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A reduced form of the Dirac equation has been previously introduced
and studied in the center-of-mass reference frame. In this work, we show
that this equation can be written in a covariant form in a generic refer-
ence frame by using specific momentum variables. These variables are also
consistent with the retardless form of the interaction of the model.
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1. Introduction

In a previous work [1], we developed a local reduction of many-body
relativistic equations (more precisely, the Dirac-like equation (DLE) and
the Mandelzweig–Wallace equation (MW) [2]) for studying the spectroscopy
of quark composed systems. An accurate calculation of the charmonium
spectrum was performed using a small number of free parameters [3]. In
that work, a specific form of the regularized vector interaction was used [4].

In general, for the theoretical formulation of the model, we used the
center-of-mass reference frame (CMRF) where the hadronic bound system
is at rest.

This choice is perfectly legitimate in the sense that the internal dynamics
of the bound system can be studied completely in that frame.

However, in order to understand in more detail the relativistic character
of the model, it is useful to develop its covariant version in a generic reference
frame (GRF). This covariant version of the relativistic equation can be also
used to study the scattering processes of the hadronic systems.
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The derivation of the wave equation in covariant form, for a two-body
hadronic system, represents the main objective of the present work. In this
context, we show that the retardless and local character of the interaction
used in Ref. [1] is fully compatible with the relativistic covariance properties
of the model.

The technique used in this work to obtain the covariant form of the rela-
tivistic equation is not completely new: similar procedures can be found, for
example, in Refs. [5–7]. Here, we highlight the specific role of the relativistic
variables assuming that the total energy of each particle represents the time
component of its four-momentum. As a consequence, the particles are not
on-shell. Furthermore, the particle energy is considered a “fixed” quantity,
determined in the CMRF by the internal dynamics of the bound system.
Due to this choice, the time component of the momentum transfer in the
CMRF is vanishing giving a retardless interaction operator.

In classical words, each particle of the bound state produces a static field
with which the other particle interacts.

For clarity, we point out that the model assumptions introduced above
significantly differ from the relativistic scheme in which one particle is con-
sidered on-shell, as, for example, in the relativistic spectator formalism de-
veloped in Refs. [8–11].

Our choice of the relativistic variables and the procedure for obtaining
a two-body covariant relativistic equation are applied to different cases of
CMRF relativistic equations. Finally, we put in a covariant form also the
reduction operators introduced in [1]. In this way, the covariant form of the
correlated Dirac wave functions is determined. In this regard, we note that
our choice of relativistic variables is fully consistent with the definition of
the reduction operators.

For a thorough description of the CMRF relativistic model and for a
comparison with other relativistic equations, the reader is referred to Ref. [1].
In the present work, we focus our attention on its “covariantization” by means
of suitable variables.

The remainder of the paper is organized as follows. In Subsection 1.1,
we introduce the symbols and notations used in the work. In Section 2,
we discuss the relativistic variables of the model and analyze their Lorentz
transformations. In particular, in Subsection 2.1, we introduce the basic
variables; in Subsection 2.2, we study the transformations of the four-vectors
and of the Dirac wave functions of the model; in Subsection 2.3, the momen-
tum variables for a GRF are determined. In Section 3, the covariant form
of the wave equation is obtained focusing the attention on the Dirac-like
case; the covariant generalization of other forms of the relativistic equation
is analyzed in Subsection 3.1. The covariant expression of the correlated
Dirac wave functions is studied in Section 4. Finally, in Appendix A, we
briefly discuss the method to fix the value of the particle energy.
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1.1. Symbols and notation

In this work, the quantities defined as four-vectors will be denoted as in
the following example: V = (V 0, V⃗ ). The Lorentz indices will be written
only when strictly necessary and in the invariant products; for example,
V µUµ = V 0U0 − V⃗ · U⃗ .

The superscript c, not used in [1], denotes here a four-vector (and also
a wave function) related to the CMRF. No specific symbol is used for the
same quantity in a GRF.

The lower index i(j) = 1, 2 represents the particle index. The particle
index is never summed in this work.

For the covariant form of the Dirac equation, we use the gamma matrices
of the ith particle γµi in the standard representation. For the Hamiltonian
form of the Dirac operators, we also introduce βi = γ0i and the matrices
γ0i γ

µ
i = (Ii, α⃗i). The symbol Ii, that represents the identity 4 × 4 matrix

for the ith particle, will be omitted when not strictly necessary; for example,
V 0
i Ii − V⃗ · α⃗i will be written as V 0

i − V⃗ · α⃗i. In the same way, Vµγ
µ
i + bIi

will be written as Vµγ
µ
i + b.

