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The definitions of the complete modulus–modulus synchronization
(CMMS), modulus–modulus combination synchronization (MMCS), and
modulus–modulus combination–combination synchronization (MMCCS)
for chaotic complex systems are introduced. These types of synchronization
may be considered as a generalization of many other types of synchroniza-
tion in the literature. Based on the active control method, three schemes
are stated to achieve: CMMS, MMCS, and MMCCS. Three theorems are
presented and proved to provide us with analytical formulas for the control
functions. We present examples to test the validity of the control functions
to achieve CMMS, MMCS, and MMCCS. Using the Runge–Kutta of the
order of 4 method, we got the numerical solutions of our systems which
agree well with the analytical results. Based on the CMMS of two chaotic
complex systems, the processes of encryption and decryption of images are
introduced. The experimental results of image encryption and decryption
as well as the information entropy and histograms are calculated. Similar
studies using MMCS and MMCCS are also investigated.

DOI:10.5506/APhysPolB.53.6-A2

1. Introduction

Chaos synchronization has been studied for the first time in 1990 [1].
The trajectory of a chaotic real system is not simple due to the sensitivity
of its initial condition. Many researchers gave much attention to this phe-
nomenon. Pecora and Carroll presented the complete synchronization [1],
while the anti synchronization was given by Kim et al. [2]. Mainieri et al. [3]
studied the projective synchronization and the modified projective synchro-
nization was considered by Li [4]. Li et al. [5] investigated the lag syn-
chronization, while the function synchronization is illustrated in [6]. The
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combination synchronization is introduced in [7, 8] and the combination–
combination synchronization is presented in [8, 9]. Sun et al. investigated
the compound combination synchronization [10], while the double compound
combination synchronization was given by Mahmoud et al. [11]. Recently,
Li et al. [12] introduced the complete modulus synchronization between hy-
perchaotic real and complex systems. Using the adaptive control, Khan and
Nigar [13] studied the modulus combination–combination synchronization
and they used this technique in secure communication. Chaos synchroniza-
tion is used in the cryptosystems, which are mainly applied in encrypting
text message, the sine and cosine signal, sound signal, gray and color images,
and so on [14–17]. Encryption schemes based on chaotic and hyperchaotic
systems have the advantage of introducing a good combination of security
and speed [18]. Many schemes of image encryption have been presented
with different properties and motivations for application based on chaotic
systems (e.g. see [17–21] and references therein).

In [22], Mahmoud et al. investigated the complex Chen system, which is

ẋ1 = a1(x2 − x1) ,
ẋ2 = (a2 − a1)x1 − x1x3 + a2x2 ,

ẋ3 = 1
2(x̄1x2 + x̄2x1)− a3x3 , (1)

where a1, a2, and a3 are positive real parameters, x1 = xr1+jx
i
1, x2 = xr2+jx

i
2

are complex variables, j =
√
−1 and x3 is real one. The time derivatives

are denoted by dots, while the complex conjugate variable is represented by
( ¯. . .).

In 1982, the Lorenz system in the complex domain was discovered from
laser physics and baroclinic instability of the geophysical flows [23–26] as

ẏ1 = σ(y2 − y1) ,
ẏ2 = ry1 − y1y3 − ay2 ,
ẏ3 = 1

2(ȳ1y2 + y1ȳ2)− by3 , (2)

where r and a are complex numbers defined as r = r1 − jr2 and a = 1− jδ,
j =
√
−1 and σ, r1, r2, δ, and b are real positive parameters. The complex

variables y1, y2, and the real variable y3 of system (2) have relations with
the electric field, the atomic polarization amplitudes, and the population
inversion in a ring laser system of two-level atoms respectively [27].

The authors of Ref. [22] introduced the complex Lü system as

ż1 = c1(z2 − z1) ,
ż2 = −z1z3 + c2z2 ,

ż3 = 1
2(z̄1z2 + z̄2z1)− c3z3 , (3)

where c1, c2, and c3 are positive real parameters, z1, z2 are complex variables,
and z3 is real.
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The equations for the complex Rössler system [28] are as follows:

ẇ1 = −w1 − w3 ,

ẇ2 = w1 + d1w2 ,

ẇ3 = d2 + 1
2w3(w1 + w̄1 − 2d3) , (4)

where the variables w1, w2 are complex, and w3 is real. The parameters d1,
d2, and d3 are real positive parameters.

In this article, we introduce the definitions of the CMMS, MMCS, and
MMCCS for chaotic complex systems. Three schemes are stated to achieve
CMMS, MMCS, and MMCCS using the active control technique [22]. We
presented and proved three theorems to provide us with analytical expres-
sions for the control functions. The chaotic complex Chen, Lorenz, Lü, and
Rössler systems (1)–(4) are used as examples to test the validity of the con-
trol functions to achieve CMMS, MMCS, and MMCCS. There exists a good
agreement between analytical results and numerical simulations. Based on
the CMMS between chaotic complex Chen and Lorenz systems, the processes
of encryption and decryption of images are introduced. The histograms and
the information entropy are calculated for images.

The arrangement of our article is as follows: In Section 2, the defini-
tions of the CMMS, MMCS, and MMCCS of chaotic complex systems are
introduced. We state and prove three theorems to provide us with analyt-
ical formulas for the control functions. Examples to demonstrate the good
agreement between analytical and numerical results are presented in Section
3. The steps of the process of encryption and decryption of images based on
CMMS between complex Chen and Lorenz systems are stated in Section 4.
The grayscale histograms and information entropy are computed for the im-
ages of this work. Other applications of images encryption and decryption
using the MMCS and MMCCS of chaotic complex systems can be similarly
studied. Section 5 contains the conclusions of our investigations.

