k⊥ dependency of
the hadron shifts towards the perturbative saturation scale Qs. To achieve
a good understanding of this deep interplay between the longitudinal and
transverse degrees of freedom, we need a good understanding of the TMD
parton densities [74].

If we generalize the TMDPDFs to include the impact parameter depen-
dence, we can further define the Wigner function, the parton orbital angular
momentum distributions, etc. [75, 76]. Therefore, the TMDPDFs allow for
a more complete and refined 3-D description (or tomography) of the hadron
structure [77, 78] rather than the simple 1-D picture offered by the collinear
PDFs. The 3-D tomography of hadrons is also one of the major goals of EIC
physics for the next several decades.

In conclusion, we have made a careful study of the factorization property
for the lattice calculable quasi-TMDPDFs by showing that they match the
physical TMDPDF through a factorization formula in the lightcone limit.
We carefully studied the properties of the off-lightcone soft functions and
have shown that the reduced soft functions defined in various ways are indeed
equivalent. We also studied their analyticity and universality properties. We
have also shown that the intrinsic soft function can be obtained from the
light-meson form factor and quasi-TMDWFs. Therefore, all the gaps in [40,
41] have been filled, and the proposed methods for the lattice calculation of
TMD parton densities are justified at the theoretical level.

This is an extended version of the lecture presented at the 61st Cracow
School of Theoretical Physics on the Electron–Ion Collider Physics, Septem-
ber 20–24, 2022, on-line, based on results obtained in collaboration with
Prof. Xiangdong Ji. More detailed and refined analysis will be published
somewhere else. We thank Stefan Meinel, Peng Sun, Wei Wang, Yi-Bo Yang,
Feng Yuan, and Yong Zhao for valuable discussions. This work is supported
partially by the U.S. DOE grant DE-FG02-93ER-40762, and by the Priority
Research Area SciMat under the program Excellence Initiative — Research
University at the Jagiellonian University in Kraków.
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Appendix A

Analyticity of gauge links and HQET

It is well-known that the gauge link can be identified as a heavy quark
propagator in HQET. First, we start from a segment of gauge link. Let us
consider the correlation function

Gv(ξ) = ⟨0|ψ̄(ξ)Wv(ξ, 0)ψ(0)|0⟩ , (A.1)

where v = (v0, v⃗ ) is the unit vector pointing from 0 to ξ, and the gauge link
is defined by

Wv(ξ, 0) = P exp

−ig |ξ|∫
0

dλv ·A(λv)

 . (A.2)

The gauge link can be written in terms of auxiliary field [79, 80]

ψ̄(ξ)Wv(ξ, 0)ψ(0) → J̄(ξ)J(0) , (A.3)

where J(x) = Q̄v(x)ψ(x) is the heavy-to-light quark current. Qv is the
auxiliary field with the Lagrangian

Laux = Q̄v(iv ·D)Qv . (A.4)

The propagator for Qv can be written as〈
Qv(x)Q̄(0)

〉
= ⟨x| 1

v ·D |0⟩ =Wv(x, 0)δ
3
(
v0x⃗− x0v⃗

)
θ(±v · x) (A.5)

which is a segment of gauge link along the v direction from 0 to x up to
an overall normalization factor. If v is timelike (v2 > 0 and plus sign in
θ-function), then Qv can be identified as the standard heavy-quark field
in HQET. On the other hand, if v is spacelike (v2 < 0 and minus sign in
θ-function), the auxiliary field cannot be interpreted directly as physical
modes propagating in the real time. However, based on analytic property
and Lorentz invariance, they can be interpreted as a heavy-quark propagat-
ing in imaginary time.

One can show that with some assumptions, we can analytically con-
tinue G(ξ) with timelike ξ into Euclidean space. Without loss of gener-
ality, we can consider ξ = tnt with v = nt = (1, 0, 0⃗⊥) in (t, z, ⊥⃗) coor-
dinate for all timelike ξ since we can boost the latter to the former one.
We can denote Gv(ξ) = Gnt(tnt) as G(t). In the heavy-quark formal-
ism, one can insert a complete set of heavy–light meson state |n⟩ and write
G(t) = ⟨0|J̄(t)J(0)|0⟩ as

G(t) =
∑
n

⟨0|J̄(0)|n⟩⟨n|J(0)|0⟩ e−iEnt =

∫
dEρ(E) e−iEt , (A.6)
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where ρ(E) is the spectral function, and we assume that ρ(E) is not too sin-
gular to perform the Fourier transformation and the spectrum E is bounded
from below. Furthermore, the UV regulator also needs to preserve the above
properties. According to the Paley–Wiener theorem [81], one can analyti-
cally continue t → ζ = x + iy into the lower half-plane y < 0. Thus,
we define the y-axis in the lower half-plane, ζ = −iτ , to be the Euclidean
time. The corresponding G(−iτ) is the Euclidean version of the correla-
tion function. After the analytic continuation into the Euclidean time, the
original gauge link along the real time direction then becomes a segment of
Euclidean gauge link along the imaginary time direction. If the Euclidean
theory preserves the invariance under (τ, z) → (z, τ) (rotation and time
reversal), one obtains the equality between G(−iτ) and the spacelike cor-
relation function Gnz(τnz) where the gauge link is along the z direction
with unit vector nz = (0, 1, 0⃗⊥). The above argument can be generalized to
generic v = γ(1, β, 0⃗⊥) in Refs. [82, 83].

We demonstrate the above argument in the dimensional regularization
scheme (d = 4 − 2ϵ). One can integrate out k0 first and impose the DR
on the transverse direction. This results in the time-ordered perturbation
theory in the real time for G(t). Denoting the Fourier variable conjugate to
t as E, a generic term in the time-ordered perturbation theory in the real
time then reads

G(t) ∼
∫ dE dµ

(
ϵ, k⃗
)

2π
e−iEtD

(
ϵ, k⃗
) N∏
i=1

−i
E − Ei

(
k⃗
)
+ i0

, (A.7)

where dµ(ϵ, k⃗) is the phase space measure of the intermediate states with
three momenta k⃗. D(ϵ, k⃗) is the generic numerator of the integrand. Ei > 0
is the total energy of the ith intermediate state. It is clear to see that we
can perform the Wick rotation t → −iτ and E → iEτ on Eq. (A.7). The
result is exactly the imaginary time version G(−iτ)

∫ dEτ dµ
(
ϵ, k⃗
)

2π
e−iEτ τD

(
ϵ, k⃗
) N∏
i=1

1

iEτ − Ei

(
k⃗
) ∼ G(−iτ) . (A.8)

Next, we show that the anomalous dimensions of timelike [G(t)] and space-
like [Gnz(τnz)] correlation functions are equal. The anomalous dimension of
G(t) can also be considered as an analytic function in t→ ζ = x+ iy. Since
the anomalous dimension is constant at ζ = −iτ , it is constant everywhere
in ζ. Thus, the anomalous dimensions of G(t) and G(−iτ) are the same. We
also notice that for the perturbation theory in the Euclidean space, before
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integrating out the time component kτ in G(−iτ), the Feynman integrand
in the Euclidean space is invariant under (τ, z) → (z, τ). This leads to
G(−iτ) = Gnz(τnz). Consequently the anomalous dimensions of timelike
[G(t)] and spacelike [Gnz(τnz)] correlation functions are equal. This is ar-
gued and directly verified to the two-loop level in Ref. [84] based on explicit
parameterization of the Feynman integrals. On the contrary, our argument
is a consequence of a general analyticity property of QFT.

