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In a previous paper, we studied Random Sequential Adsorption of rect-
angles with the constant area but random aspect ratio. Here, we investigate
the statistical distribution of the density at saturation, the hyperuniformity
of the packing, and revisit the analysis of the Available Surface Function
and Feder’s law. We also evaluate the performance of the algorithm used
in the simulations.
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1. Introduction

Random Sequential Adsorption (RSA) is a numerical protocol that gen-
erates random packings with a very simple rule: it randomly selects position
and orientation of a virtual particle and, if there is no intersection with
any of the other particles already present, it is added to the packing, and
its position will remain fixed for all the rest of the process — for this rea-
son the term Adsorption was given by Feder [1], who noticed that such
two-dimensional packings resemble the structure of monolayers obtained in
irreversible adsorption experiments.

Most of the RSA studies are focused on packings built of mono-disperse
objects of the same shape and many different geometries have been consid-
ered, through the years. In 2D, for example, they range from the classic
geometries (disks [2], squares [3], polygons [4], and ellipses [5]), to more ex-
otic shapes such as smoothed dimers [6], discorectangles [7], star polygons
[8], and polygons with rounded corners [9].

Much less attention was paid to mixtures [10, 11] and polydisperse par-
ticles. About the latter, in Ref. [12], the effect of uniform and Gauss dis-
tribution of spherical particle diameter on jamming coverage and kinetics
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parameters was analyzed. In Refs. [13, 14], a continuum power-law size
distribution P (R) ∼ R(α−1) with R ∈ (0, Rmax] for disk radii was consid-
ered, instead: this implies that the estimation of the density at saturation
is meaningless, since in the limit of infinite time, the whole space will be
ultimately filled with particles and the density will be trivially equal to 1,
but in such patterns, a fractal nature is revealed and order is emerging while
α is increasing. In fact, this is closely related with the Apollonian packing
— the first discovered fractal — which is the limit of this kind of packing
for α→∞.

Nevertheless, before our study in Ref. [15], there were no other ap-
proaches to RSA packings built of particles with random geometry, but
fixed area. Being the size of the deposited particles always non-vanishing,
the value of density at saturation can never reach 1 and, therefore, is worth
to be evaluated. The easiest way to add randomness to a shape is to consider
rectangles with a fixed area and variable aspect ratio1. The results of such
a study were presented in Ref. [15].

In this paper, we start from this study and we want to investigate the
influence of finite simulation time on the packing fraction estimation [16] that
was not included in the original paper. We also want to revise the fitting of
the Available Surface Function, which was not satisfactory. Finally, we add
some evaluation of the algorithm and its performance.

2. Simulation description

At each iteration, a random point inside a square of side length L is
selected. Then another value, randomly taken from the interval (1/L, 1)2,
is used to define the ratio between the two sides of the rectangle with a
unit area. Finally, the orientation of the rectangle (horizontal or vertical)
is also chosen randomly. Now, the process can proceed according to the
above-mentioned RSA protocol [1, 17]: if the rectangle with the unitary
area defined as above does not overlap any particle already placed in the
packing, it is added, otherwise, it is rejected. These steps are repeated until
there is no space to place any other particle: at this stage, the packing is
saturated.

Periodic boundary conditions are used to decrease finite-size effects [18].

1 The core of the algorithm is the geometrical construction of virtual rectangular cells,
surrounded by deposited particles. Since the sides of these cells must be in common
with the sides of the deposited particles, the latter can be neither curved, nor oriented
in the space. For this reason, only oriented rectangles can benefit from that algorithm.

2 The limit for low values of the aspect ratio is required in order to avoid having
rectangles with one side longer than the packing side L.
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3. Algorithm

The approaching of the RSA packing density to the jamming limit θsat
after n depositions is usually governed by a relation of the kind (see Sec-
tion 4.3)

θsat − θ(n) = An−1/d (3.1)

with A and d constant. Based on this fact, the convergence to the limit is
generally very slow. Therefore, some strategies must inevitably be followed
in order to speed up the calculation and reach the saturation in a reasonable
time.