2. Three kinds of modulus–modulus synchronization
between chaotic complex systems

In this section, we introduce three new definitions of modulus–modulus
synchronization which are CMMS, MMCS, and MMCCS for chaotic (or
hyperchaotic) complex dynamical systems. We state and prove theorems to
yield the analytical formulas for the control functions to achieve these kinds
of synchronization using an active control method.
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2.1. Complete modulus–modulus synchronization (CMMS)
between two chaotic complex systems

This subsection deals with the CMMS of chaotic complex systems. The
drive and response systems, respectively, are

ẋ = f(x) , x ∈ Cn , (5)

where f(x) = f r(x) + jf i(x), x = xr + jxi, with xr = (xr1, x
r
2, . . . , x

r
n)T,

xi = (xi1, x
i
2, . . . , x

i
n)T,

ẏ = g(y) + u , y, u ∈ Cn , (6)

where g(y) = gr(y) + jgi(y), y = yr + jyi, with yr = (yr1, y
r
2, . . . , y

r
n)T,

yi = (yi1, y
i
2, . . . , y

i
n)T, u = ur + jui, with ur = (ur1, u

r
2, . . . , u

r
n)T, ui =

(ui1, u
i
2, . . . , u

i
n)T is the vector of control functions which are functions of

x, y, and T denotes the transpose.

Definition 2.1. CMMS between the drive system (5) and the response
system (6) is achieved if

lim
t→∞
‖e‖ = lim

t→∞
‖|y| − |x|‖ = 0 , e = (e1, e2, . . . , en)T (7)

and

el = |yl|−|xl| =
√(

yrl
)2

+
(
yil
)2−√(xrl )2 +

(
xil
)2
, l = 1, 2, . . . , n , (8)

where ‖ · ‖ is the norm and e ∈ Rn is the synchronization error.

Remark 2.2. For real variable y in (7), we get the modulus synchroniza-
tion [12], so Definition 2.1 can be considered as a generalization of modulus
synchronization of Ref. [12].

Theorem 2.3. CMMS will be carried out for the drive system (5) and the
response system (6) if the control functions are designed as follows:

url = −gr(yl) +

√(
yrl
)2

+
(
yil
)2

yrl

 xrl f
r(xl)√(

xrl
)2

+
(
xil
)2 −Alel

 , l = 1, 2, . . . , n ,

(9)

uil = −gi(yl) +

√(
yrl
)2

+
(
yil
)2√(

xrl
)2

+
(
xil
)2 xilf i(xl)yil

, l = 1, 2, . . . , n , (10)

where diag(A1, A2, . . . , An) = K1 is the feedback gain matrix with positive
eigenvalues.
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Proof. By differentiating the synchronization errors (8) w.r.t. t, we get

ėl =
yrl ẏ

r
l + yil ẏ

i
l√(

yrl
)2

+
(
yil
)2 − xrl ẋ

r
l + xilẋ

i
l√(

xrl
)2

+
(
xil
)2 . (11)

Substituting Eqs. (5)–(6) into Eq. (11), we have

ėl =
yrl√(

yrl
)2

+
(
yil
)2 (gr(yl) + url ) +

yil√(
yrl
)2

+
(
yil
)2 (gi(yl) + uil

)
−

xrl f
r(xl)√(

xrl
)2

+
(
xil
)2 − xilf

i(xl)√(
xrl
)2

+
(
xil
)2 . (12)

Using Eqs. (9)–(10) and Eq. (12), we get

ė = −K1e . (13)

The Lyapunov function is defined as

V (t) =
1

2
e2 , (14)

the time derivative of V (t) is calculated as follows:

V̇ (t) = eė = −K1e
2 ≤ −ξmin‖e‖2 < 0 , (15)

where ξmin = min(ξ1, ξ2, . . . , ξn) > 0 is the minimum value of the eigenval-
ues of K1. Then, lim

t→∞
‖e‖ = 0, and hence the CMMS between the drive

system (5) and the response system (6) can be done.

2.2. Modulus–modulus combination synchronization (MMCS)
between three chaotic complex systems

The MMCS of chaotic complex systems with two drive and one response
complex systems is investigated in this subsection. We consider the two
drive complex systems as

ẋ = f(x), x ∈ Cn ,

ẏ = g(y), y ∈ Cn , (16)

where f(x) = f r(x) + jf i(x), x = xr + jxi, with xr = (xr1, x
r
2, . . . , x

r
n)T,

xi = (xi1, x
i
2, . . . , x

i
n)T, g(y) = gr(y) + jgi(y), y = yr + jyi, with yr =

(yr1, y
r
2, . . . , y

r
n)T, yi = (yi1, y

i
2, . . . , y

i
n)T and j =

√
−1.
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The response complex system takes the form of

ż = h(z) + u , z, u ∈ Cn , (17)

where h(z) = hr(z) + jhi(z), z = zr + jzi, with zr = (zr1, z
r
2, . . . , z

r
n)T,

zi = (zi1, z
i
2, . . . , z

i
n)T, u = ur + jui, with ur = (ur1, u

r
2, . . . , u

r
n)T, ui =

(ui1, u
i
2, . . . , u

i
n)T is the vector of control functions which are functions of

x, y, z.

Definition 2.4. Two drive systems (16) and the response system (17) can
achieve MMCS if

lim
t→∞
‖e‖ = lim

t→∞
‖|z| − |x+ y|‖ = 0 , e = (e1, e2, . . . , en)T (18)

and

el = |zl| − |xl + yl| =
√(

zrl
)2

+
(
zil
)2 −√(xrl + yrl

)2
+
(
xil + yil

)2
,

l = 1, 2, . . . , n , (19)

where ‖ · ‖ is the norm and e ∈ Rn is the synchronization error.

