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By projecting the partition function on the “color”-singlet state, we in-
vestigate the Hosotani mechanism in the fermion-gauge boson plasma. The
present toy-model analysis of the one-loop effective potential at finite tem-
perature shows that the critical temperature of gauge symmetry breaking
increases at higher temperature in the smaller volume.
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1. Introduction

Phase transition phenomena in finite temperature systems are found in
various aspects of physics research. In the unified theory of particle physics,
the analysis of finite-temperature field theory suggests [1] that the broken
symmetry by the Brout–Englert–Higgs (BEH) mechanism was restored in
the hot early universe. In other words, it can be said that the division of
the present fundamental interactions is the result of the phase transition in
the early universe.
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The theory of the fundamental scalar field, which is indispensable for the
BEH mechanism, is unnatural in the sense of suffering from huge quantum
corrections. Accordingly, the gauge-Higgs unified model has been proposed
as a candidate giving the solutions to the naturalness [2–8]. In the model,
the extra-dimensional component of the gauge field plays the role of the
Higgs field. Thus, there is no potential term that corresponds to the Higgs
potential at the tree level in the theory; this is due to the gauge symmetry,
which guarantees naturalness of the theory. Therefore, in the gauge-Higgs
unified model, it is expected that the quantum effect at one (or more) loop
order will bring about a non-trivial vacuum gauge field. This mechanism
is dubbed as the Hosotani mechanism (or Wilson loop mechanism) [9]. It
is known that fermionic matter fields with certain suitable representations
are needed for such symmetry breaking at zero temperature. The char-
acteristics of the Hosotani mechanism at finite temperature have already
been studied [10–12]. It has been pointed out that phase transitions at high
temperature always occur [11] (and the transition is first order for matter
fields with the periodic boundary condition in the extra dimension) in the
Hosotani mechanism.

There is another type of phase transition in the non-Abelian gauge the-
ory. It is the quark–hadron phase transition, which is known as hadroniza-
tion from quark–gluon plasma (QGP) [13]. Although the similar confine-
ment is not assumed in the gauge-Higgs scenario, non-perturbative effects
are expected in the early phase of the hot universe1. It is also well known
that the AdS/CFT method illustrates the reduction of the degrees of free-
dom in QGP in the non-perturbative region [18] in a certain non-Abelian
gauge theory.

Being motivated by the reduction in the number of degrees of freedom
in QGP, we revisit the general behavior of the Hosotani mechanism at finite
temperature through a toy model in this paper. We adopt the color-singlet
hypothesis in the present analysis2. This is a hypothesis that can be con-
sidered in the hadron phase transition from quark–gluon plasma, and it is
a hypothesis that QGP whitens globally owing to the nature of the strong
interaction. There are some debates as to whether this holds true in the
analysis of actual QGPs, etc. However, since it is followed by a well-defined
mathematical operation that expresses the reduction of degrees of freedom
using the group integration technique, it is considered to be a powerful
analytical method that can approximate the aimed aspect of the effective
behavior at least “phenomenologically”.

1 In a different context, the idea of vacuum selection at finite temperature in supersym-
metric grand unified theories, which is attributed to the difference in degree of freedom
of particles, is discussed by the authors of the papers on “supercosmology” [14–17].

2 The projection onto the singlet sector is also utilized in recent studies on large-N
Yang–Mills theories at finite temperature [19, 20].
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In the following sections of this paper, we use a toy model with SU(2)
symmetry (instead of a large group of unified models) to find a one-loop
effective potential at finite temperature under the hypothesis of the color
singlet.

This paper is organized as follows. In Sec. 2, we review the color-singlet
hypothesis and associated technique in analytical formulations. In Sec. 3,
we define the effective potential for the toy model of SU(2) gauge theory in
the background space RD−2 ⊗ S1. Numerical calculations of the effective
potential in five dimensions (D = 5) are shown in Sec. 4 and the possible
phase transition is studied. The discussion is presented in the last section.
In Appendix, an interesting and useful analysis of the effective potential
with approximations is examined.

2. The projected partition function for the color-singlet states

In this section, we review the argument of the global color symmetry in
QGP under the color-singlet hypothesis. Using the technique shown in the
present section, we will obtain the effective potential in a toy model for the
Hosotani mechanism in the “color”-neutral plasma in the next section.