For another example, one can also consider the vacuum expectation value
of a gauge-link along the time-like direction v = (1, 0, 0, 0) in a gauge pre-
serving the Lorentz symmetry

F (t) =
1

Nc
Tr⟨0|Pe−ig

∫ t
0 dsAt(s)|0⟩ . (A.9)

Based on similar assumptions, F (t) can be analytically continued into the
lower half-plane, t → ζ = x + iy with y < 0. For z = −iτ , F (−iτ) is then
defined to be the Euclidean gauge link along the imaginary time direction.
The Lorentz invariance of the original theory then leads to Euclidean in-
variance which indicates that F (−iτ) and a segment of spacelike gauge link
along the z direction with the total length τ are equivalent.

Appendix B

Non-Abelian eikonal exponentiation

First, we briefly review the replica method to prove the exponentiation
theorem. Let us consider an SU(N)n gauge theory with A =

⊕n
i=1Ai,

where i denote n copies of Yang–Mills fields with no interaction between
each other. By definition, the VEV of the Wilson loop is

W (C,A) =W (C, A)n = 1 + n lnW (C, A) +O
(
n2
)
. (B.1)

On the other hand, the perturbative expansion for W (C,A) consists of iden-
tical diagrams and momentum integrals as those for W (C, A). The only dif-
ference is that every gauge field now carries an extra label i ranging from 1 to
n, and the results of the color trace will depend on the arrangement of these
extra labels along the contour. Summing over all possible arrangements for
each diagram, the color trace becomes a polynomial in n. Comparing with
the expansion in Eq. (B.1), we obtain lnW (C, A) from the linear term of n.
One can show that only web diagrams contain contributions linear in n using
diagrammatic analysis. Therefore, W (C, A) can be exponentiated.

Next, we consider the partial exponentiation of a gauge link in correlation
function of bilinear operators, see Eq. (46),

F
(
C, x, x′

)
= Tr

〈
O(x)W

(
C, x′ → x

)
O′ (x′)〉 . (B.2)



4-A2.64 Y. Liu

The replica method cannot be used in this case due to the presence of other
operators. To show the partial exponentiation, we use the diagrammatic
method proposed in Refs. [54, 60]. The color factor C(G) of each diagram G
can be written as a sum of color factors C(d), where d belongs to a set of
decompositions dec(G)

C(G) =
∑

d∈dec(G)

C(d) . (B.3)

Each decomposition of the color factor of G consists of an operator-link 2PI
vertex w0 and several webs wi, where i = 1 ∼ n(d) with n(d) being a number
of webs, see Fig. 27 for an example. The color factor for each decomposition
is equal to the product of color factors

C(d) =

n(d)∏
i=0

C(wi) , (B.4)

where C(w0) is the modified color factor of operator-link 2PI vertex, and
C(wi ̸=0)s are the standard “maximally non-Abelian” color factors. In gen-
eral, C(w0) is not “maximally non-Abelian” because the gluon attached to
the operators cannot be disentangled.

To prove the partial exponentiation, we need the generalized “eikonal
identity” ∑

G∈Gd

I(G) =
1

Sd

n(d)∏
i=0

I(wi) , (B.5)

where Gd is a set of diagrams whose decomposition set contains d, I(G)
denotes the Feynman integral of diagram G, and “symmetry factor”

Sd =
∏
i

ni! , (B.6)

where ni counts the multiplicity of identical web diagrams for a given d. For
a Wilson loop, the product runs from 1 to n(d) and Eq. (B.5) reduces to
the standard eikonal identity [60]. To include operator-link 2PI vertex w0,
we must fix the diagram within the vertex and the proof is similar to the
standard one.

With the above ingredient, we start to prove partial exponentiation

F (C, x, x′) =
∑
G

C(G)I(G) =
∑
G

∑
d∈dec(G)

n(d)∏
i=0

C(wi)I(G)

=
∑
d

∑
G∈Gd

I(G)

n(d)∏
i=0

C(wi) =
∑
d

1

Sd

n(d)∏
i=0

C(wi)I(wi) . (B.7)
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(a) An example

+ +

d1 d2 d3

+ +

d4 d5

(b) Decompositions

Fig. 27. Decomposition of color factors: In example (a), there are five different
decompositions [n(d) = 5], shown in (b). The grey blob is the operator-link 2PI
vertex w0, and the circled double line represents an arbitrary contour of the gauge
link. The decomposition d1 contains two webs and w0; d2, d3, and d4 each contains
one web and w0; d5 belongs to w0.

We used Eq. (B.5) to obtain the last line. Next, we change the sum of
decompositions into the sum over webs by fixing w0

F
(
C, x, x′

)
=
∑
w0

C(w0)I(w0)
∑
d′

1

Sd′

n(d′)∏
i=1

C(wi)I(wi) , (B.8)

where d′ is the decomposition of the gauge link part without the operator-
link 2PI vertex. Following the same argument in Ref. [60], we have the
exponentiation ∑

d′

1

Sd′

n(d′)∏
i=1

C(wi)I(wi) = eΦ(C) , (B.9)

which is similar to exponentiation of a vacuum bubble. By expressing the
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operator-link 2PI vertex as

Tr
〈
O(x)W

(
C, x′ → x

)
O′ (x′)〉

2PI
=
∑
w0

C(w0)I(w0) (B.10)

and combining Eqs. (B.8) and (B.9), the proof of Eq. (47) is concluded.

Appendix C

Landau equation

In this appendix, we briefly introduce the Landau equation that deter-
mines the IR divergences of a Feynman integral. The basic idea is that the
Feynman integrand

N(k, x)[∑
i xiDi(k) + i0

]N (C.1)

is analytic in the loop momenta k and Feynman parameters xi. The singular-
ity of the integrand is caused by

∑
i xiDi(k) = 0. If the contour of the inte-

gration can be chosen in such a way that the singularities at
∑

i xiDi(k) = 0
can be avoided completely, then the integral is called IR safe. If the inte-
gration contour cannot be deformed away from the singularities, then the
singularities of the integral are “pinched.” However, those pinched singular-
ities may not lead to IR divergences due to the power suppression.