Remark 2.5. If z is a real variable in (18), we obtain the modulus combi-
nation synchronization [13].

Theorem 2.6. The MMCS for the two drive systems (16) and the response
system (17) can be carried out if the control functions are built as follows:

url = −hr(zl) +

√(
zrl
)2

+
(
zil
)2

zrl

(xrl + yrl ) (f r(xl) + gr(yl))√(
xrl + yrl

)2
+
(
xil + yil

)2 −Blel

 ,

l = 1, 2, . . . , n , (20)

uil = −hi(zl) +

√(
zrl
)2

+
(
zil
)2

zil

(xi1 + yi1
) (
f i(xl) + gi(yl)

)√(
xrl + yrl

)2
+
(
xil + yil

)2
 ,

l = 1, 2, . . . , n , (21)

where diag(B1, B2, . . . , Bn) = K2 is the feedback gain matrix with positive
eigenvalues.

Proof. Differentiating (19) w.r.t. t, we obtain

ėl =
zrl ż

r
l + zil ż

i
l√(

zrl
)2

+
(
zil
)2 − (xrl + yrl )

(
ẋrl + ẏrl

)
+
(
xil + yil

) (
ẋil + ẏil

)
√(

xrl + yrl
)2

+
(
xil + yil

)2 . (22)
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Substituting Eqs. (16)–(17) into Eq. (22), we have

ėl =
zrl√(

zrl
)2

+
(
zil
)2 (hr(zl) + url ) +

zil√(
zrl
)2

+
(
zil
)2 (hi(zl) + uil

)
−

(xrl + yrl ) (f r(xl) + gr(yl)) +
(
xil + yil

) (
f i(xl) + gi(yl)

)√(
xrl + yrl

)2
+
(
xil + yil

)2 . (23)

Using Eqs. (20)–(21) and Eq. (23), we get

ė = −K2e . (24)

One defines a Lyapunov function as

V (t) =
1

2
e2 , (25)

the time derivative of V (t) is given by

V̇ (t) = eė = −K2e
2 ≤ −ξmin‖e‖2 < 0 , (26)

where ξmin = min(ξ1, ξ2, . . . , ξn) > 0 is the minimum value of the eigenvalues
of K2. Then, lim

t→∞
‖e‖ = 0, and hence the MMCS between the two drive

systems (16) and the response system (17) can be achieved.

2.3. Modulus–modulus combination–combination synchronization
(MMCCS) between four chaotic complex systems

The MMCCS of chaotic complex systems between two drive and two
response complex systems is stated. The two drive complex systems can be
written as

ẋ = f(x) , x,∈ Cn ,

ẏ = g(y) , y,∈ Cn , (27)

where f(x) = f r(x) + jf i(x), x = xr + jxi, with xr = (xr1, x
r
2, . . . , x

r
n)T,

xi = (xi1, x
i
2, . . . , x

i
n)T, g(y) = gr(y) + jgi(y), y = yr + jyi, with yr =

(yr1, y
r
2, . . . , y

r
n)T, yi = (yi1, y

i
2, . . . , y

i
n)T and j =

√
−1.

The two response complex systems can be given as

ż = h(z) + u , z, u ∈ Cn ,

ẇ = s(w) + v , w, v ∈ Cn , (28)
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where h(z) = hr(z) + jhi(z), z = zr + jzi, with zr = (zr1, z
r
2, . . . , z

r
n)T, zi =

(zi1, z
i
2, . . . , z

i
n)T, s(w) = sr(w) + jsi(w), w = wr + jwi, with

wr = (wr
1, w

r
2, . . . , w

r
n)T, wi = (wi

1, w
i
2, . . . , w

i
n)T, u = ur + jui, with ur =

(ur1, u
r
2, . . . , u

r
n)T, ui = (ui1, u

i
2, . . . , u

i
n)T, and v = vr + jvi, with vr =

(vr1, v
r
2, . . . , v

r
n)T, vi = (vi1, v

i
2, . . . , v

i
n)T are the vectors of control functions

which are functions of x, y, z, w.

Definition 2.7. The MMCCS between two drive systems (27) and two
response systems (28) can be achieved if

lim
t→∞
‖e‖ = lim

t→∞
‖|z + w| − |x+ y|‖ = 0 , e = (e1, e2, . . . , en)T (29)

and

el = |zl + wl| − |xl + yl|

=

√(
zrl + wr

l

)2
+
(
zil + wi

l

)2 −√(xrl + yrl
)2

+
(
xil + yil

)2
,

l = 1, 2, . . . , n , (30)

where ‖ · ‖ is the norm and e ∈ Rn is the synchronization error.

Remark 2.8. If z and w are real variables in (29), we get the modulus
combination–combination synchronization [13].