The first step is to implement a grid, covering the whole packing, in
order to perform the check of intersection of the virtual particle with the
other rectangles only for good candidates. For this purpose, for each cell of
the grid, we generate a list of rectangles that have some overlap with it and
keep it updated at each iteration.

A further step would be to decrease the size of the grid and remove the
cells which are completely overlapped by rectangles in order to reduce the
surface over which the deposition is allowed. However, due to the peculiar
geometry of this RSA, most of the particles are elongated rectangles, which
are not thick enough to fully overlap a cell and, consequently, remove it from
the list. Additionally, an excluded zone around each rectangle cannot be
uniquely defined because the minimum distance between it and the nearest
neighbour is not fixed, but depends on the aspect ratio of the neighbour
itself. For this reason, it is not possible to have the formation of “clusters”
of overlapping excluded areas, with the consequent removal of cells fully
covered by them and, therefore, no grid mesh refining is performed.

The last and most effective strategic step is to identify the areas, located
between the deposited rectangles, that are suitable to accommodate new
particles. For each of them, only the small central portion is considered
available for deposition, and this significantly increases the efficiency of the
algorithm.

Due to the high effectiveness, especially of the last step, it is easy to simu-
late fully saturated RSA configurations, with the dimension of the packings
comparable with what has been done for other classical geometries. The
most important thing, however, is that the results, especially in terms of
density at saturation, are exact and not an extrapolation-based over runs
performed halting the generation after some arbitrary number of unsuccess-
ful tries of adding new objects to the packing. In fact, only for a few RSA
geometries [2, 4, 9, 19], efficient algorithms have been developed in order to
obtain strictly saturated configurations.

Full details of the algorithm used can be found in Ref. [15].
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4. Analysis of the results

An example of packing is shown in Fig. 1.

Fig. 1. Example RSA packing built of aligned rectangles of unit area and uniformly
distributed random aspect ratio.

4.1. Mean saturated packing fraction

The main parameter describing an RSA packing is the mean saturated
packing fraction θsat, which is the ratio of the area covered by N particles
of area Sp = 1 to the area of the whole packing S = L2

θsat =

〈
NSp
S

〉
=

〈
N

S

〉
, (4.1)

where 〈·〉 denotes averaging over a set of independent random packings. The
average is well defined and the packing fraction is normally distributed (see
Fig. 2)

Simulations have been performed for several different values of L between
100 and 1000, with at least 100 runs for each size, in order to exclude the
presence of any effect due to the finite size of the packing. The data depicted
in Fig. 3 do not show any systematic dependence on packing size, thus we
consider the density at saturation θsat to be equal to 0.678689 ± 0.000019,
which is the average value obtained from 130 independent, saturated pack-
ings of a side length size L = 1000 — the largest dimension analysed.

4.2. Shape distribution influence on packing fraction

In Ref. [15], we showed that the distribution of parameter f , describing
the rectangle shape (aspect ratio), changes during the RSA process: at the
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Fig. 2. Histogram of saturated packing fractions obtained from 20 000 independent
packings with L = 125. The red line corresponds to a normal distribution of
an average 0.67848 and a standard deviation 0.00269. Inset shows the same plot
in a log–normal scale. The histogram was normalized to represent probability
distribution.
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Fig. 3. The mean saturated packing fraction as a function of the inverse of packing
surface size S = L2, with bars denoting the Standard Error of the Means. The red
dashed line corresponds to θsat = 0.678689.

beginning, when the coverage is low, it is almost uniform and reflects the
distribution of the random variable used for its sampling, but, with the in-
crease of the coverage, the number of highly anisotropic rectangles decreases,
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and then, when the density reaches about the 75% of the value at saturation,
there is an increase of rectangles of low to moderate anisotropy, while rect-
angles with higher aspect ratios start to disappear. When rectangles start to
interact with each other, due to the increase of density, interstices begin to
appear: this implies that both very elongated shapes and rectangles similar
to squares cannot find enough free space — they are deposited mainly at
the beginning of packing generation when they do not find any obstacles.