To determine the possible pinching solutions, we Taylor expand the de-
nominator

∑
i xiDi(k) around a singularity at xi and k. It is sufficient to

assume that xis are not at the boundary of the integration domain, namely
xi ̸= 0, 1. Indeed, xi = 0 indicates that the propagator corresponding to xi
does not participate in the pinching and xi = 1 indicates that it is the only
propagator that participates in the pinching. In both cases, one can remove
all the propagators that do not participate in the pinching and perform the
analysis in the remaining propagators. Notice that if there are linear terms
in the expansion, then the integral is not pinched since in such cases, the
integral near the singularity is of the form of

1

(aizi + i0)N
, (C.2)

where zis are complex variables, which are linear combinations of xi and k,
and ais are generic constants. Clearly such an integral is not pinched. How-
ever, if the linear terms all vanishe, then one encounters integrals of the form
of

1(
aiz2i + i0

)N , (C.3)
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which are generally pinched. Therefore, the coefficient of the linear term in
the Taylor expansion of the denominator

∑
i xiDi(k) in powers of xi and k

must vanish. We obtain the pinching corresponding to solutions to the
equations

Di(k) = 0 , (C.4)∑
i

xi∂kDi(k) = 0 . (C.5)

The second one is called the Landau equation.
If all the Dis are massless relativistic propagators, Di=p

2
i + i0, the prop-

agators can be classified as collinear or soft. Any pµi ̸=0 is called a collinear
propagator, while pµi =0 are called soft propagators. All the soft propagators
decouple from the Landau equation since ∂kp2i ∝ pi = 0. The Landau equa-
tion applies to the collinear propagators and can be viewed as a constraint
on the diagrammatic structure of all possible collinear divergences.

One can show that the condition has a clear physical meaning [11]: All
the collinear propagators can be identified as classical trajectories of parti-
cles traveling with on-shell four-momenta pµi s in Minkowski space. In the
constraint equation, xi∂kDi(k) ∝ xip

µ
i can be interpreted as a total displace-

ment of the collinear particle along a given propagator before joining with
other particles at the same spacetime point. The Feynman parameter xi can
be viewed as the affine/proper time for the massless/massive particle. The
Landau equation then describes the condition that the consecutive displace-
ments must add up to zero along any closed momentum loop [85]. On the
other hand, there are no constraints on the soft propagators.

As an example, let us consider the diagram in Fig. 28. The momenta
for incoming and outgoing collinear particles are p and p′, respectively. The
momentum of the virtual gluon is k. Using the Feynman parametrization,

p′

p

k
p− k

p

p− k
k

t

Fig. 28. Examples of an isolated hard kernel.
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one has the following form of the denominator:

xk2 + y(p− k)2 + (1− x− y)
(
p′ − k

)2
. (C.6)

The Landau equation then reads

xk2 + y(p− k)2 + (1− x− y)
(
p′ − k

)2
= 0 , (C.7)

k2 −
(
p′ − k

)2
= 0 , (C.8)

(p− k)2 −
(
p′ − k

)2
= 0 , (C.9)

xk − y(p− k)− (1− x− y)
(
p′ − k

)
= 0 . (C.10)

The first three equations require that all the propagators must be zero if
x, y, 1− x− y are all non-vanishing

k2 = (p− k)2 =
(
p′ − k

)2
= 0 . (C.11)

However, since p and p′ are non-parallel, in this case, the fourth equation
cannot support non-trivial solutions. Thus either x, y or 1 − x − y must
vanish. If x = 0, then the equation reads

(p− k)2 =
(
p′ − k

)2
= 0 , (C.12)

y(p− k) + (1− y)
(
p′ − k

)
= 0 . (C.13)

This can only be solved by y = 0, k = p2 or y = 1, k = p1. The two cases
correspond to the quark with momenta p − k, p′ − k being soft. If x ̸= 0,
then y or 1− x− y must be zero. In the former case, we have

xk = (1− x)
(
p′ − k

)
. (C.14)

This corresponds to the collinear to p′ region. In the latter case, we have

xk = (1− x)(p− k) . (C.15)

This corresponds to collinear to p region. As shown in Fig. 28, xk and
(1−x)(p− k) can be interpreted as the displacements of the collinear gluon
and quarks. The propagator p2 − k is hard in this region, corresponding to
the crossed vertex in the figure. For both of these two collinear regions, the
end-point x = 1 corresponds to the region where the gluon with momenta k
becomes soft or k = 0.

With the presence of gauge link propagators, namely Di = ni ·k for some
is, the Landau equation can be generalized straightforwardly. If the gauge-
link participates in the pinching, one receives contributions proportional
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to xi∂kni · k = xini in the Landau equation. These can be identified as
displacements along the gauge-link directions. Combining with collinear
particles, the Landau equation indicates that the collinear propagators and
the pinched gauge-link propagators can be realized in Minkowski space as
well. The pinched gauge-link propagators correspond to displacements along
the gauge-link directions which can be connected to the same end-point of
the collinear particle trajectory. The total displacement along any closed
contour must vanish, as in the case without the gauge link.

As an example, let us consider the diagram in Fig. 29. The gauge-link
is in n direction and the external momentum p is collinear. Similar to the
case without gauge-link, the Landau equation requires

xk − y(p− k)− (1− x− y)n = 0 . (C.16)

If n2 ̸= 0, then the non-trivial solution only supports 1 − x − y = 0, which
leads to the standard collinear to p and soft regions. If n2 = 0 but n · p ̸= 0,
then the Landau equation supports the following solution:

k2 = 0 , (C.17)
xk = (1− x)n . (C.18)

In this case, the gluon is collinear to the lightlike gauge-link. This type of
solution corresponds exactly to the rapidity divergences.

p

p− k

p

p− k
k

k
t

Fig. 29. Examples of an isolated hard kernel.

For quasi-TMDPDFs, there is only one collinear direction, then the cor-
responding displacement can only be timelike, while for the gauge links they
are in z direction. They must add up to zero separately. Therefore, the Lan-
dau equation for the collinear propagators and gauge links decouples. For
the collinear propagators, the Landau equation is completely identical to the
case without any gauge links. Consequently, two collinear propagators are
viewed as joining at the same spacetime points if they are both connected
to the same gauge link. This is the reason why the hard kernel is contracted
to the quark-link vertex. Furthermore, by analyzing the Landau equation
for the gauge-link propagators, one can show that no nonzero solution of
xi is supported unless there is dipolar two-to-two amplitude insertion, in
which the nonzero solution is nothing but the pinch-pole singularity for the
staple-shaped gauge links.
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Appendix D

IR safety for timelike Scut

For a generic off-lightcone soft function, there are two types of IR diver-
gences: one is the pinch-pole singularity and the other is the ultra-soft mode
(the Wilson line self-energy has been subtracted by the vacuum expectation
value of Wilson loop). Both IR divergences behave as power divergences.
However, for a timelike soft function (v1 and v2 are both timelike) with dou-
ble time-ordering, we show that it is free from IR divergences. We first show
the heuristic argument made in Ref. [1] and point out the loophole caused
by linear divergence. We then present a proper treatment on the pinch-pole
singularity and the ultra-soft mode to prove that the timelike Scut is indeed
IR safe.