Theorem 2.9. MMCCS will be done for the two drive systems (27) and the
two response systems (28) if the control functions are chosen as follows:

url + vrl = − (hr(zl) + sr(wl)) +

√(
zrl + wr

l

)2
+
(
zil + wi

l

)2
zrl + wr

l

×

(xrl + yrl ) (f r(xl) + gr(yl))√(
xrl + yrl

)2
+
(
xil + yil

)2 − Clel

 , l = 1, 2, . . . , n ,

(31)

uil + vil = −
(
hi(zl) + si(wl)

)
+

√(
zrl + wr

l

)2
+
(
zil + wi

l

)2
zil + wi

l

×

(xil + yil
) (
f i(xl) + gi(yl)

)√(
xrl + yrl

)2
+
(
xil + yil

)2
 , l = 1, 2, . . . , n , (32)

where diag(C1, C2, . . . , Cn) = K3 is the feedback gain matrix with positive
eigenvalues.
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Proof. Differentiating (30) w.r.t. t, we obtain

ėl =
(zrl + wr

l ) (żrl + ẇr
l ) +

(
zil + wi

l

) (
żil + ẇi

l

)√(
zrl + wr

l

)2
+
(
zil + wi

l

)2
−

(xrl + yrl ) (ẋrl + ẏrl ) +
(
xil + yil

) (
ẋil + ẏil

)√(
xrl + yrl

)2
+
(
xil + yil

)2 . (33)

Substituting Eqs. (27)–(28) into Eq. (33), we have

ėl =
(zrl +wr

l )(hr(zl)+sr(wl)+url +vrl )+
(
zil +w

i
l

)(
hi(zl)+si(wl)+uil+v

i
l

)√(
zrl +wr

l

)2
+
(
zil +w

i
l

)2
−

(xrl + yrl ) (f r(xl) + gr(yl)) +
(
xil + yil

) (
f i(xl) + gi(yl)

)√(
xrl + yrl

)2
+
(
xil + yil

)2 . (34)

Using Eqs. (31)–(32) and Eq. (34), we get

ė = −K3e . (35)

The Lyapunov function is defined as follows:

V (t) =
1

2
e2 , (36)

the time derivative of V (t) is given by

V̇ (t) = eė = −K3e
2 ≤ −ξmin‖e‖2 < 0 , (37)

where ξmin = min(ξ1, ξ2, . . . , ξn) > 0 is the minimum value of the eigenvalues
of K3. Then, lim

t→∞
‖e‖ = 0, and hence the MMCCS between the two drive

systems (27) and the two response systems (28) can be done.
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3. Special cases

In this section, we introduce three examples to test the validity of our
theorems of Section 2 and the control functions to achieve these kinds of
modulus–modulus synchronization.

3.1. CMMS for chaotic complex Chen and Lorenz systems

In this example, we consider the complex Chen system (1) as the drive
system and the complex Lorenz system (2) as the response one to achieve
the CMMS. The response system after adding the control functions takes
the form of

ẏ1 = σ(y2 − y1) + u1 ,

ẏ2 = cy1 − y1y3 − ay2 + u2 ,

ẏ3 = 1
2 (ȳ1y2 + ȳ2y1)− by3 + u3 , (38)

where u1, u2, u3 are the control functions

f(x) =

 a1(x2 − x1)
(a2 − a1)x1 − x1x3 + a2x2

1
2 (x̄1x2 + x̄2x1)− a3x3


= f r(x) + jf i(x) =

 a1 (xr2 − xr1)
(a2 − a1)xr1 − xr1xr3 + a2x

r
2(

xr1x
r
2 + xi1x

i
2

)
− a3xr3


+j

 a1
(
xi2 − xi1

)
(a2 − a1)xi1 − xi1xi3 + a2x

i
2

0

 , (39)

and

g(y) =

 σ(y2 − y1)
cy1 − y1y3 − ay2

1
2 (ȳ1y2 + ȳ2y1)− by3

 = gr(y) + jgi(y)

=

 σ (yr2 − yr1)
cyr1 − yr1yr3 − ayr2(
yr1y

r
2 + yi1y

i
2

)
− byr3

+ j

 σ
(
yi2 − yi1

)
cyi1 − yi1yi3 − ayi2

0

 . (40)
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Applying Theorem 2.3, the control functions (9) and (10) are
ur
1

ur
2

ur
3



=



−σ (yr2 − yr1) +
xr
1

yr
1

√
(yr

1)
2
+(yi

1)
2√

(xr
1)

2
+(xi

1)
2
(a1 (x

r
2 − xr1))−

√
(yr

1)
2
+(yi

1)
2

yr
1

e1

−cyr1 + yr1y
r
3 + ayr2 +

xr
2

yr
2

√
(yr

2)
2
+(yi

2)
2√

(xr
2)

2
+(xi

2)
2
((a2−a1)xr1 − xr1x

r
3 + a2x

r
2)− 2

√
(yr

2)
2
+(yi

2)
2

yr
2

e2

−yr1yr2 + byr3 +
xr
3

yr
3

√
(yr

3)
2
+(yi

3)
2√

(xr
3)

2
+(xi

3)
2
(xr1x

r
2 − a3x

r
3)− 3

√
(yr

3)
2
+(yi

3)
2

yr
3

e3


(41)

and


ui
1

ui
2

ui
3

 =



−σ
(
yi2 − yi1

)
+

xi
1

yi
1

√
(yr

1)
2
+(yi

1)
2√

(xr
1)

2
+(xi

1)
2

(
a1
(
xi2 − xi1

))
−cyi1 + yi1y

i
3 + ayi2 +

xi
2

yi
2

√
(yr

2)
2
+(yi

2)
2√

(xr
2)

2
+(xi

2)
2

(
(a2 − a1)x

i
1 − xi1x

i
3 + a2x

i
2

)
−yi1yi2 +

xi
3

yi
3

√
(yr

3)
2
+(yi

3)
2√

(xr
3)

2
+(xi

3)
2

(
xi1x

i
2

)


,

(42)

where,

e1 = |y1| − |x1| =
√

(yr1)2 +
(
yi1
)2 −√(xr1)

2 +
(
xi1
)2
,

e2 = |y2| − |x2| =
√

(yr2)2 +
(
yi2
)2 −√(xr2)

2 +
(
xi2
)2
,

e3 = |y3| − |x3| =
√

(yr3)2 +
(
yi3
)2 −√(xr3)