The Dirac wave functions will be represented by the letter Ψ ; the spinorial
wave functions by the letter Φ.

As customary, throughout the work, we use the so-called natural units,
that is ℏ = c = 1.

2. The variables of the covariant model.
Lorentz and Dirac Boost transformations

2.1. The basic variables of the model

We consider a hadronic bound system, composed of two spin 1/2 particles
(a quark and an antiquark) with masses m1 and m2.

We assume that in the CMRF, the four-momenta of the two particles
are

pc1 =
(
Ec

1,−p⃗ c
)
,

pc2 =
(
Ec

2,+p⃗ c
)
, (1)

where Ec
1 and Ec

2 represent the “fixed”, constant energy values of the two
particles. This point is studied in more detail in Appendix A, where in
Eq. (A.1), a standard auxiliary prescription is recalled to determine their
values, shown in Eq. (A.2). The sign of the internal three-momentum p⃗ c is
defined as in Refs. [1, 3].

Note that the total four-momentum eigenvalue in the CMRF is

P c = pc1 + pc2 =
(
M, 0⃗

)
, (2)

where M represents the mass of the bound system.
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For the relevant case of two equal mass particles, as given in Eq. (A.3)
of Appendix A, we have

Ec
1 = Ec

2 =
M

2
. (3)

Also, in a GRF, the bound system is an eigenstate of total four-momen-
tum with eigenvalue

P =
(
E, P⃗

)
, (4)

where P⃗ is the total three-momentum of the bound system and the total
energy E has the standard on-shell expression

E =

√
M2 + P⃗ 2 . (5)

In this work, for simplicity, we shall not write explicitly the total momentum
eigenfunction that will not be used in the calculations.

2.2. Lorentz and Dirac Boost trasformations

The content of this subsection is completely standard. Here, it is reported
and applied to our model in order to improve the self-consistency of the
paper.

Using the definitions of Eqs. (4), (5) for the total four-momentum of
the system and recalling that the speed of the bound system in a GRF is
β⃗ = P⃗ /E, we can write the Lorentz transformations of any CMRF four-
vector V c to the same four-vector V in a GRF. These transformations have
the following standard form:

V 0 =
1

M

(
EV c 0 + P⃗ V⃗ c

)
,

V⃗ = V⃗ c +
P⃗

M

(
P⃗ V⃗ c

E +M
+ V c 0

)
. (6)

The inverse Lorentz transformations are

V c 0 =
1

M

(
EV 0 − P⃗ V⃗

)
,

V⃗ c = V⃗ +
P⃗

M

(
P⃗ V⃗

E +M
− V 0

)
. (7)

Some words of comment about the first expression of Eq. (7): the time com-
ponent of a four-vector “seen” in the CMRF is a Lorenz-invariant quantity.



Relativistic Variables for Covariant, Retardless Wave Equations 7-A2.5

In consequence, we can rewrite that expression in explicitly invariant form,
that is,

V c 0 =
PµV

µ

M
. (8)

The Dirac Boost operator, for the ith quark, has the following standard form:

Bi = FB

[
(E +M) + α⃗i · P⃗

]
; (9)

the inverse operator is

B−1
i = FB

[
(E +M)− α⃗i · P⃗

]
(10)

with
FB = [2M(E +M)]−1/2 . (11)

We recall that the Bi are used to transform CMRF Dirac wave function Ψ c

to a GRF Dirac wave function Ψ ; furthermore, Ψ̄ c is transformed with the
inverse Boost operators, that is,

B1B2Ψ
c = Ψ ,

Ψ̄ cB−1
1 B−1

2 = Ψ̄ . (12)

Due to the properties of the Dirac Boost, one has

BiV
c
µγ

µ
i B

−1
i = Vµγ

µ
i , (13)

where, for a given four-vector V c, V is given by Eq. (6). In particular, taking
the unit four-vector uc = (1, 0⃗ ) and, consequently, u = P/M , one has

Biγ
0
i B

−1
i =

Pµγ
µ
i

M
. (14)

2.3. The momentum variables in a GRF

We can now construct the momentum variables in a GRF. Starting from
Eq. (1) with the transformations of Eq. (6), one can obtain the four-momenta
of the two particles p1, p2 in a GRF.

However, in order to write the wave equation, it is necessary to introduce,
in a GRF the total and the relative four-momenta denoted as P and p,
respectively.