The QCD is known as a theory describing the strong force and causes
the confinement of quarks and gluons. The transition from hadronic matter
to quark–gluon plasma is considered to be a transition from local color con-
finement to global color confinement at finite temperature [13]. We should
consider the restricted partition function of the color-singlet state to real-
ize the global color symmetry [13, 21–27]. To this end, first, we define a
generalized partition function which includes the generators of the Cartan
subalgebra Ĉα in the gauge group as follows:

ZC(ψα) = Tr
[
e−βĤ+iψαĈα

]
, (2.1)

where, as usual, β is the inverse of the temperature T and Ĥ denotes the
Hamiltonian.

Next, we introduce the characteristic functions. The function of the pa-
rameter ψα specified by the representation j of the group (SU(3) for QCD)
is called the characteristic function χj(ψα). The characteristic functions
satisfy ∫

dµ(ψα)χ
∗
j (ψα)χj′(ψα) = δjj′ , (2.2)

where dµ(ψα) is the invariant measure of the group. For SU(2), i.e., the
two-color case, it is known that

dµ(ψ) =
sin2 ψ2
2π

dψ (−2π ≤ ψ < 2π) , (2.3)

where ψ is the single variable for the center of SU(2).
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We assume that the generalized partition function can be expanded by
the characteristic functions and the characteristic function for the singlet
is known to be unity. Thus, the restricted partition function Z is finally
obtained by projection onto the color singlet as

Z =

∫
dµ(ψα)ZC(ψα) . (2.4)

Here, we notice that Jacobi’s imaginary transformation [28]

1√
4πt

∞∑
n=−∞

e
−β2n2

(4t) ei2πny =
1

β

∞∑
n=−∞

e
−
[
2π
β
(n+y)

]2
t (2.5)

and from the formula in Ref. [1], we find that the equalities∑
n

ln

[
4π2(n+ y)2

β2
+ ω2

]

= −
∞∫
0

dt

t

∑
n

exp

[
−
(
4π2(n+ y)2

β2
+ ω2

)
t

]

= − β√
4π

∞∫
0

dt

t3/2

∑
n

ei2πny exp

[
−ω2t− β2n2

4t

]

= −
βωΓ

(
−1

2

)
√
4π

− 2βω√
4π

∞∑
n=1

2ei2πny
(

2

nβω

)1/2

K1/2(nβω)

= βω −
∞∑
n=1

2

n
e−nβωei2πny

= βω + 2 ln
(
1− e−βω+i2πy

)
(2.6)

hold, up to the terms independent of an arbitrary constant ω. Therefore,
we can express lnZC(ψα) as

lnZC(ψα) = −1

2
Tr

∑
n

ln


(
2πn+ ψαĈα

)2

β2
+ ω2

 (2.7)

for bosonic fields, and

lnZC(ψα) =
1

2
Tr

∑
n

ln


[
2π

(
n+ 1

2

)
+ ψαĈα

]2
β2

+ ω2

 (2.8)
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for fermionic fields, where each trace indicates the sum over possible energy
eigenvalue, ω, and all degrees of freedom. Precisely speaking, the expressions
for the generalized partition function here involve the contribution of the
vacuum energy. Incidentally, the expression is convenient for evaluation of
the effective potential for the Hosotani mechanism.

3. The SU(2) toy model

Here, we consider the Hosotani mechanism at finite temperature in the
SU(2) gauge theory with massless fermions in the adjoint representation. We
consider D-dimensional spacetime and assume that the topology of space is
RD−2 ⊗ S1 and the circumference of the compact dimension is set to L. All
the fields obey the periodic boundary condition with respect to the compact
dimension3.

Although the several conditions towards asymptotic freedom etc. may be
a necessary condition for strong non-perturbative effects implicitly assumed,
we will temporally ignore the conditions in the present toy model.

The vacuum expectation value of the extra-dimensional component of
the SU(2) gauge field Ay is now parametrized as

gL⟨Ay⟩ =
θ

2

(
1 0
0 −1

)
, (3.1)

where g is the SU(2) gauge coupling. Note that the trivial vacuum is asso-
ciated with θ = 0, where the gauge-invariant Wilson loop over S1 becomes
exp igL⟨Ay⟩ = I, where I is the identity matrix. The residual large gauge
symmetry tells the identification θ ∼ θ+4π. Moreover, when θ = 2π, it gives
exp igL⟨Ay⟩ = −I; then the SU(2) symmetry is unbroken. This is due to
the Z2 symmetry in SU(2) and, consequently, we expect that the partition
function is periodic in θ with a period 2π.