Following Ref. [1], we consider a soft function contains UV and IR regu-
lators, ΛUV and ΛIR. Since the logarithmic IR divergences are independent
of the b⊥ and the limit ΛIR → ∞ commutes with the ΛUV → ∞ limit, we can
first fix the UV regulator and take the b⊥ → 0 limit, then the soft function
becomes unity. Then we can drop the IR regulator, then perform the UV
renormalization. Therefore, the IR divergence vanishes for the soft function.
Notice that this argument does not work with the presence of linear IR di-
vergence, since in this case, the UV and IR divergences can mix with each
other in the form of ΛUV/ΛIR and the order of removing the IR and UV
regulators does not commute. Hence the breakdown of the argument with
the presence of the pinch-pole singularity or ultra-soft mode.

Before showing the pinch-pole singularity or ultra-soft mode vanishes
in timelike Scut, we analyze the structure of the web diagram of the soft
function. If we take the b⊥ → 0 limit before ΛUV and ΛIR, the soft function
becomes unity and the contribution of the web diagram is zero. For example,
if we use DR (d = 4− 2ϵ) as UV regulator and the length of the gauge link
staple L as IR regulator, the web diagram must be of the form of∫

d2−2ϵk⊥
(2π)2−2ϵ

Φ(k⊥, µ, L, ϵ)
(
eik⊥·b⊥ − 1

)
, (D.1)

where Φ(k⊥, µ, L, ϵ) is the summation over all real webs at a finite transverse
momentum. The above equation also indicates the cancellation between
real and virtual diagrams. We will show that Φ(k⊥, µ, L, ϵ) is IR safe and
the small-k⊥ behavior of Φ is of the form of 1/k2+nϵ⊥ . Therefore, due to
cancellation between real and virtual contributions in the small-k⊥ region,
the resulting integral is IR safe.

We show that there is no pinch-pole singularity in timelike Scut before
the Wilson loop subtraction. It suffices to consider the self-interaction webs
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for the gauge link staple, since it is straightforward to see that there is no
pinching for the 2PI vertex part. For the self-interactions diagrams, there are
again those intermediate gauge link pairs between the dipolar 2PI amplitudes
insertions that generate the pinch, see Fig. 7. The propagator of a pair of
such gauge links is

1

k · v + i0

1

k · v − i0
. (D.2)

Based on the momentum conservation, k equals the total on-shell momentum
flowing from one side of the gauge link crossing the cut to another side of
the gauge link

kµ =
∑
i∈cut

kµi , (D.3)

kµi =

(√
k⃗2i +m2

i , k⃗i

)
, (D.4)

where mis are the masses of quarks and gluons. Therefore, k is always
timelike and within the forward lightcone, thus k · v > 0 if any of the mis is
nonzero. In such case, i0 prescription in the gauge link propagator can be
dropped and there is no pinch-pole singularity. If all mi = 0, then k · v = 0

when all the k⃗i = 0. In such a case, the gauge link can produce standard
infrared divergences which are not regulated by i0. This i0 is important only
if k · v can approach zero from both positive and negative sides. Therefore,
in this case, the i0 prescription can still be neglected.

We then consider the 2PI vertex diagrams. To study the IR divergence, it
suffices to treat k⊥ as a hard scale and do power-counting correspondingly.
Let us denote the hard kernel containing the vertex as HV. Due to the
absence of pinching, the infrared gauge links in the standard double-line
representation can be counted as a soft particle with dimension 3

2 , therefore
the power-counting reads

λ
3
2
N(SHV,

3
2)+N(SHV,1)−6

∏
i

λ
3
2
N(SHi,

3
2)+N(SHi,1)−4 . (D.5)

The disconnected hard region can then be absorbed into soft regions. The
leading region then reads

N
(
SHV,

3
2

)
= 4 , (D.6)

with all other connection numbers equal zero. Thus, the IR divergences are
caused by soft gauge links inserted into the central hard core in which the
k⊥ is flowing across the cut. The relevant diagrammatic structure can then
be stated as follows.



4-A2.72 Y. Liu

We define a 4PI “connected” vertex to be a vertex web that cannot be
cut into two disconnected pieces by cutting at 4 gauge links, 2 for each side.
Therefore, a 4PI diagram is free from IR divergence. A generic web diagram
can then be decomposed into a composition of N 4PI webs, between the 4PI
webs there can be 2-to-2 link amplitudes insertions. Each such insertion is
counted as a 4PI web as well. The leading region then can be labeled Ri, in
which there are i hard 4PI webs inside and N− i soft webs outside. The soft

HV

S1

S1

k1

k2

k3
k4

Fig. 30. A diagram with 2 4PI webs. The central one containing the vertex is hard,
and the outside one is soft. To obtain the leading IR divergence, one can neglect
k1 to k4 in HV.

divergence in the region Ri can be approximated by neglecting all the soft
momenta inside the hard webs, provided there is no power-IR divergence,
see Fig. 30 for example. Then the leading IR divergences in Ri are contained
in soft functions evaluated at b⊥ = 0, but with N− i 4PI webs and arbitrary
color structures at the vertex. Assuming up to N−1 4PI webs, all these soft
functions are free from the power-IR divergence, and their vertex part can
be written in the form of Eq. (D.1) with finite Φci in which ci denotes the
color structure at the vertex. There is a finite number of linear independent
color structures. In each of the region Ri with i > 0, the IR divergences are
contained in the combination∫

d2−2ϵk⊥
(2π)2−2ϵ

Φci(k⊥, µ, L, ϵ)(1− 1) (D.7)

which vanish exactly. Notice that the leading power approximation can only
be performed if there are no power-IR divergences, which is true given our
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assumption. Therefore, in region Ri there are no IR divergences. Since there
must be at least a hard region, i ̸= 0, the real vertex diagram Φ(k⊥) for the
original soft function at finite k⊥ is, therefore, IR finite. Moreover, we can
put an arbitrary color factor at the vertexes without changing the argument.
The IR finiteness for N 4PI webs is, therefore, established and by induction,
it works to N + 1 webs as well.

Appendix E

Alternative proof of rapidity divergence factorization

In this appendix, we provide a different approach to the rapidity fac-
torization. We hope that the treatment here illustrates the key points in
a transparent way. We choose to work in the axial gauge n · A = 0. Sim-
ilar to the arguments in [1], we choose n = ẑ + n⃗⊥, where n⃗⊥ is a non-
vanishing vector in the transverse plane. We choose the boundary condition
Aµ(n · x = +∞) = 0, and we can choose either the single or mixed time-
ordering with spacelike off-lightcone vectors for the SIDIS kinematics. In
this case, the transverse gauge links in the infinity can be neglected. No-
tice that in this case, the hyperbolic angle reads θ = Y + Y ′ + iπ. The
so-called pinch-pole singularities are not relevant to the rapidity divergence
and can be factorized. One can also choose a finite box in n direction or
include transverse gauge links to regulate them. We separate the webs for
the off-lightcone soft function into two types: the self-interaction webs for
the staples and the 2PI vertex webs connecting the two staples. We need to
show that the vertex webs are free from rapidity divergences to all orders.
Then, the rapidity divergences are isolated to the self-interaction webs. De-
note the divergent part of the full webs of the soft function as div1(Y + Y ′)
and those for the self-interaction webs as div2(Y ). We then end up at the
functional equation

div1
(
Y + Y ′) = div2(Y ) + div2

(
Y ′) . (E.1)

This functional relation can only be solved by linear functions in Y . Indeed,
we can choose a large but finite Y0 above which the divergent part is a
continuous function. Then from the functional equation we have

div1(Y ) = div2(Y − Y0) + div2(Y0) . (E.2)

Therefore,

div2
(
YY0+Y

′−Y0+Y0
)
+div2(Y0) = div2(Y −Y0+Y0)+div2

(
Y ′−Y0+Y0

)
.