The total four-momentum is simply related to the particle momenta by
the standard expression

P = p1 + p2 (15)

consistently with the CMRF definition of Eq. (2), with Eq. (4), and with
the Lorentz transformations of Eq. (6).
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The relative four-momentum can be defined as in Ref. [12]

p = −η2p1 + η1p2 . (16)

The constants η1 and η2 must satify the condition

η1 + η2 = 1 , (17)

and can be conventionally chosen as in the nonrelativistic case

ηi =
mi

m1 +m2
. (18)

For bound systems of two equal mass particles, one simply has η1=η2=1/2.
From the previous equations, one can express the particle momenta pi

by means of Pµ and pµ in the following way:

pi = pi(P ; p) = ηiP − τip (19)

with τ1 = +1 and τ2 = −1. In the remainder of the work, the four-
momenta pi will be always considered as functions of the total and relative
four-momenta, as given by the previous equation.

For convenience, we introduce the following definition for the time com-
ponent of the relative four-momentum in the CMRF:

pc 0 = ∆ . (20)

Equations (1) and (16), referred to the CMRF, can be used to determine
the value of ∆ by means of Ec

1 and Ec
2. For the case of equal mass particles

(see Eq. (3)), one simply has ∆ = 0. In Eq. (A.4) of Appendix A, we give
the explicit value of ∆ for two particles of a different mass. That value is
obtained by using the standard prescription of Eq. (A.1) for determining the
particle energies in the CMRF.

In any case, ∆ is a fixed quantity of the bound system; as a consequence,
we anticipate that the time component of the momentum transfer in the
interaction operator is always vanishing in the CMRF as it will be shown in
Eq. (31) of Section 3. We can write

pc = (∆, p⃗ c) (21)

and apply the transformation equations (6) to determine p in a GRF.
For further developments, by means of Eq. (8), we can also write

∆ =
Pµp

µ

M
(22)
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from which we obtain the expression of p0 in a GRF

p0 =
M∆

E
+

P⃗ · p⃗
E

. (23)

In Subsection 3.1. we shall also use explicitly the CMRF particle energies
Ec

i . These invariant quantities can be written taking, in the CMRF, the
time component of Eq. (19). By using the definition of Eq. (20), one obtains

Ec
i = ηiM − τi∆ . (24)

Finally, in order to determine the invariant relative momentum integra-
tion element, we set V = p and V c = pc in the second relation of Eq. (6)
and calculate the Jacobian determinant. Taking into account that pc 0 = ∆

is a constant (and, for simplicity, choosing P⃗ along a coordinate axis), one
finally finds

d3pc =
M

E
d3p (25)

that represents the covariant integration element in a GRF.

3. The covariant wave equation in a GRF

The objective of this section is to write in a GRF the retardless wave
equation of our model. We discuss here the general procedure, referring,
for definiteness, to the DLE. Other forms of equation will be examined in
Subsection 3.1. We anticipate that the final result will be written as an
integral wave equation.

As a first step, we recall the standard CMRF wave equation, as it was
written in the previous work [1]. We have

[D1O2 +D2O1 +W ]|Ψ c⟩ = 0 . (26)

In the Hamiltonian form that was used in [1], the Dirac operators Di are

Di = − (Ec
i − α⃗i · p⃗ c

i ) + βimi (27)

and, for the case DLE equation,

ODLE
i = Ii . (28)

We write the same relativistic equation as an integral equation in the
momentum space

[ [− (Ec
1 − α⃗1 · p⃗ c

1 ) + β1m1]O2 + [− (Ec
2 − α⃗2 · p⃗ c

2 ) + β2m2]O1]Ψ
c (p⃗ c)

+

∫
d3p′cW (q⃗ c)Ψ c

(
p⃗ ′ c) = 0 . (29)
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The interaction term has been written in the momentum space as

⟨p⃗ c|W |Ψ c⟩ =
∫

d3p′cW (q⃗ c)Ψ c
(
p⃗ ′c) , (30)

where q⃗ c = p⃗ c− p⃗ ′c represents the three-momentum transfer in the CMRF.
Note that being p0 c = ∆ a fixed quantity, the time component of the mo-
mentum tranfer qc 0 is always vanishing

qc = (0, q⃗ c) (31)

that gives rise to a retardless (or instantaneous) interaction. Furthermore,
the dependence of the interaction on q⃗ c corresponds to a local form of the
interaction in the coordinate space. This form was used in our previous
works [1, 3].

The next step consists in multiplying the DLE of Eq. (29) by γ01γ
0
2 from

the left in order to write the Dirac operators in the so-called covariant form
that is traditionally used to study the Lorentz transformation properties in
the Dirac theory. The result is[(

−pc1µγ
µ
1 +m1

)
γ02O2 +

(
−pc2µγ

µ
2 +m2

)
γ01O1

]
Ψ c(p⃗ c)

+

∫
d3p ′cV (q⃗ c)Ψ c

(
p⃗ ′c) = 0 , (32)

where the invariant interaction, written in the covariant form, is

V (q⃗ c) = γ01γ
0
2W (q⃗ c) . (33)

In the last step, recalling that Eq. (32) is still written in the CMRF, we
shall replace in that equation the GRF covariant Dirac expressions.