The restricted partition function after projections is written as [13, 21–
27]

Z(θ) =

2π∫
−2π

dψ

2π
sin2

ψ

2
ZG(θ, ψ) [Za(θ, ψ)]

Na , (3.2)

where Na is the number of the adjoint fermion fields. In this expression, the
logarithm of the generalized partition function ZG for the gauge bosons and
the ghosts is formally given by

3 Although various bizarre boundary conditions are investigated by many papers in-
cluding Ref. [29], we take the simplest condition in the present paper.
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lnZG(θ, ψ) = −D − 2

2
V

3∑
A=1

∑
n

∑
k

∫
dD−2p

(2π)D−2

× ln

[
(2πn+ CAψ)

2

β2
+ p2 +M2

A(k)

]
, (3.3)

where

C1 = +1 , C2 = −1 , C3 = 0 , M2
A =

(
2πk + CAθ

L

)2

, (3.4)

and the generalized partition function for the adjoint fermions are written by

lnZa(θ, ψ) =
2[D/2]

4
V

3∑
A=1

∑
n

∑
k

∫
dD−2p

(2π)D−2

× ln

[[
2π

(
n+ 1

2

)
+ CAψ

]2
β2

+ p2 +M2
A(k)

]
, (3.5)

where [D/2] is the Gauss’ symbol such that [4/2] = [5/2] = 2.
In these expressions, the constant V denotes the (D − 2)-dimensional

volume of the hot-plasma system. The definition of the volume of the system
is a crucial problem. We can consider the small objects, such as false vacuum
bubbles, or the cores of the exotic stars, or the fermion droplets in the
universe.

We should recall that the above expressions include vacuum contribu-
tions and should be regularized by getting rid of divergences, which are
irrelevant to physical quantities. With the aid of Jacobi’s imaginary trans-
formation [28]

∑
k

exp

[
−
(
2πk +Θ

L

)2

t

]
=

L√
4πt

∑
k

exp

[
−L

2k2

4t

]
e−ikΘ , (3.6)

we find that the similar manipulation as in Sec. 2 leads to

lnZG(θ, ψ) =
(D − 2)Γ (D/2)

2πD/2
βLV

∑
n,k

′ 1 + 2 cos [kθ + nψ]

[β2n2 + L2k2]D/2
, (3.7)

lnZa(θ, ψ) =
2[D/2]Γ (D/2)

2πD/2
βLV

∑
n,k

′ (−1)n−1 {1 + 2 cos [kθ + nψ]}
[β2n2 + L2k2]D/2

, (3.8)

where the primes on sums indicate the omission of n = k = 0 in the sum-
mations. By this omission, the expressions have become finite and the reg-
ularization has been accomplished.
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Each partition function can be divided into two parts, say,

lnZG(θ, ψ) = lnZG0(θ) + lnZGT (θ, ψ) ,

lnZa(θ, ψ) = lnZa0(θ) + lnZaT (θ, ψ) . (3.9)

Here, contributions of vacuum fluctuations are given, with the use of the
Riemann’s zeta function ζR(z) and the Dth polylogarithm function LiD(z),
by

lnZG0(θ) =
(D−2)Γ (D/2)

πD/2LD
βLV

∞∑
k=1

1+2 cos kθ

kD

=
(D−2)Γ (D/2)

πD/2LD
βLV

[
ζR(D)+LiD

(
eikθ

)
+LiD

(
e−ikθ

)]
, (3.10)

lnZa0(θ) =−2[D/2]Γ (D/2)

πD/2LD
βLV

∞∑
k=1

1+2 cos kθ

kD

=−2[D/2]Γ (D/2)

πD/2LD
βLV

[
ζR(D)+LiD

(
eikθ

)
+LiD

(
e−ikθ

)]
,(3.11)

while the finite-temperature parts can be written by

lnZGT (θ, ψ) = (D − 2)βLV [wb(0, 0) + 2wb(θ, ψ)] ,

lnZaT (θ, ψ) = 2[D/2]βLV [wf (0, 0) + 2wf (θ, ψ)] , (3.12)

where

wb(θ, ψ) ≡
Γ (D/2)

πD/2

∞∑
n=1

∞∑
k=−∞

cos kθ cosnψ

[β2n2 + L2k2]D/2
, (3.13)

and

wf (θ, ψ) ≡
Γ (D/2)

πD/2

∞∑
n=1

(−1)n−1
∞∑

k=−∞

cos kθ cosnψ

[β2n2 + L2k2]D/2
. (3.14)

Incidentally, wb and wf coincide with the effective potential for the SU(2)
gauge theory with torus (T 2) compactification with appropriate boundary
conditions [30]. In our case, however, the parameter ψ is to be integrated
for the “color”-singlet projection.