2 +
(
xi3
)2
. (43)

The error system (13) is constructed by combining the control functions
(41) and (42) as

ė =

 ė1
ė2
ė3

 = −K1e = −diag(1, 2, 3)e = −

 1 0 0
0 2 0
0 0 3

 e . (44)

By using the method of Runge–Kutta of the order of 4, we solve numer-
ically the response system (38) and the drive system (1) with the control
functions (41)–(42). The initial conditions of system (1) and system (38) are,
respectively, (x1, x2, x3)

T(0) = (0.1+0.2j, 0.3+0.4j, 0.5)T, (y1, y2, y3)
T(0) =
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(0.2 + 0.4j, 0.6 + 0.8j, 1)T, and the values of these systems parameters are:
a1 = 35, a2 = 28, a3 = 3, σ = 2, c = 60 + 0.02j, a = 1 − 0.06j, b = 0.8.
Figures 1–2 illustrate the CMMS results between systems (1) and (38). Fig-
ure 1 shows a 3D projection of the solution of the drive system (1) and the
response one (38). In addition, the synchronization errors ei (i = 1, 2, 3), as
shown in Fig. 2, go to zero.
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Fig. 1. CMMS of: (a) the drive system (1) in (|x1|, |x2|, |x3|) space and (b) the
response system (38) in (|y1|, |y2|, |y3|) space.
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Fig. 2. Synchronization errors for the drive system (1) and the response system
(38).

3.2. MMCS between three chaotic complex systems

To achieve the MMCS, we consider the Chen (1) and Lorenz (2) systems
as two drive systems, and the Lü system (3) as the response one. After
adding the control functions, the response system is
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ż1 = c1(z2 − z1) + u1 ,

ż2 = −z1z3 + c2z2 + u2 ,

ż3 = 1
2(z̄1z2 + z̄2z1)− c3z3 + u3 , (45)

where u1, u2, u3 are the control functions and f(x), g(y) defined in Subsec-
tion 3.1, and h(z) is

h(z) =

 c1(z2 − z1)
−z1z3 + c2z2

1
2 (z̄1z2 + z̄2z1)− c3z3


= hr(z) + jhi(z) =

 c1 (zr2 − zr1)
−zr1zr3 + c2z

r
2(

zr1z
r
2 + zi1z

i
2

)
− c3zr3


+j

 c1
(
zi2 − zi1

)
−zi1zi3 + c2z

i
2

0

 . (46)

Using Theorem 2.6, the control functions (20) and (21) become
ur1

ur2

ur3



=



−c1 (zr2 − zr1) +
xr
1+yr1
zr1

√
(zr1)

2
+(zi1)

2√
(xr

1+yr1)
2
+(xi

1+yi1)
2

× (a1 (xr2 − xr1) + σ (yr2 − yr1))−
√

(zr1)
2
+(zi1)

2

zr1
e1

zr1z
r
3 − c2zr2 +

xr
2+yr2
zr2

√
(zr2)

2
+(zi2)

2√
(xr

2+yr2)
2
+(xi

2+yi2)
2

× ((a2−a1)xr1−xr1xr3+a2x
r
2+cyr1−yr1yr3−ayr2)− 3

√
(zr2)

2
+(zi2)

2

zr2
e2

−zr1zr2 + c3z
r
3 +

xr
3+yr3
zr3

√
(zr3)

2
+(zi3)

2√
(xr

3+yr3)
2
+(xi

3+yi3)
2

× (xr1x
r
2 − a3xr3 + yr1y

r
2 − byr3)− 5

√
(zr3)

2
+(zi3)

2

zr3
e3


(47)
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and


ui1

ui2

ui3

 =



−c1
(
zi2 − zi1

)
+

xi
1+yi1
zi1

√
(zr1)

2
+(zi1)

2√
(xr

1+yr1)
2
+(xi

1+yi1)
1

×
(
a1
(
xi2 − xi1

)
+ σ

(
yi2 − yi1

))

zi1z
i
3 − c2zi2 +

xi
2+yi2
zi2

√
(zr2)

2
+(zi2)

2√
(xr

2+yr2)
2
+(xi

2+yi2)
2

×
(
(a2 − a1)xi1 − xi1xi3 + a2x

i
2 + cyi1 − yi1yi3 − ayi2

)

−zi1zi2 +
xi
3+yi3
zi3

√
(zr3)

2
+(zi3)

2√
(xr

3+yr3)
2
+(xi

3+yi3)
2

(
xi1x

i
2 + yi1y

i
2

)



, (48)

where

e1 = |z1| − |x1 + y1| =
√

(zr1)2 +
(
zi1
)2 −√(xr1 + yr1)2 +

(
xi1 + yi1

)2
,

e2 = |z2| − |x2 + y2| =
√

(zr2)2 +
(
zi2
)2 −√(xr2 + yr2)2 +

(
xi2 + yi2

)2
,

e3 = |z3| − |x3 + y3| =
√

(zr3)2 +
(
zi3
)2 −√(xr3 + yr3)2 +

(
xi3 + yi3

)2
. (49)

Using the control functions (47) and (48), the error system (24) can be
represented as

ė =

 ė1
ė2
ė3

 = −K2e = −diag(1, 3, 5)e = −

 1 0 0
0 3 0
0 0 5

 e . (50)

The response system (45) and the drive systems (1) and (2) are solved nu-
merically with the control functions (47)–(48). The initial conditions of sys-
tems (1), (2), and (45) are, respectively, (x1, x2, x3)

T(0) = (0.1 + 0.2j, 0.3 +
0.4j, 0.5)T, (y1, y2, y3)