The change of the shape distribution during packing generation, as a
consequence of the evolution of the inner geometry of the packing itself,
suggests that the packing fraction may change if the probability distribution
used to select the side length ratios of the rectangles is varied. In order to
evaluate this effect, in Ref. [15] we considered a more general function, as
done by Brilliantov for Polydisperse RSA [13, 14]

pf (x) = (α+ 1)xα (4.2)

with α ∈ (−1,+∞). For high positive values of α, square-like shapes are
more probable, while negative values of α favour anisotropic shapes. The
mean packing fraction dependence on α is shown in Fig. 4. Figure 5 shows
the patterns of the packing for α → −1 and α → ∞. The packing fraction
grows with the parameter α, but packings with high values of α are very
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Fig. 4. The mean saturated packing fraction for different α, measured for packing
size L = 50. Black dots are simulation data and the red solid line is the fitting
θsat(α) = θ∞ − A exp(−k α). Compare the coefficient θ∞ = 0.701 with the esti-
mated value of θsat(α → ∞) = 0.705902 calculated for L = 50 according to the
procedure described in the text. In the inset plot, the standard deviation of θsat
shows no dependency on α.
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hard to be obtained. In Section 4.2, we showed that near-saturation shapes
of high anisotropies are mainly deposited, thus, in order to reach saturation,
we would need to try rectangles with small aspect ratio, but their probability
to be chosen rapidly decreases with growing α. Therefore, in this case, the
generation of even small saturated packings (L = 50) requires a very large
amount of time (see Fig. 20 (b)).

(a) (b)

Fig. 5. Packing for different values of distribution exponent (a) α→ −1 (b) α→∞
showing the different patterns of the two extremals.

Even if we are not able to extend the plot of Fig. 4, is it easy to estimate
the packing density in the limit of α→∞, taking inspiration from what has
been described for Polydisperse RSA [14]. In fact, an infinite α means that
at each iteration, the selected aspect ratio is always the highest possible.
Based on this consideration, the first step of the algorithm is to deposit
only squares (which are the rectangles with the highest aspect ratio), until
the RSA jamming limit for squares is reached (θ ≈ 0.562). Then, at each
iteration, the algorithm identifies the position where the rectangle with the
largest aspect ratio can be placed, and such a rectangle is deposited, tangent
to its neighbours, as shown in Fig. 6 (a), and so on, until the jamming is
finally reached. Figure 7 shows how f decreases during the RSA. This is a
quasi-deterministic3 process, quite similar to what happens, for circles, with
the Apollonian Packing. From this, we can estimate θsat(α→∞).

A higher value of the parameter α means that anisotropic shapes have
a lower probability to be selected. If such shapes were deposited in the first
stages of the process, they would represent a hindrance to the deposition of
the next rectangles, as the latter are forced to have their longer side in the

3 Actually, even if the dimensions are fixed and the rectangle is tangent to a couple of
neighbours in a deterministic way, its position is still free to be chosen randomly.
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(a) (b)
Fig. 6. Placing the rectangle with the highest aspect ratio in order to estimate the
packing fraction in the limit of α → ∞ (a). Its position is free to be randomly
chosen in the direction parallel to the longest side shown by the arrows — this does
not happen for disks with a variable radius (b), since the largest circle that can be
deposited is tangent to the others, each one in a single point, and its position has
no randomness.
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Fig. 7. The aspect ratio f of the rectangle deposited for α → ∞ as a function of
density θ.