The partition function restricted to SU(2) “color”-singlet states for the
present model is then given by

Z(θ) = ZG0(θ)[Za0(θ)]
Na × 1

2π

2π∫
−2π

dψ

[
sin2

ψ

2

]
ZGT (θ, ψ)[ZaT (θ, ψ)]

Na .

(3.15)
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Now, the effective potential V(θ) is defined by

V(θ) ≡ − 1

βV L
lnZ(θ) . (3.16)

One can find that the effective potential at zero temperature becomes

V0(θ) ≡ − 1

βV L
[lnZG0(θ) +Na lnZa0(θ)] , (3.17)

where lnZG0 and lnZa0 have been given by (3.10) and (3.11), which is the
well-known effective potential in the Hosotani mechanism.

We should also notice that the limit of the infinite volume gives

V(θ) → V0(θ)−
1

βV L
[lnZGT (θ, 0) +Na lnZaT (θ, 0)] , (3.18)

because for a large volume, ψ = 0 is a stationary point in the integrand
of (3.15).

If θ = 0 gives a global minimum of of V(θ), the gauge symmetry is
unbroken, while if the global minimum is located at θ ̸= 0 (mod 2π), the
SU(2) symmetry is reduced to be U(1).

4. Numerical calculations for D = 5

Now, we shall evaluate V(θ) in this model. To handle the numerical
function, we use the following integral expression:

wb(θ, ψ) =
1

2πD/2

∞∫
0

dt tD/2−1ϑ3

(
θ

2π
, i
L2t

π

)[
ϑ3

(
θ

2π
, i
β2t

π

)
− 1

]
, (4.1)

and

wf (θ, ψ) = − 1

2πD/2

∞∫
0

dt tD/2−1ϑ3

(
θ

2π
, i
L2t

π

)[
ϑ4

(
θ

2π
, i
β2t

π

)
− 1

]
,

(4.2)
where ϑn(v, τ) is Jacobi’s theta function [28].

Hereafter, we shall concentrate on the case ofr D = 5. We show typical
shapes of functions wb and wf in Fig. 14. One can find that both functions
wb and wf have a period 2π for both variables θ and ψ, the maximum of
which is at 0 for each variable and the minimum at π. Therefore, the extrema
of the effective potential V should be found at θ = 0 and π (modulo 2π).

4 We used the command FunctionInterpolation in Mathematica [31].
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Fig. 1. The functions for β = 1.2 and L = 1: (left) wb and (right) wf .

At the critical temperature, the values of V(0) and V(π) are equal in
the present model5. In Fig. 2, we show the critical lines in the parameter
space spanned by r/L and β/L, where, r is the radius of a ball with volume
V such that V = 4π

3 r
3 6. In the region above the line, the gauge symme-

try is broken. One can find that the SU(2) symmetry is broken for any
value of r for a sufficiently high temperature. For a smaller r, the critical
temperature becomes higher; the symmetry restoration is suppressed by the
color-singletness. The suppression is larger for a larger number of fermions,
which are introduced to break the symmetry, though it works in a much
smaller volume.

U(1)

SU(2)

Fig. 2. Phase structure of the model. The solid line indicates the boundary of the
two phases for Na = 1, the broken line indicates that for Na = 2, and the dotted
line indicates that for Na = 3.

The typical change in shape of the potential is exhibited in Fig. 3, which
shows the minima of the effective potential in the present model can appear

5 This is not the case if the matter field with a weird boundary condition exists in the
model.

6 As it is well known, V = πD/2−1

Γ(D
2 )

rD−2 in the case of D-dimensional spacetime.
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at θ = 0 or θ = π (modulo 2π).
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Fig. 3. The effective potential V for Na = 1, β = 1.2 and L = 1: (a) r = 0.5,
(b) r = 0.814, (c) r = 1, (d) r = ∞.