(E.3)
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Thus, for f(t) = div2(Y0 + t)− div2(Y0), we obtain the equation

f
(
t+ t′

)
= f(t) + f

(
t′
)
. (E.4)

Then we can deduce from it that f(mn ) = m
n f(1) for any positive rational

number m
n > 0, and since the function is continuous, we must have f(t) =

tf(1). This shows the linearity of the divergence. Keeping only the divergent
part, we must have div1(Y ) = div2(Y ) = KY where K is a function of b⊥.
Furthermore, there are no natural hard scales available for the soft function,
thus no Y dependency can be generated from hard regions as well. This
leads to the rapidity factorization.

We now show that the vertex webs are free from rapidity divergences
after summing over diagrams. For this purpose, we need to know the na-
ture of rapidity divergence. We claim that they are collinear divergences for
the lightlike gauge links. Indeed, if one directly puts the gauge links on the
lightcone, then the corresponding Landau equation supports nontrivial solu-
tion of collinear divergences in the lightcone direction. They correspond to
nothing but the rapidity divergences. With a rapidity cutoff being imposed,
the modes generating rapidity divergences may not necessarily be exactly at
the rapidity cutoff, but will remain in the large rapidity region and will be
pushed into infinity as one removes the rapidity regulator. The quantita-
tive behavior of such a process is very sensitive to the detailed form of the
rapidity regulator. But a common lesson is that the rapidity divergence is
the result of lacking a uniform large rapidity limit and can be obtained by
analyzing the leading regions which supports large rapidity modes.

The generic structure of the region is determined by the solution of the
Landau equation and is independent of the regulator. However, to determine
which regions are leading, we need power-counting information, which may
depend on the regulator. For the off-lightcone soft function, the large rapid-
ity modes are simply boosted from the rest frames of the gauge links, there-
fore, the power scounting for the collinear modes reads (e±Y , e∓Y , 1, 1)k⊥.
The soft region as the solution to Landau equation simply corresponds to a
point. But based on the IR safety of the soft functions, the power count-
ing for the soft modes reads (1, 1, 1, 1)k⊥. The soft and collinear modes are
separated in the rapidity space instead of in the k⊥ space. The rapidity
divergence is induced by those modes with rapidity much larger than 1 but
smaller than Y , namely, they are near the border between collinear and soft
regions. Without a collinear region, however, no rapidity divergences can be
generated. Based on the power-counting information, the leading region for
the soft function is shown in Fig. 31. There are two collinear regions and a
soft region. For real diagrams, the k⊥ is of the order of 1/b⊥ and for virtual
diagrams the k⊥ can be up to the UV cutoff. Due to eikonal exponentiation,
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the virtual and real diagrams can be treated separately. There are also two
possible hard regions around each of the gauge link cusps.

S

H

C C

H

Fig. 31. The generic leading region for the off-lightcone soft factor.

In the axial gauge, the structure of the leading region can be further
simplified. Since the power-leading components A± of collinear gluons are
killed by the axial-gauge condition when they are inserted into “hard-parts”,
the two collinear regions cannot talk to each other directly. Thus, the hard
part H is absent in the leading region, and the two collinear regions com-
municate with each other through soft-gluon exchanges. This is shown in
Fig. 32.

CC

S

Fig. 32. The leading region in the axial gauge, the hard kernel H is absent.

To disentangle the two collinear regions, we need to use the standard
soft-to-collinear eikonal approximation to factorize the leading contribution
of soft gluons. This can be justified in the following way. First, the Glauber
region is not a problem since n⊥ ̸= 0. Second, the k⊥s for collinear prop-
agators are required to be at least of the same order as those for the soft
propagators in order to be power-leading. Thus, both in the real and vir-
tual diagrams, we only need to take into account the possibility that a soft
gluon was inserted into a collinear gluon with a comparable or larger k⊥. In
this situation, we are safe to use the eikonal approximation. The result of
applying the Ward identity is shown in Fig. 33.
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CC
S

×

Fig. 33. The leading region in axial gauge after soft factorization.

When restricting to web diagrams, the soft factorization implies that the
collinear contributions cancel between different 2PI vertex web diagrams to
any order in αs. To show this, we adopt the replica trick introduced before.
We first notice that the web diagrams are linear in the replica number n. In
order for the contributions in Fig. 33 to be linear in n, either C or S must be
trivial. If S is trivial, then one is not dealing with vertex webs. Thus, C must
be trivial, which indicates that all the power-leading collinear contributions
in 2PI vertex webs vanish after summing over diagrams. Therefore, no
rapidity divergence can be generated. Due to the absence of a hard region,
no Y dependence can be generated from the hard region as well. One should
notice that for the virtual diagram, the k⊥ can be comparable to the UV
cutoff, but according to our classification, it is still labeled soft.

A more quantitative argument works as follows. One chooses a large Y0,
large N . To a given order n0 in perturbation theory, there are at most n
gluon propagators. We choose N ≫ n with nNY0 ∼ Y + Y ′. Now let us
perform a renormalization group analysis in rapidity spaces and “integrate
out” the large rapidity modes step-by-step. To enforce a clear separation
between different slices in rapidity space, we first split the rapidity spaces
between −NnY0 and NnY0 into N parts

Rk = {Y : (k − 1)nY0 < Y < knY0} . (E.5)

For any Feynman diagram up to the order of n0, we partition the phase
spaces for virtual gluons according to their rapidities. We define a group
to be a connected group of gluons with a maximal number n and with
consecutive rapidity differences no larger than Y0. We call the group is
at rapidity slice k if the average rapidity of the group is within Rk. Then,
between 2 groups there is a minimal rapidity gap Y0. Since there is only n or
less gluons in the diagram, there can be at most n groups. If all the rapidity
reparations are less than Y0, then all the gluons will be within a single group.
We now “integrate out” all the RN groups, left only with contributions from
RN−1 and lower-groups in the vertex webs diagrams. In this step, we need
to control the IR behavior for the RN group, namely we need to show that
for gluons with that rapidity scales no IR divergence will be generated,
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and the typical “power counting” for that group is indeed consistent with
k+k− ∼ k2⊥ ∼ 1/b2⊥. This can be non-trivial, of course. Assuming this can
be done, let us consider the consequence on the RN−1 and lower groups after
the “integrating out”. For this purpose, we need to sum over all the possible
connections between the RN group and the RN−1 groups. We notice that
since there is at least a Y0 rapidity separation between gluons lines belonging
to different groups, the rapidity of kN−1+ kN , where kN and kN−1 are in N
and N − 1 group can be estimated as below, assuming the “SCET II” type
power counting