same direction as those already deposited (see Fig. 8). If, on the other side,
anisotropic rectangles are deposited only in the later stages, when most of the
rectangles with higher aspect ratios are rejected, they find the space in the
small interstices between the adjacent rectangles and contribute to having a
denser packing. This is the explanation of why the mean saturated packing
fraction is increasing with the parameter α, and the concept is even clearer if
we consider the limit of α→∞, and how it is calculated. Starting from the
skeleton built by the squares, rectangles of increasing anisotropy are selected
to exactly fill the voids, creating, at the same time, the least obstruction to
other rectangles, as they have the highest aspect ratio. This means that the
maximum packing density has been reached. As done for α = 0, simulations



Random Sequential Adsorption of Shapes with Random Geometry: . . . 5-A1.9

0 0.2 0.4 0.6 0.8 1 2 3 5 ∞

0

0.2

0.4

0.6

0.8

1

2

3

5

∞

0

1

2

3

4

Fig. 8. Probability density for a rectangle with horizontal/vertical side ratio as
per x-axis and whose nearest neighbour has a horizontal/vertical side ratio as per
y-axis: from this, it emerges that the most probable configuration is an anisotropic
shape parallel to others with similar anisotropy.

have been performed for values of L between 100 and 600, with at least 100
runs for each size. In this case, the value of calculated density at saturation
is slightly increasing with packing size (see Fig. 9). This behaviour seems to
be related to the fact that, with the increase of the packing size, the lowest
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Fig. 9. The mean saturated packing fraction for α→∞ as a function of the inverse
of packing surface size S = L2, with bars denoting the Standard Error of the means.
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aspect ratio is decreasing (see Fig. 10). In Ref. [15], we considered the value
of density at saturation θsat to be equal to 0.706171± 0.000025, which was
the average value obtained from 200 independent, saturated packings of a
side length size L = 500 — the largest dimension analysed at that time.
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Fig. 10. The lowest aspect ratio (i.e. that of the last deposited rectangle) as a func-
tion of the inverse of packing size, with bars denoting the Standard Deviation. This
suggests that, with larger packing dimensions, more anisotropic particles succeed
to find a place to be hosted — and this fact allows to have a slightly higher pack-
ing density. Due to the peculiar process with α → ∞, the anisotropic rectangles
are deposited after the squares and all the rectangles with lower anisotropy, thus
the probability that a very elongated shape finds a free space between the rectan-
gles already deposited is effectively zero (it would be non-zero if the anisotropic
rectangles were deposited in the early stages of the process).

Compared with all the other RSAs of shapes with fixed geometry, the
packings studied here are significantly denser (Table 1), since the freedom to
choose the rectangle shape allows the filling also thin areas, at the later stages
of packing generation, that otherwise would not be available for deposition.

4.3. Feder’s law

During the generation of random packing, its density increases with
subsequent iterations of the RSA procedure, and for systems approaching
the jamming limit it is generally governed by the following relation, called
Feder’s law:

θsat − θ(n) = An−1/d , (4.3)



Random Sequential Adsorption of Shapes with Random Geometry: . . . 5-A1.11

Table 1. RSA of different shapes and orientations with increasing density at jam-
ming.

Shape Orientation Ref. Anisotropy
Density

at saturation
Equilateral Triangles Random [4] 1 0.525902(36)
Squares Random [4] 1 0.527594(70)
Disks Fixed [2] 1 0.5470735(28)
Rectangles Random [20] 1.492(22) 0.549632(17)
Squares Fixed [3] 1 0.562009(4)
Ellipses Random [5] 1.84 0.583999(17)
Rounded Triangles Random [21] — 0.60143(10)
Rectangles with Fixed [15] — 0.706171(25)
Random Aspect Ratio

where θ(n) is the packing density after n RSA iterations4, θsat is the packing
density at saturation, and A is a positive constant. The parameter d is
known to be equal to the packing dimension in the case of disks, balls, and
hyper-balls [2, 22, 23], which appeared to be valid also for fractal dimensions
[24, 25]. For RSA of unoriented anisotropic shapes in two dimensions, d = 3
[26, 27], it was thus conjectured that the parameter d corresponds to the
number of degrees of freedom of deposited shapes [28, 29].