5. Discussion

In this paper, the effective potential at finite temperature was obtained
for the SU(2) toy model based on the color-singlet hypothesis. For a smaller
volume, the critical temperature of the SU(2)–U(1) phase transition becomes
higher.

A future task to be considered is the analysis of a more realistic general
gauge-Higgs unified model with a larger symmetry group at finite temper-
ature. The symmetry breaking in the SU(3) gauge theory with various
fermions has been studied by lattice calculations [32] and it is reported that
the SU(3)-confined phase exists at the strong coupling regime. We should
continue to pursue the strong coupling effect and the finite size effect with
various analytical and numerical methods in order to deepen our under-
standing of the Hosotani mechanism at finite temperature. We should also
consider general gauge theories in higher dimensional extra space, orbifold,
and warped spacetimes.

As a natural extension of the present analysis, we come to the idea
that no fermion number condition on the matter field in the model should
be taken into account. In addition, the Kaluza–Klein charge (originated
from the momentum in the extra dimension) is also a conserved quantity
[33–37]. Thus, we can also assume the no net Kaluza–Klein charge in the
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closed system. For the case of the Hosotani mechanism, however, there
appears a problematic issue that in the present model, the projection onto
a state of a definite Kaluza–Klein charge breaks the residual large gauge
symmetry, such as θ ∼ θ+ 4π (or θ ∼ θ+ 2π, due to Z2). The treatment of
these conserved charges will be challenged in the future with more elaborate
investigations.

Appendix A

An approximation scheme by finite sums

The defined functions wb and wf are expressed in the summation forms
(3.13) and (3.14). We try to approximate these by finite sums. We define
the following function:

wapp(θ, ψ) ≡ Γ (D/2)

πD/2

1∑
n=1

2∑
k=−2

cos kθ cosnψ

[β2n2+L2k2]D/2

=
Γ (D/2)

πD/2
cosψ

[
1

βD
+2

cos θ

(β2+L2)D/2
+2

cos 2θ

(β2+4L2)D/2

]
.(A.1)

As an approximation, we replace both wb and wf with wapp. This approxi-
mation is justified for a large D and also for β/L ≪ 1. Figure 4 shows the
function wapp for D = 5, β = 1.2, and L = 1. The approximation looks fine,
at least for the values of parameters around this assumption. Owing to the
simplification, we can use the following formula to evaluate the projection
integral:

1

2π

2π∫
−2π

sin2
ψ

2
ez cosψdψ = I0(z)− I1(z) , (A.2)

where In(z) is the modified Bessel function of the first kind.
According to this approximation, the sum included in the vacuum con-

tribution in Z is also approximated by a finite sum
∞∑
k=1

cos kθ

kD
≈ cos θ +

cos 2θ

2D
. (A.3)

Figure 5 shows the reposted phase diagram (Fig. 2) and the gray lines
obtained from the above approximation in addition.

For a large volume, the integral over ψ are dominant in the region around
the stationary points ψ ≈ 0. Therefore, the approximation of taking n = 1
only is good for cases with large volumes. One can see that the bending
location on the lines are well approximated.
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Fig. 4. The function wapp for β = 1.2 and L = 1.
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Fig. 5. Phase structure of the model: The lines in Fig. 2 are reposted here and
corresponding gray lines are drawn according to the present approximation scheme.

REFERENCES

[1] L. Dolan, R. Jackiw, «Symmetry behavior at finite temperature», Phys.
Rev. D 9, 3320 (1974).

[2] Y. Hosotani, «Gauge-Higgs unification approach», AIP Conf. Proc. 1467,
208 (2012).

[3] Y. Hosotani, «Gauge-Higgs EW and grand unification», Int. J. Mod. Phys. A
31, 1630031 (2016).

[4] H. Hatanaka, T. Inami, C.S. Lim, «The Gauge Hierarchy Problem and
Higher Dimensional Gauge Theories», Mod. Phys. Lett. A 13, 2601 (1998).

[5] N. Haba, K. Takenaga, T. Yamashita, «Higgs mass in the gauge-Higgs
unification», Phys. Lett. B 615, 247 (2005).

[6] K. Kojima, K. Takenaga, T. Yamashita, «Multi-Higgs mass spectrum in
gauge-Higgs unification», Phys. Rev. D 77, 075004 (2008).