NnY0 + ln
1± e−Y0

1∓ e−Y0
. (E.6)

For large enough Y0, the second term is suppressed, and the resulting gluon
with momentum kN−1 + kN still leaves a gap between RN−1 and the lower
groups. Therefore, the integrating out process can be approximated in the
following way: we first fix a RN group and consider all the possible connec-
tions between RN−1 and the lower groups. Then, the “insertion” of RN−1

and lower group can be approximated using the standard eikonal approxi-
mation, with the resulting error term of the order of O (e−2Y0) due to the
rapidity gap. Therefore, the integrands factorize due to the Ward identity,
which is valid at integrand level after shifting loop momentum, which is ar-
gued to be possible due to the large rapidity gap. Then, for the vertex web
diagrams, if there are non-trivial RN−1 to RN connections, the contribu-
tion vanishes due to the replica argument as before, thus we end up at the
unmodified contributions with all the gluons within RN−1 or lower

VN = VN,pure + VN−1 +O
(
e−Y0

)
. (E.7)

Here, the VN,pure is the contribution from purely RN group, which is of the
order of O e−NY0 due to the axial gauge condition. Thus, we end up with
the following equation:

VN = O e−NY0 + VN−1 +O e−Y0 . (E.8)

There is a finite number of insertions at any given order, therefore, the
coefficient in front of e−Y0 is only a function of n. We then proceed to the
lower order. For each time where we need to consider insertion of the lower
group into the higher group, the usage of Ward identity results in an error
of the order of O e−Y0 . Thus, by summing over the contributions, we have

|V (NnY0)− V (nY0)| ∼ (N − 1)
(
e−Y0

)
, (E.9)

when N ≫ 1. Let us denote Y ′ = nY0 and Y = NnY0. We then have∣∣V (Y )− V
(
Y ′)∣∣ ∼ (Y − Y ′) e−Y ′/n . (E.10)
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We now show that the large-Y limit of V (Y ) exists. We first show this allows
a sequence∣∣∣V (ek2)− V

(
e(k−1)2

)∣∣∣ ∼ (ek2 − e(k−1)2
)
e−e(k−1)2/n . (E.11)

Thus,∣∣∣∣ limk→∞
V
(
ek

2
)∣∣∣∣ =

∣∣∣V (k0) +
∑

k=k0+1

(
V
(
e(k+1)2

)
− V

(
ek

2
)) ∣∣∣

≤ |V (k0)|+
∑

k=k0+1

(
ek

2− e(k−1)2
)
e−e(k−1)2/n <∞ . (E.12)

Therefore, along tower-exponential sequences such as Y = ek
2 , the large-Y

limit exists. Let us denote the limit as a. Then, we have

|V (Y )− a| ≤
∣∣∣V (Y )− V

(
e[
√
lnY−1]

2)∣∣∣+ ∣∣∣V (e[√lnY−1]
2)

− a
∣∣∣

≤
(
Y − e[

√
lnY−1]

2)
e−e[

√
lnY −1]2/n

+
∣∣∣V (e[√lnY−1]

2)
− a
∣∣∣ , (E.13)

where [x] denotes the integer part of x. Thus, if we choose large enough Y ,
both terms at the right-hand side of the last line can be made arbitrarily
small, thus V (Y ) converge to a.

Therefore, the vertex webs are free from collinear divergences, and all
the collinear divergences are factorized into self-interacting webs for the two
gauge link staples. This leads to the functional equation given before solved
by linear functions in Y . From the arguments above, the rapidity factor-
ization is the consequence of gauge-invariance, the structure of the leading
region for the soft function, and the non-Abelian exponentiation. Without
any one of these, the factorization would not work.

Appendix F

Alternative proof of S = SDY

We now provide two alternative proofs for the equality between
SDY(Y, Y

′, b⊥) and S(Y, Y ′, b⊥), which applies to the arbitrary finite gauge
link lengths as well. We will show that

W
(
−iT1,−iT2, b⊥, µ, v, v′

)
=W

(
T1, T2, b⊥, µ, u, u

′) . (F.1)

We first state a proof based on a variation of the methods shown in the main
text. In the DY-shape soft function, we keep vz1 = vz2 = 1 and analytically
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continue in v01 = −v02 = v0. We keep the staple length in z direction as L.
This defines a function f(z, L), analytic in z but not necessarily in L. It
relates to the f(z) defined in the main text through f(z) = limL→∞ f(z, L).

In the SIDIS-shape soft function, we consider the consecutive increments
in longitudinal directions

∆ff = v0l
(
s− s′

)
t̂+

(
s− s′

)
lẑ , (F.2)

∆fi = v0l
(
s− s′

)
t̂+

(
s+ s′

)
lẑ , (F.3)

∆ii = v0l
(
s− s′

)
t̂−

(
s− s′

)
lẑ , (F.4)

with the s, s′ parameterizing the gauge links in initial and final states. s < 0
denotes the link is in the initial state and s > 0 in the final state. l is the
common “length” in the z direction. Notice that for all the three cases, we
have s−s′ ≥ |s∓s′|. Therefore, we can analytically continue simultaneously
in zl = v0l and l, provided that |ℑ(zl)| > |ℑl| to guarantee the exponential
decay. Let un denote the resulting functions as g(zl, l). It relates to the g(z)
through g(z) = liml→∞ g(zl, l). Notice that this function is analytic in the
second variable including ℑl = 0, as far as ℑ(zl) > ℑl, since there is always
an exponential decay provided by the first variable.

We now inspect f(−iv0, L) and g(−iL,−v0L). One can see that they
are two identical Euclidean Wilson loops related to each other by a rota-
tion, therefore, they are equal for arbitrary v0 > 0. Let us consider the
two analytic functions in z at fixed L in the region |ℜz| < 1, f(z, L) and
g(−iL,−izL). They are equal at z = −iv0, therefore, equal everywhere in
the domain of analyticity due to uniqueness of analytic continuation. Let us
choose β < 1, then the equality indicates

f(β − iϵ, L) = g(−iL,−i(β − iϵ)L) . (F.5)

Taking ϵ→ 0 shows the desired equality.
The second proof is based on the properties of Wightman functions. Let

us denote the Wilson loop for the S as W , and for SDY as WDY. We again
assume that there is a regularization scheme in which the Lorentz invariance
in the longitudinal direction is preserved, and the energy is positive definite.
We choose arbitrary N+M points on the contour for the W according to the
time-ordering and show that the analytically continued version for the gluon
Wightman function for these points contracted with direction vectors equals
a corresponding contribution for the WDY. Then, integrating along the con-
tour shows the equality. For simplicity, one considers points along links
in v and v′ direction, points on the transverse links can be included with-
out changing the argument. For W , one obtains the Wightman functions
v′µ1 . . . v′µM vν1 . . . vνNWµ1,...µM ;ν1,...µN (s