For this process, Feder’s law is valid. Since saturated packings were
generated, we estimated the parameter d using the relation between the
median Mn of the number of iterations at which the last particle was added
and the packing size L2 [30]

Mn = C
(
L2
)d+1

, (4.4)

and thus we got d = 2.94 ± 0.07, which is in good agreement with our
theoretical expectation of d = 3. This method has the advantage to avoid
using any interpolation.

The parameter d comes straightforward from (4.3): by manipulation, d
can be obtained from the slope of the dependence of ln dθ(n)/dn on lnn.
The main issue is that Feder’s law does not specify where the fitting shall be
performed. In fact, it models the behaviour of packing for moderate-to-high
coverage (the behaviour at low coverage will be studied in Section 4.4), thus

4 Here, n refers to the number of iterations in the original RSA scheme and not to the
steps in our algorithm. If we exclude some regions from random sampling due to the
impossibility to place there a new rectangle, and thus, sample only a fraction x of
the whole packing surface, then one step in our method statistically corresponds to
1/x iterations of the original RSA procedure.
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it is crucial to correctly identify the fitting range: if its starting point is too
low, the behaviour might not be a power law for the whole range, as the
coverage at the lower bound of the range might be not high enough, while
if the range is too low, the fitting would be too poor.

Feder’s law is also very useful to estimate the density at saturation, as
described in Ref. [16]. This information can be taken into consideration for
other similar RSAs for which no fully saturated packings can be generated,
in order to decide after how many iterations stop the process.

Here, we perform the following:

— for a given (n,∆n), we take a range [n1, n2], where n2 = nsat − n,
n1 = n2−∆n, nsat is the number of iterations required to fully saturate
the packing, and ∆n+ 1 is the number of points over which fitting is
performed;

— we estimate d̂ fitting ln dθ(n)/dn on lnn in the range [n1, n2];

— using the estimated d̂ we evaluate θ̂sat;

— knowing the exact value of θsat = nsat/L
2, we can calculate the error

dθ = |θ̂sat(n)−θsat| performed stopping the process n iterations before
the saturation.

This process is similar to what has been described in Ref. [16], apart from
the fact that in Ref. [16] the interpolation is done in the range of (0.001n, n),
which means that the number of points over which the interpolation is per-
formed only depends on n. In fact, for a high n, the number of points
included in the range (0.001n, n) could be very low, affecting the estimation
of d and θ.

In order to make the analysis independent from the packing dimension,
we divide the range extremes by nsat. Thus, we actually perform the inter-
polation between 1− φ1 and 1− φ2, where φ = n/nsat = θ(n)/θsat.

First, we perform the interpolation taking φ2 = 1, and we evaluate d̂
and its standard deviation as a function of ∆φ. As shown in Fig. 11, for low
values of ∆φ (i.e. for a small ∆n), the estimation of d̂ is affected by a great
statistical error, due to the small number of points. Then, the estimated
value of d reaches a plateau and remains almost constant until ∆φ ≈ 0.015,
where d = 3.067±0.044, which is consistent with the evaluation made above,
according to Ref. [30]. For higher values of ∆φ, d̂ starts deviating, which
means that the log–log interpolation is no more linear.

Then, we evaluate the mean absolute error dθ that we would make on
the density, extrapolated according to Ref. [16], if we stop the generation of
packing at φ < 1. Plotting the values it emerges that dθ/L is independent
from the packing size (see Fig. 12)
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Fig. 11. The estimated value of d for α = 0 in the range (1−∆φ, 1) as a function
of ∆φ, with bars denoting the Standard Deviation.
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Fig. 12. The estimated value of error dθ divided by the packing size L as a function
of the upper bound of the interpolating range (the range width ∆φ is taken equal
to 0.015), for L = 333, 555, 1000.