[7] K. Kojima, K. Takenaga, T. Yamashita, «Grand gauge-Higgs unification»,
Phys. Rev. D 84, 051701(R) (2011).

[8] J. Carlson, N. Okada, «125 GeV Higgs boson mass from 5D gauge-Higgs

http://dx.doi.org/10.1103/PhysRevD.9.3320
http://dx.doi.org/10.1103/PhysRevD.9.3320
http://dx.doi.org/10.1063/1.4742101
http://dx.doi.org/10.1063/1.4742101
http://dx.doi.org/10.1142/S0217751X16300313
http://dx.doi.org/10.1142/S0217751X16300313
http://dx.doi.org/10.1142/S021773239800276X
http://dx.doi.org/10.1016/j.physletb.2005.04.027
http://dx.doi.org/10.1103/PhysRevD.77.075004
http://dx.doi.org/10.1103/PhysRevD.84.051701


Hosotani Mechanism in the “Color”-singlet Plasma 7-A1.13

unification», Prog. Theor. Exp. Phys. 2018, 033B03 (2018).
[9] Y. Hosotani, «Dynamical mass generation by compact extra dimensions»,

Phys. Lett. B 126, 309 (1983).
[10] K. Shiraishi, «Finite temperature and density effects on symmetry breaking

by Wilson loops», Z. Phys. C 35, 37 (1987).
[11] C.-L. Ho, Y. Hosotani, «Symmetry breaking by Wilson lines and

finite-temperature effects», Nucl. Phys. B 345, 445 (1990).
[12] N. Maru, K. Takenaga, «Aspects of phase transition in gauge-Higgs

unification at finite temperature», Phys. Rev. D 72, 046003 (2005).
[13] B. Müller, «The Physics of Quark-Gluon Plasma, Lecture Notes in Physics,

Vol. 225», Springer, Berlin, Heidelberg 1985.
[14] D.V. Nanopoulos, K. Tamvakis, «Super-cosmology», Phys. Lett. B 110, 449

(1982).
[15] J. Ellis, C.H. Llewllyn Smith, G.G. Ross, «Will the universe become

supersymmetric?», Phys. Lett. B 114, 227 (1982).
[16] D.V. Nanopoulos, K.A. Olive, K. Tamvakis, «Further aspects of

supercosmology», Phys. Lett. B 115, 15 (1982).
[17] B.A. Campbell et al., «Supercosmology revitalized», Phys. Lett. B 197, 355

(1987).
[18] C.P. Burgess, N.R. Constable, R.C. Myers, «The free energy of N = 4 super

Yang–Mills and AdS/CFT correspondence», J. High Energy Phys. 9908, 017
(1999).

[19] B. Sundborg, «The Hagedorn transition, deconfinement and N = 4 SYM
theory», Nucl. Phys. B 573, 349 (2000).

[20] O. Aharony et al., «The Hagedorn/Deconfinement Phase Transition in
Weakly Coupled Large N Gauge Theories», Adv. Theor. Math. Phys. 8, 603
(2004).

[21] H.-T. Elze, W. Greiner, J. Rafelski, «On the color-singlet quark-glue
plasma», Phys. Lett. B 124, 515 (1983).

[22] K. Redlich, L. Turko, «Phase transition in the statistical bootstrap model
with an internal symmetry», Z. Phys. C 5, 201 (1980).

[23] L. Turko, «Quantum gases with internal symmetry», Phys. Lett. B 104, 153
(1981).

[24] H.-T. Elze, W. Greiner, «Quantum statistics with internal symmetry», Phys.
Rev. A 33, 1879 (1986).

[25] H.-T. Elze, W. Greiner, «Finite size effects for quark-gluon plasma droplets»,
Phys. Lett. B 179, 385 (1986).