′
iv

′(1− iϵ) + t′ib⊥, sjv(1− iϵ) + tjb⊥),
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where 0 < s′1 < s′2 < . . . s′M < T2 and −T1 < s1 < . . . sN < 0. Now,
the analytic continuation simply means si → −isi and s′i → −is′i. This
analytic continuation is possible due to the fact that the consecutive incre-
ments (si − si−1)v(1 − iϵ), (s′i − s′i−1)v

′(1 − iϵ) and (v′s′1 − vsN )(1 − iϵ)
are all in the forward lightcone, as a result, all s and s′ can be analyti-
cally continued to negative imaginary number by multiplying them by an
overall −i, due to the fact that the Fourier transform of these consecutive
increments are supported in the forward lightcone. After analytic contin-
uations, these Wightman functions are in the natural analyticity domain
called the tube of the form of R4 − iV+, where V+ denote the forward light-
cone. This is nothing but a Paley–Wiener-type result which relates the
support property of the Fourier transform of a distribution f̂(k) to the an-
alyticity of the original distribution f(z). Now we choose the same N +M
points from the contour of WDY, but according to the z-ordering. This
is possible since WDY is insensitive to time-ordering. Then one obtains
n′,µ1 . . . n′,µMnν1 . . . nνNWµ1,...µM ;ν1,...µN (s

′
in

′
iv

′(1 − iϵ) + t′ib⊥, sjn(1 − iϵ) +
tjb⊥) where all parameters s and s′ for W and WDY are in one-to-one cor-
respondence. Then both Wightman functions are in their analytic region,
and all arguments relate with each other through the complex Lorentz trans-
form Λ(t, z) → (it, iz)) since Λ(−iv,−iv′) = (n, n′). Then one needs to use
the “edge of the wedge” theorem. This theorem states that the Wightman
functions in their analytic region called the “extend tube” transform under
complex Lorentz transform in a covariant way. In fact, the extended tube
is constructed exactly through complex-Lorentz transforms from the tubes.
Given the theorem, we have

(−i)v′µ1 . . . (−i)v′µM (−i)vν1 . . . (−i)vνN
×Wν1,...µN

µ1,...µM

(
−is′iv′(1− iϵ) + t′ib⊥,−isjv(1− iϵ) + tjb⊥

)
= n′µ1 . . . n′µMnν1 . . . nνN
×Wν1,...µN

µ1,...µM

(
s′in

′
iv

′(1− iϵ) + t′ib⊥, sjn(1− iϵ) + tjb⊥
)
, (F.6)

and integrating si and s′i from −L1 to 0 or from 0 to L2 leads to the equality.
Note that the theorems mentioned above only rely on the tempered nature
of the Wightman functions, causality (for the “edge of the wedge” theorem),
and support property, but do not require any positivity, thus should also be
valid in a theory with ghost modes. This defines the imaginary time version
for W and finishes the proof of the equality.

We state another proof that avoids the usage of properties of Wightman
functions.
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Appendix G

Gauge invariance of double-time ordering

Naively looking, the gauge invariance of the double time-ordered soft
functions follows immediately from the operator definition. However, as
one knows, in the quantum field theory, the real-time correlation functions
are boundary values of analytic functions with imaginary time components.
The correct ± choices of the imaginary parts are normally associated with
the spacetime picture of the given correlation function. For the single time-
ordered soft function, there is a natural interpretation as heavy-quark pairs
propagating forwardly in time, thus the analyticity, consequently, the ±
choices are the standard ones and there is no issue regarding the gauge
invariance. But for the double time-ordered soft function, the time order-
ings at the two sides of the “cut” are opposite, thus the ± choices should
also differ. This can lead to problems regarding the gauge invariance. For
example, let us consider the “quasi-TMD”-type soft function, and let the
timelike gauge links start at t = −t0 < 0. Then, the −t0 should be viewed
as −t0(1 − i0) on the left-hand side of the cut, but at the right hand side
of the cut, we should choose −t0(1 + i0). This leads to a 2it00 difference,
which can be dangerous.

Appendix H

Analyticity and universality in δ regularization schemes

In this section, we study the analyticity in δ-regulator soft functions.

Single time-ordering

The case of single time-ordering is similar to that of the off-lightcone
scheme. We first define the generalized soft function with δ,δ′ that can be
both imaginary or real

S
(
b⊥, µ, δ, δ

′) = ⟨0|TWn

(⃗
b⊥, δ

′
)
W †
n

(
0,−δ′†

)
Wp(0, δ)W

†
p

(⃗
b⊥,−δ†

)
|0⟩ .
(H.1)

Here, the gauge link is defined to be

Wp(ξ, δ) = Pexp

−ig ∫
−sign(ℑδ)∞

dse−iδsA(ps+ ξ)

 . (H.2)

Notice that the gauge link direction is fixed by the imaginary part of the δ.
If ℑδ > 0 the link is past-pointing, otherwise is future-pointing. If ℑδ = 0
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then we choose the ±i0 to distinguish them. We first consider the case
ℑδ,ℑδ′ > 0, which corresponds to the “DY-shape”. In this case, we can
actually choose to let the gauge links be off-lightcone as well and define an
analytic function in both the off-lightcone vector and the δ regulators. For
this purpose we simply change n, p to be the corresponding off-lightcone
vectors. Let p = (v0, 1, 0, 0) and n = (v0,−1, 0, 0), then the consecutive
increments read

e−iδs−iδ
′s′e−iv

0E(s−s′) . (H.3)
Let z = ℜv0 + iℑv0, then we have an analytic function f(δ, δ′, z) in the
domain ℑz < 0 and ℑδ ≥ 0. In particular, the S− corresponds to δ = δ′ = iδ
and z = 1− i0.

Similarly, let us consider the case where ℑδ > 0 but ℑδ′ < 0. This
case corresponds to the shape of S+, and one obtains an analytic function
g(δ, δ′, z) in the domain ℑδ > 0,ℑδ′ < 0. In particular, the S+ corresponds
to δ = iδ, δ′ = −iδ′, and z = 1− i0.

We now consider F (δ, δ′, z) = f̄(iδ̄, iδ̄′, 1z̄ ) and G(δ, δ′, z) = g(iδ,−iδ′, z)
with z = −iv0. Then, by inspecting the shape of the resulting Euclidean Wil-
son loops and using rotational invariance, one obtains the relation
F (δ, δ′, z) = G(izδ, izδ′, z) for δ > 0, δ′ > 0 and z = −iv0, thus by the
uniqueness of analytic continuation to the whole domain of analyticity. By
taking z = 1 − i0, it indicates the following relation for ℜδ,ℜδ′ > 0,ℑδ ≤
0,ℑδ′ ≤ 0:

f̄
(
iδ̄, iδ̄′, 1− i0

)
= g(−δ(1− i0), δ′(1− i0), 1− i0) . (H.4)

By taking δ, δ′ > 0, this relation relates the S±(b⊥, µ, δ, δ) through

S+(b⊥, µ, δ, δ) = S−†
(
b⊥, µ,

iδ

1 + i0
,

iδ

1 + i0

)
. (H.5)

Thus, at small δ, the S+ can be obtained from S− through the substitution

ln
µ2

2δ+δ−
K(b⊥, µ) →

(
ln

µ2

2δ+δ−
+ iπ

)
K(b⊥, µ) . (H.6)

The above relation also indicates that all the single-time-ordered soft func-
tions with δ-type regulator can be represented by a single analytic function
in δ.