T(0) = (0.2 + 0.4j, 0.6 + 0.8j, 1)T, (z1, z2, z3)
T(0) =

(0.1 + 0.2j, 0.3 + 0.4j, 0.5)T, and the values of parameters of these systems
are: a1 = 35, a2 = 28, a3 = 3, σ = 2, c = 60 + j0.02, a = 1− 0.06j, b = 0.8,
c1 = 36, c2 = 20, c3 = 3. Figures 3–4 indicate the results of MMCS between
the systems (1), (2), and (45). Figure 3 presents the state variables of the
drive systems (1) and (2), and the response system (45). Furthermore, as
shown in Fig. 4, the synchronization errors ei (i = 1, 2, 3) approach zero.
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Fig. 3. The state variables for MMCS for the two drive systems (1),(2) (solid curves)
and the response system (45) (dashed curves): (a) |x1 + y1| and |z1| versus t,
(b) |x2 + y2| and |z2| versus t, and (c) |x3 + y3| and |z3| versus t.
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Fig. 4. Synchronization errors for the drive systems (1)–(2) and the response sys-
tem (45).
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3.3. MMCCS between four chaotic complex systems

To achieve the MMCCS, we consider the Chen and Lorenz systems (1)
and (2) as two drive systems, and the Lü and Rössler systems (3) and (4)
as the response systems. The two response systems after adding the control
functions take the form of

ż1 = c1(z2 − z1) + u1 ,

ż2 = −z1z3 + c2z2 + u2 ,

ż3 = 1
2 (z̄1z2 + z̄2z1)− c3z3 + u3 (51)

and

ẇ1 = −w1 − w3 + v1 ,

ẇ2 = w1 + d1w2 + v2 ,

ẇ3 = d2 + 1
2w3 (w1 + w̄1 − 2d3) + v3 , (52)

where u1, u2, u3, v1, v2, v3 are the control functions and f(x), g(y), and h(z)
are defined in Subsection 3.1–3.2 and s(w) is

s(w) =

 −w2 − w3

w1 + d1w2

d2 + 1
2w3 (w1 + w̄1 − 2d3)


= sr(w) + jsr(w) =

 −wr
2 − wr

3
wr
1 + d1w

r
2

d2 + wr
3 (wr

1 − d3)


+j

 −wi
2 − wi

3

wi
1 + d1w

i
2

0

 . (53)
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Using Theorem 2.9, the control functions (31) and (32) are
ur1 + vr1

ur2 + vr2

ur3 + vr3



=



(−c1 (zr2 − zr1) + wr
2 + wr

3) +
xr
1+yr1

zr1+wr
1

√
(zr1+wr

1)
2
+(zi1+wi

1)
2√

(xr
1+yr1)

2
+(xi

1+yi1)
2

× (a1 (xr2 − xr1) + σ (yr2 − yr1))

(zr1z
r
3 − c2zr2 − wr

1 − d1wr
2) +

xr
2+yr2

zr2+wr
2

√
(zr2+wr

2)
2
+(zi2+wi

2)
2√

(xr
2+yr2)

2
+(xi

2+yi2)
2

× ((a2 − a1)xr1 − xr1xr3 + a2x
r
2 + cyr1 − yr1yr3 − ayr2)

(−zr1zr2 + c3z
r
3 − d2 − wr

3 (wr
1 − d3)) +

xr
3+yr3

zr3+wr
3

√
(zr3+wr

3)
2
+(zi3+wi

3)
2√

(xr
3+yr3)

2
+(xi

3+yi3)
2

× (xr1x
r
2 − a3xr3 + yr1y

r
2 − byr3)



−



4

√
(zr1+wr

1)
2
+(zi1+wi

1)
2

zr1+wr
1

e1

3

√
(zr2+wr

2)
2
+(zi2+w1

2)
2

zr2+wr
2

e2

7

√
(zr3+wr

3)
2
+(zi3+w1

3)
2

zr3+wr
3

e3


(54)

and
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ui1 + vi1

ui2 + vi2

ui3 + vi2



=



(
−c1

(
zi2 − zi1

)
+ wi

2 + wi
3

)
+

xi
1+yi1

zi1+wi
1

√
(zr1+wr

1)
2
+(zi1+wi

1)
2√

(xr
1+yr1)

2
+(xi

1+yi1)
2

×
(
a1
(
xi2 − xi1

)
+ σ

(
yi2 − yi1

))
(
zi1z

i
3 − c2zi2 − wi

1 − d1wi
2

)
+

xi
2+yi2

zi2+wi
2

√
(zr2+wr

2)
2
+(zi2+wi

2)
2√

(xr
2+yr2)

2
+(xi

2+yi2)
2

×
(
(a2 − a1)xi1 − xi1xi3 + a2x

i
2 + cyi1 − yi1yi3 − ayi2

)
(
−zi1zi2 + c3z

i
3 − d2 − wi

3

(
wi
1 − d3

))
+

xi
3+yi3

zi3+wi
3

√
(zr3+wr

3)
2
+(zi3+wi

3)
2√

(xr
3+yr3)

2
+(xi

3+yi3)
2

×
(
xi1x

i
2 − a3xi3 + yi1y

i
2 − byi3

)



,

(55)

where

e1 = |z1 + w1| − |x1 + y1|

=

√
(zr1 + wr

1)2 +
(
zi1 + wi

1

)2 −√(xr1 + yr1)2 +
(
xi1 + yi1

)2
,

e2 = |z2 + w2| − |x2 + y2|

=

√
(zr2 + wr

2)2 +
(
zi2 + wi

2

)2 −√(xr2 + yr2)2 +
(
xi2 + yi2

)2
,

e3 = |z3 + w3| − |x3 + y3|

=

√
(zr3 + wr

3)2 +
(
zi3 + wi

3

)2 −√(xr3 + yr3)2 +
(
xi3 + yi3

)2
. (56)