http://dx.doi.org/ 10.1093/ptep/pty018
http://dx.doi.org/10.1016/0370-2693(83)90170-3
http://dx.doi.org/10.1007/BF01561053
http://dx.doi.org/10.1016/0550-3213(90)90395-T
http://dx.doi.org/10.1103/PhysRevD.72.046003
http://dx.doi.org/10.1007/BFb0114317
http://dx.doi.org/10.1016/0370-2693(82)91036-X
http://dx.doi.org/10.1016/0370-2693(82)91036-X
http://dx.doi.org/10.1016/0370-2693(82)90482-8
http://dx.doi.org/10.1016/0370-2693(82)90505-6
http://dx.doi.org/10.1016/0370-2693(87)90400-X
http://dx.doi.org/10.1016/0370-2693(87)90400-X
http://dx.doi.org/10.1088/1126-6708/1999/08/017
http://dx.doi.org/10.1088/1126-6708/1999/08/017
http://dx.doi.org/10.1016/S0550-3213(00)00044-4
http://dx.doi.org/10.4310/ATMP.2004.v8.n4.a1
http://dx.doi.org/10.4310/ATMP.2004.v8.n4.a1
http://dx.doi.org/10.1016/0370-2693(83)91564-2
http://dx.doi.org/10.1007/BF01421776
http://dx.doi.org/10.1016/0370-2693(81)90579-7
http://dx.doi.org/10.1016/0370-2693(81)90579-7
http://dx.doi.org/10.1103/PhysRevA.33.1879
http://dx.doi.org/10.1103/PhysRevA.33.1879
http://dx.doi.org/10.1016/0370-2693(86)90498-3


7-A1.14 N. Kan, K. Kobayashi, K. Shiraishi

[26] M.I. Gorenstein, S.I. Lipskikh, V.K. Petrov, G.M. Zinovjev, «The
colorlessness partition function of the quantum quark-gluon gas», Phys.
Lett. B 123, 437 (1983).

[27] M.I. Gorenstein, O.A. Mogilevsky, V.K. Petrov, G.M. Zinovjev, «On the
colorless partition function of quark-gluon gas with SU(Nc)-color»,
Z. Phys. C 18, 13 (1983).

[28] M. Abramowitz, I.A. Stegan, «Handbook of Mathematical Functions with
Formulas, Graphs, and Mathematical Tables», Dover, New York 1972.

[29] M. Sakamoto, K. Takenaga, «High temperature symmetry nonrestoration
and inverse symmetry breaking on extra dimensions», Phys. Rev. D 80,
085016 (2009).

[30] J.E. Hetrick, C.-L. Ho, «Dynamical symmetry breaking from toroidal
compactification», Phys. Rev. D 40, 4085 (1989).

[31] Wolfram Research, Inc., Mathematica, Version 4.2 Champaign, IL, 2002.
[32] G. Cossu, J.-I. Noaki, H. Hatanaka, Y. Hosotani, «Polyakov loops and the

Hosotani mechanism on the lattice», Phys. Rev. D 89, 094509 (2014).
[33] E.W. Kolb, R. Slansky, «Dimensional reduction in the early universe: Where

have the massive particles gone?», Phys. Lett. B 135, 378 (1984).
[34] K. Shiraishi, «Bose–Einstein Condensation in Compactified Space», Prog.

Theor. Phys. 77, 975 (1987).
[35] K. Shiraishi, «Thermodynamic potential for compactified bosonic strings»,

Nuovo Cim. A 100, 683 (1988).
[36] M. McGuigan, «Constrained partition functions and the asymmetric tensor

field», Phys. Rev. D 42, 2040 (1990).
[37] K.R. Dienes, M. Lennek, M. Sharma, «Strings at finite temperature: Wilson

lines, free energies, and the thermal landscape», Phys. Rev. D 86, 066007
(2012).

http://dx.doi.org/10.1016/0370-2693(83)90988-7
http://dx.doi.org/10.1016/0370-2693(83)90988-7
http://dx.doi.org/10.1007/BF01571699
http://dx.doi.org/10.1103/PhysRevD.80.085016
http://dx.doi.org/10.1103/PhysRevD.80.085016
http://dx.doi.org/10.1103/PhysRevD.40.4085
http://dx.doi.org/10.1103/PhysRevD.89.094509
http://dx.doi.org/10.1016/0370-2693(84)90298-3
http://dx.doi.org/10.1143/PTP.77.975
http://dx.doi.org/10.1143/PTP.77.975
http://dx.doi.org/10.1007/BF02813316
http://dx.doi.org/10.1103/PhysRevD.42.2040
http://dx.doi.org/10.1103/PhysRevD.86.066007
http://dx.doi.org/10.1103/PhysRevD.86.066007

	1 Introduction
	2 The projected partition function for the color-singlet states
	3 The SU(2) toy model
	4 Numerical calculations for D=5
	5 Discussion
	A 