Therefore, one can use this approach also for an RSA for which fully
saturated packings cannot be generated. As described above, the evaluation
of d shall be performed as a function of ∆φ, with the difference that the
upper bound of the range is φmax = nmax/nsat instead of 1, where nmax is
the number of particles after which the process is stopped. Provided Feder’s
law is applicable for this RSA, the plot of d̂(∆φ) will typically have a plateau.
The value of ∆φ where the plateau ends will be used to evaluate θ̂ according
to Ref. [16]: this will maximize the number of points over which the fitting
is performed, while still remaining within a power-law behaviour, giving a
better estimation (see Fig. 13).
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Fig. 13. For a non-saturated packing (φ = 0.996), in black is the estimated value d̂
and in red the relative value of error dθ. If the fitting is performed for a ∆φ at the
end of the plateau of d̂, the error is almost minimized.

4.4. Available Surface Function

The kinetics of packing growth at low coverage can be studied in terms of
the Available Surface Function (ASF), which is equal to the mean probability
of successful deposition using the RSA protocol, for a packing of a given
packing fraction

ASF
( n
L2

)
=

〈
1

in

〉
= lim

m→∞

m∑
k=1

1

in

m
, (4.5)

where in are the number of iterations required to deposit the nth particle
and average is taken over a set of m independent random packings. This
implies that ASF is equal to 1 for empty packing and lowers down to 0 at
saturation. For loose packings, ASF is typically approximated by a few first
terms in the series expansion

ASF(θ) = 1− C1θ + C2θ
2 . (4.6)

Parameters C1 and C2 are closely related to the coefficients of virial
expansion [31] and, thus, can be used to determine properties of monolayers
at equilibrium [32]. Parameter C1 describes the mean area blocked by a
single rectangle, while C2 corresponds to the mean cross section of these
areas for two neighbouring shapes.
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Nevertheless, this is not a good fitting for this RSA, especially for low
values of α. A much better one is

ASF(θ) = 1− C1θ + Cnθ
n . (4.7)

If we perform the fitting, according to (4.6) and (4.7), respectively, in the
range [0, θmax], and we plot the coefficients as a function of θmax (see Fig. 14),
we see that with (4.7), the coefficients C1 and Cn are almost constant on a
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Fig. 14. In (a), fitting according to (4.6) was performed for α = 0 in ranges [0, θmax],
with θmax equal 0.10, 0.20 and 0.30, respectively. This fitting is not satisfactory,
since coefficients C1 (blue) and C2 (black) are not constant, if θmax is changed (see
the inset plot). Instead, in (b), there is a plateau for C1 (blue) and Cn (black): the
fitting performed on [0, 0.20] according to (4.7) (dashed line) is good for the whole
range [0, 0.30].



5-A1.16 L. Petrone

wide range of θmax, while with (4.6), the coefficients (especially C2) change a
lot, depending on which range the fitting has been performed on. Figure 15
also shows that the fitting error with (4.7) is much lower than with (4.6).
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Fig. 15. Squared difference between fittings and ASF, according to (4.6) (black
points) and (4.7) (blue points): the latter is much better, as the fitting error is
lower and almost constant over the whole range.

The fitting according to (4.7) holds for α ∈ (−0.5,+∞), and the coef-
ficients are shown in Fig. 16. For α → ∞, the coefficients converge to the
values for squares, as for high αs the probability of choosing 1 as the ran-
dom aspect ratio goes to 1 (at least, until the saturation of squares, which
happens at values of θ ≈ 0.562, before the interactions between rectangles
start to act and the packing cannot be considered loose anymore).

For squares, the estimated coefficients are, respectively, C1 = 3.987 ±
0.012, Cn = 4.26± 0.14, and n = 2.085± 0.030: C1 is in agreement with the
theoretical value, 4.

For α = 0, C1 = 5.599±0.022, Cn = 6.248±0.039, and n = 1.720±0.010:
C1 is in agreement with the theoretical value, 5.555 [15].

On the other hand, for α→ −1/2, the two coefficients C1 and Cn diverge
due to the appearance of highly anisotropic shapes, and below that value,
up to now, no satisfactory fitting of ASF has been found.