Using the control functions (54) and (55), the error system (35) for this
example is

ė =

 ė1
ė2
ė3

 = −K3e = −diag(4, 3, 7)e = −

 4 0 0
0 3 0
0 0 7

 e . (57)
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The two drive and two response systems (1), (2), (51), and (52) are solved
numerically with the control functions (54)–(55). The initial conditions of
the systems (1), (2), (51), and (52) are, respectively, (x1, x2, x3)

T(0) =
(0.1 + 0.2j, 0.3 + 0.4j, 0.5)T, (y1, y2, y3)

T(0) = (0.2 + 0.4j, 0.6 + 0.8j, 1)T,
(z1, z2, z3)

T(0) = (0.1 + 0.2j, 0.3 + 0.4j, 0.5)T, (w1, w2, w3)
T(0) = (0.2 +

0.4j, 0.6 + 0.8j, 1)T, and these systems parameters are: a1 = 35, a2 = 28,
a3 = 3, σ = 2, c = 60 + j0.02, a = 1 − j0.06, b = 0.8, c1 = 36, c2 = 20,
c3 = 3, d1 = 0.2, d2 = 0.2, d3 = 5.7. The results of MMCCS among sys-
tems (1), (2), (51), and (52) are displayed in Figs. 5–6. Figure 5, describes
the 3D projection of the solution of the drive and response systems after
synchronization. Also, the synchronization errors go to zero as depicted in
Fig. 6.
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Fig. 5. MMCCS of: (a) the drive systems (1)–(2) in (|x1 + y1|, |x2 + y2|, |x3 + y3|)
space and (b) the response systems (51)–(52) in (|z1 + w1|, |z2 + w2|, |z3 + w3|)
space.
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Fig. 6. Synchronization errors for the drive systems (1)–(2) and the response sys-
tems (51)–(52).
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4. Application to image encryption

In this section, we investigate the application of image encryption based
on the CMMS between chaotic complex Chen and Lorenz systems. In the
sender, we consider the complex Chen (1) as the drive system that generates
chaotic signals (sequence); then signals will drive the response system (38)
to achieve synchronization with the drive system (1).

4.1. Encryption process

The steps for the encryption process to the application of image encryp-
tion are described as follows:

Step 1: The original grayscale image, P , of the size M ×N is represented
as M ×N matrix of pixels as follows:

P =

 p11 p12 . . . p1N
...

...
. . .

...
pM1 pM2 . . . pMN

 . (58)

Step 2: The 2D matrix, P , is converted to 1D matrix (vector), E, with the
length M ×N , which is defined as

E = [p11, p12, . . . , p1N , p21, p22, . . . , p2N , pM1, pM2, . . . , pMN ]

= [B1, B2, . . . , BMN ] . (59)

Each element in vector E is an integer from 0 to 255.

Step 3: Suppose that the synchronization is achieved between the drive
system (1) and the response system (38).

Step 4: The chaotic sequence can be produced from the chaotic drive sys-
tem (1). Iterate the system (38) for N0 + M × N times and discard the
former N0 values, a chaotic decimal sequence, S, with the length M × N
can be produced as follows:

S = [S1, S2, . . . , SMN ] . (60)

Step 5: The decimal chaotic sequence, S, is sorted in the ascending order.
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Step 6: According to step 5, the decimal values, K, can be computed
as follows:

K = mod
(
floor(S)× 108, 256

)
, (61)

where floor(m) rounds m to the nearest integer less than or equal to m and
mod(a, b) returns the remainder after division a

b .

Step 7: The encrypted (cipher) vector H is produced as follows:

H = K ⊕ E , (62)

where ⊕ the exclusive XOR operation.

Step 8: The encrypted image vector H is transformed into 2D matrix
to produce the encrypted image with the size M ×N .

Remark 4.1. A similar encryption process can be designed for MMCS using
the drive systems (1) and (2), and the response system (45). The same can
be done for MMCCS based on the drive systems (3) and (4) and the response
systems (51) and (52).

4.2. Decryption process

As we know, the decryption is the reverse process of encryption and the
key used for encryption and decryption are the same. The generated chaotic
sequence is consistent for the encryption and decryption process. Therefore,
the encryption application is symmetric and reversible, and we can easily
decrypt the encrypted image with the inverse steps of the encryption process.

4.3. Experimental results

We conducted numerous experiments on different standard grayscale im-
ages of the size 512 × 512 (Lake, Pirate, Barbara, and Boat) to validate
the application’s security and effectiveness. The original grayscale images
(Pirate, Barbara, and Boat), the encrypted images and the corresponding
decrypted images based on CMMS are shown in Fig. 7, respectively. Accord-
ing to Fig. 7, the plaintext image’s visual information cannot be seen in the
ciphertext image, and the restored ciphertext images and plaintext images
have no significant differences. As a result, the application encryption could
be used to effectively hide image information. In the decryption algorithm,
the parameter and initial values are the same as the encryption algorithm.
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Fig. 7. Image encryption/decryption experiment results of images with a size of
512 × 512: (a) Image Pirate, (b) Ciphered image of (a), (c) Decrypted image of
(b), (d) Image Barbara, (e) Ciphered image of (d), (f) Decrypted image of (e), (g)
Image Boat, (h) Ciphered image of (g), and (i) Decrypted image of (h).