Double time-ordering

We first define the following generalized soft functions where the δs can
differ at the two sides of the cut:

S
(
b⊥, µ, δ, δ̄, δ

′, δ̄′
)
= ⟨0|T̄W †

p

(⃗
b⊥, δ̄

†
)
Wn

(⃗
b⊥, δ̄

′
)
TW †

n

(
0, δ′†

)
Wp(0, δ)|0⟩ ,

(H.7)



Lecture Notes on Transverse-momentum-dependent PDF . . . 4-A2.83

and the gauge links are defined in Eq. (H.2). We always choose ℑδℑδ̄ < 0
and ℑδ′ℑδ̄′ < 0 to make sure the gauge links in the same lightcone direc-
tion are pointing to the same direction. We now show that F (δ, δ̄; δ′, δ̄′) =
S(b⊥, µ, δ, δ̄, δ

′, δ̄′) defines an analytic function in all the four variables. We
first consider the case where ℑδ < 0 and ℑδ′ < 0. By inspecting the shape
of the gauge link, this corresponds to the DY shape. We can use a lightcone
perturbation theory in p direction. The gauge link staple in the n direction
then becomes an equal-lightcone-time observable. The energy denominator
has, in general, the following form:∏

i

Di

iδ − k−i
N
(
δ′, δ̄′

)∏
j

Dj

jδ̄ − k−i
, (H.8)

where the
∏
i are the energy denominators in the “initial state” from −∞ → 0

and the
∏
j are in the “final state” from 0 → −∞. k−i is the total lightcone

energy in the ith state, and similarly for k−j . The Di, Dj are numerators and
the N(δ′, δ̄′) collects the contributions from the equal lightcone time gauge
link staple. The first observation is, since all the intermediate states pose a
positive lightcone energy, k−i > 0 and k−j > 0, the Feynman integral defines
an analytic function in δ and δ̄ in the complex plane with the positive real
axis being removed. Indeed, the real axis is where the energy denominators
can be zero, and after integration we expect a branch cut to be developed
there. It is again the positivity of energy that leads to analyticity. We fur-
ther notice that in the case with ℑδ < 0 and ℑδ′ < 0, the DY-shape soft
function is independent of time ordering, therefore, invariant under simul-
taneous change of δ → δ′ and δ̄ → δ̄′. Thus, we obtain the same analyticity
in δ′ and δ̄′ as well and the soft function in this region satisfies the relation

F
(
δ, δ̄; δ′, δ̄′

)
= F

(
δ′, δ̄′; δ, δ̄

)
. (H.9)

We now try to move outside this region.
We first analytically continue in δ and δ̄ to the region where ℑδ > 0 and

ℑδ̄ < 0. Notice that for any δ, δ̄, we actually have an analytic function in
δ′, δ̄′ in the region ℑδ′ < 0,ℑδ̄′ > 0. Thus, we obtain a separately analytic
function with ℑδ′ < 0 but with ℑδ not constrainted. Then based on the
Hartog’s theorem on separately holomorphic functions, we obtain an analytic
function in all the four variables. To use this theorem we need to slightly
relax the ℑδℑδ̄ < 0 condition for δ, δ̄ to form an open connected domain,
but that is always possible as far as we chose their real parts to be negative
to make sure we are not going to cross the cut.

Similarly, we can fix a δ and δ̄, and analytically continue in δ′, δ̄′. This
leads to an analytic function in the region where ℑδ < 0 but ℑδ′ uncon-
strainted. We therefore obtain an analytic function F (δ′, δ̄′; δ, δ̄) in the region
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where one of the ℑδ, ℑδ′ is negative and we have the relation F (δ, δ̄; δ′, δ̄′) =
F (δ′, δ̄′; δ, δ̄) throughout the region.

We now consider the special example where δ = η − i0, δ̄ = η + i0 with
η < 0 and consider arbitrary δ′ = δ̄′†. Then we notice that for η < 0, the
energy denominators involving δ, δ̄ are all negative and independent of i0
choice. Since all the color factors and polarization sums are real, all the
imaginary parts are then provided by the i0 prescriptions for the gauge link
staple in the conjugating lightcone direction. By taking complex conjugate,
we find that the gauge link staple in − direction change from past to future
pointing. Since the soft function is real, we find that the two orientations are
equivalent. In conclusion, there is a regularization scheme, corresponding to
the choice δ = δ̄† = η − i0, δ′ = δ̄′† = η′ ∓ i0, analytically connected to the
standard δ regularization scheme, in which the DY and SIDIS soft functions
are equal. We can also choose δ′ = δ̄′† = ∓iδ. In this case, the ∓ does not
matter either.

We now perform a factorization argument to the SIDIS soft function
in the standard delta regularization. We can regularize all the auxiliary
lightcone gauge links using the η−i0 version of the delta regulator and in the
initial state. The choice is possible since for the standard delta regularization
scheme, we have only initial state poles for k− and final state poles for k+.
Thus, we can choose to deform in the k− direction, instead of in k+ and
put all the gauge links in the initial state. We then find the factorization
formula

SSSIDIS

(
b⊥, µ, δ, δ

′) = (−iδ, iδ; iδ′,−iδ′)
=
S (−iδ, iδ; η′ − i0, η′ + i0)S (η − i0, η + i0; iδ′,−iδ′)

S (η − i0, η + i0; η′ − i0, η′ + i0)
, (H.10)

where we have omitted the variables on the other side of the cut. We can
do the same type of factorization for the DY case

SDY

(
b⊥, µ, δ, δ

′) = S
(
−iδ, iδ;−iδ′, iδ′

)
=
S (−iδ, iδ; η′ − i0, η′ + i0)S (η − i0, η + i0;−iδ′, iδ′)

S (η − i0, η + i0; η′ − i0, η′ + i0)
. (H.11)

However, since we have shown that S(η− i0, η+ i0; iδ′,−iδ′) = S(η− i0, η+
i0;−iδ′, iδ′), we must have SSIDIS(b⊥, µ, δ, δ

′) = SDY(b⊥, µ, δ, δ
′). This builds

the universality of the standard soft function in delta regularization.
For the off-lightcone soft function in double time-ordering, a similar an-

alyticity pattern in hyperbolic angle can be found. The hyperbolic angles at
two sides of the cut have to be treated differently in order to obtain analyt-
icity. By factorizing the spacelike SIDIS soft function into the on-lightcone
soft function with the generalized δ regulator, one can show that they are
equal to the DY soft function in the lightcone limit.
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