4.5. Two-point correlation function

The two-point correlation function describes the probability of finding
two shapes at a given distance r and is defined as

g2(r) = lim
dr→0

N(r, r + dr)

2πrθsatdr
, (4.8)
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Fig. 16. The coefficients C1, Cn, and n according to (4.7) as a function of α (the
dashed line is the value in the limit of α→∞).

where N(r, r+ dr) is the mean number of particles with the center at a dis-
tance between r and r+ dr from the center of a given particle. The packing
fraction θsat is a normalization factor in order to have g2(r →∞) = 1. The
function is shown in Fig. 17 and g2(r) has no logarithmic divergence at con-
tact [22, 33]: in fact, due to the variable shape of the rectangles, theoretically
there is no minimal distance between neighbouring shapes centers5.

5 In practice, rectangles cannot be too thin, as their longer side cannot be higher than
the side of the packing L, but this limit is very small and practically unnoticeable.
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Fig. 17. The density autocorrelation function for rectangles in the RSA packing. In
the inset plot, its difference to 1 (in red where positive and in blue where negative):
maximum is found for r ≈

√
2, minimum for r ≈ 2.

4.6. Structure factor

The structure factor is calculated as follows [2]:

S(k) =

〈∣∣ρ̃(k)2
∣∣〉

N
, (4.9)

where N is the number of rectangles in the periodic square of side length L,
the collective density ρ̃ is

ρ̃(k) =

N∑
j=1

exp (ik · rj) (4.10)

and the wave vector k is

k =

(
2πnx
N

,
2πny
N

)
, (4.11)

where nx and ny are integers.
A packing is hyperuniform if the Structure Factor is vanishing in the

limit of wavenumber going to zero [34]. If not, we define

S0 ≡ lim
k→0

S(k) (4.12)
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that quantifies how much the packing is distant from being hyperuniform.
For this reason, we fit the Structure Factor in the form of

S(k) = S0 + S2k
2 + S4k

4 (4.13)

for small values of k. The estimated value of S0 is 0.04055 ± 0.00060 (see
Fig. 18), which reveals to be smaller than the value of disks (0.05869 ±
0.00004) [2].
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Fig. 18. (a) The Structure Factor as a function of k/L, obtained as an average of
100 independent packings of size L = 625. (b) The estimated value of S0, performed
fitting S according to Eq. (4.13) for k/L ∈ [0, 0.15], as a function of the inverse of
packing size L, with bars denoting the Standard Deviation. The red dashed line
corresponds to S0 = 0.04055.
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5. Algorithm performance

As described in Section 3, the algorithm allows to reduce the number of
unsuccessful tries of deposition with a consequent significant improvement
in its performances. In Fig. 19, the number of actual iterations required to
reach a density θ using our algorithm is compared with those needed without
any reduction in the area over which perform the deposition.
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Fig. 19. The actual average number of RSA iterations required to achieve a given
value of convergence θsat − θ is plotted in black, while in red is the number of
iterations required using the algorithm. In the inset the same has been plotted for
a typical run: the visible cuspids are where the algorithm (1) switches to the search
of allowable zones for deposition or (2) reevaluates them (see Ref. [15] for details).

Using this algorithm, we evaluated its performances, function of S = L2

and α, and we found that the complexity is O(S2) (Fig. 20 (a)), but O(eα)
(Fig. 20 (b)) — that is the reason why it is easy to reach very large packings
when α = 0, but it is too hard to go beyond small values of α.

6. Summary

Here, we investigated the statistical distribution of the density at satu-
ration of RSA of rectangles with random aspect ratio and the performance
of the algorithm used in the simulations. We also revisited the analysis of
the Available Surface Function and Feder’s law, which could be useful also
for evaluation of the saturation density using not fully saturated packings.
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Fig. 20. The average time required to reach saturation (using an Intel R© CoreTM
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denoting the Standard Deviation.
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