4.3.1. Information entropy

Information entropy is used to measure the randomness of an image,
which is calculated as follows:

H(x) =
N∑
i=1

p(xi) log2
1

p(xi)
, (63)

where N denotes the number of gray levels, xi denotes the pixel value of the
image, and p(xi) denotes the frequency of the gray level.
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The stronger randomness is the higher entropy. It is generally accepted
that the ideal information entropy for 256 grayscale images is 8. When the
information entropy approaches 8, the cipher image becomes more confusing
and secure. In order to evaluate the encryption procedure, four images
are examined for the information entropy. The test results are provided in
Table 1. It can be seen that all encrypted images obtained by the encryption
process in this paper are close to 8, which significantly improves the image’s
information entropy. It is clear that the information entropy is approaching
the ideal value.

Table 1. The information entropy of plain images and their corresponding en-
crypted images.

Image

Plain images 7.450367 7.518523 7.32549 7.59481
Encrypted

7.999856 7.999376 7.998854 7.99947
images

4.3.2. Correlation analysis of adjacent pixels

The correlation coefficient of two pixels denotes the degree of correlation
between two pixels. There is a strong correlation between adjacent pixels
in the horizontal, vertical, and diagonal directions of the plaintext, whereas
there is no correlation between adjacent pixels in the effectively encrypted
image. The image’s adjacent pixel correlation coefficient is calculated as
follows:

rx,y =
cov(x, y)√
D(y)D(x)

, (64)

cov(x, y) = E((x− E(x))(y − E(y))) , (65)

E(x) =
1

N

N∑
i=1

xi , (66)

D(x) =
1

N

N∑
i=1

(xi − E(x))2 , (67)
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where x and y are the gray values of two adjacent pixels. cov(x, y), D(x),
and E(x) are covariance, variance, and expectation, respectively. Ideally, the
correlation between adjacent pixels in a successful encrypted image should
be close to zero.

The correlation coefficients in the horizontal, vertical, and diagonal di-
rections are calculated by randomly selecting 2000 pixels in plaintext image
and ciphertext image and, calculating the correlation coefficients in those
directions. The correlation test results of 4 grayscale images are listed in
Table 2. It can be seen that all the horizontal, vertical, and diagonal cor-
relations between adjacent pixels of the original image are very close to 1.
A ciphertext image, on the other hand, has a correlation coefficient that
is close to 0. As a result, the scheme is able to eliminate the correlation
between adjacent pixels and could undergo statistical attacks.

Table 2. Correlation coefficients between adjacent pixels of images.

Image Direction

Plain Horizontal 0.9285 0.9758 0.9467 0.9657
images Vertical 0.9352 0.9883 0.9548 0.9832

Diagonal 0.9387 0.9646 0.9389 0.9685
Encrypted Horizontal 0.0049 0.0031 0.0043 0.0038
images Vertical 0.0038 0.0038 0.0011 0.0054

Diagonal 0.0069 0.0020 0.0024 0.0030

4.3.3. Histogram analysis

A histogram is a statistical chart that represents the gray distribution of
an image, and counts the occurrence times of each gray value. As long as the
grayscale frequencies in the ciphered image are roughly equal, the histogram
will be flat and resistant to statistical analysis attacks. The grayscale and
encrypted images histograms are shown in Fig. 8. The pixel value distribu-
tion of the encrypted image is relatively uniform, as shown in Fig. 8, and
the histograms of the ciphered images are nearly flat. Furthermore, the his-
togram of the encrypted images differs noticeably from that of the original
image. As a result, the encryption scheme described in this paper can un-
dergo statistical attacks. The results of this section based on CMMS can be
similarly investigated but based on MMCS or MMCCS.
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Fig. 8. Histogram plot of various plain images and their encrypted version. (a) plain
Pirate, (b) encrypted Pirate, (c) plain Barbara, (d) encrypted Barbara, (e) plain
Boat, (f) encrypted Boat.

5. Conclusions

Three new kinds of modulus–modulus synchronization between chaotic
(or hyperchaotic) complex systems are proposed. These kinds are complete
modulus–modulus synchronization (CMMS) between two systems, modulus–
modulus combination synchronization (MMCS) between three systems, and
modulus–modulus combination–combination synchronization (MMCCS) be-
tween four systems. The definitions of CMMS, MMCS, and MMCCS are
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considered as a generalization of those in the literature as stated in Re-
marks 2.2–2.8. Three theorems are introduced to provide us with analytical
expressions of the control functions to achieve these kinds of synchronization.
As special cases of these chaotic complex systems we choose Chen, Lorenz,
Lü, and Rössler systems Eqs. (1), (2), (3), and (4), respectively. The cor-
responding analytical formulas of the control functions for CMMS, MMCS,
and MMCCS are derived in Eqs. (41)–(42), (47)–(48), and (54)–(55), respec-
tively. A good agreement is found between both analytical and numerical
results as depicted in Figs. 1–6. The processes of encryption and decryption
of images are stated based on CMMS between chaotic complex Chen and
Lorenz in Subsection 4.1. The experimental results of images encryption
and decryption using CMMS are shown in Fig. 7. The information entropy
of our images is calculated and presented in Table 1. It is clear that they
approach the ideal value which is 8. The grayscale and encrypted images his-
tograms are shown in Fig. 8. The distributions of the encrypted images are
relatively uniform and the histograms of the ciphered images are nearly flat.
Figures 7–8 demonstrate that the encryption applications provide very high
security performance and are more efficient. Similar investigations based on
MMCS and MMCCS can be studied.

We are currently in the process of extending these investigations to
other types of modulus–modulus synchronization in the near future, such
as dual combination synchronization and double compound combination–
combination synchronization. We will also consider these kinds of synchro-
nization with time delay.
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