In more detail, from Eq. (12), we make the replacement Ψ c = B−1
1 B−1

2 Ψ .
Furthermore, we express the particle four-momenta pi by means of the

total (P ) and relative (p) four-momenta by using the definition of Eq. (19).
We also premultiply the equation by B1B2 and use Eq. (13) to transform

the terms with pciµγ
µ
i and Eq. (14) to transform the operators γ0i Oi (we are

considering here the Oi of Eq. (28) for the DLE).
Finally, the covariant momentum integration is performed by means of

Eq. (25). For convenience, we also multiply by −1 the whole equation,
obtaining [

(p1µγ
µ
1 −m1)Ω2 + (p2µγ

µ
2 −m2)Ω1

]
Ψ(p;P )

−M

E

∫
d3p′ V

(
p− p′

)
Ψ
(
p′;P

)
= 0 , (34)
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where p− p′ represents the four-momentum transfer in a GRF obtained by
transforming qc of Eq. (31) by means of Eq. (6) in a standard way. The
covariant operators Ωi, obtained transforming the γ0i as explained before,
for the DLE equation, take the form of

ΩDLE
i =

Pµγ
µ
i

M
. (35)

Equation (34) represents the covariant, retardless equation of our model.
In order to discuss a different procedure for its derivation, we can write

it as an equation for invariant matrix elements, multiplying by Ψ̄(p;P ) and
performing the covariant integration

M

E

∫
d3p Ψ̄(p;P )

[
(p1µγ

µ
1 −m1)Ω2 + (p2µγ

µ
2 −m2)Ω1

]
Ψ(p;P )

−
(
M

E

)2 ∫
d3pb

∫
d3paΨ̄(pb;P )V (pb − pa)Ψ(pa;P ) = 0 . (36)

One factor M/E is obviously redundant and can be canceled; it has been
written explicitly in the previous equation in order to highlight the covariant
character of the integrations.

We shall now derive Eq. (36) in a slightly different way, in order to
analyze in more detail the properties of the relative four-momentum and the
corresponding covariant integration procedure of our model.

The relative four-momentum p (and pa, pb) of Eq. (36) is a constrained
quantity, because in the CMRF its time component is fixed, as given in
Eqs. (20) and (21).

We consider only for this derivation, that is for the next Eq. (37), an un-
constrained relative four-momentum p and the unconstrained particle four-
momenta pi that are expressed by means of p and P with the same relation
of Eq. (19). However, to recover Eq. (36), we have to introduce a constraint
function that will be discussed below.

We can write an explicitly four-dimensional matrix-element equation in
the form of∫

d4p θ(p;P )Ψ̄(p;P )
[
(p1µγ

µ
1 −m1)Ω2 + (p2µγ

µ
2 −m2)Ω1

]
Ψ(p;P )

−
∫

d4pb θ(pb;P )

∫
d4pa θ(pa;P )Ψ̄(pb;P )V (pb − pa)Ψ(pa;P ) = 0 , (37)

where θ(p;P ) represents the constraint function.
In our model, the covariant constraint function is written by means of

the Dirac delta function in the form of

θ(p;P ) = δ

(
1

M
Pµp

µ −∆

)
=

M

E
δ

[
p0 −

(
M∆

E
+

P⃗ · p⃗
E

)]
. (38)
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We find that, using this constraint function, Eq. (36) is immediately recov-
ered with the same value of p0, given in Eq. (23) for a GRF.

The previous derivation can be also used as a starting point to study
different forms of constraint function θ(p;P ) for reproducing the physical
spectroscopy of the hadronic systems.

3.1. Other forms of the wave equation

We study here the covariant form of other wave equations that are ob-
tained by replacing the operators of Eq. (28) with other expressions.

We have shown that, in the case of the DLE, taking the ODLE
i of Eq. (28)

for the CMRF operators in the Hamiltonian form, we obtain the ΩDLE
i of

Eq. (35) for the GRF operators in the covariant form.
In our previous works, we have also considered the MW equation. In

that model, the operators OMW
i have the form of

OMW
i =

α⃗i · p⃗ c
i + βimi√

m2
i + (p⃗ c

i )
2
. (39)

These operators were denoted as Si in [1] because they represent the energy
sign of the free particle in the CMRF.

In order to find the corresponding ΩMW
i , one has to multiply the opera-

tors of Eq. (39) by γ0i from the left and then determine their covariant GRF
expression. With standard handling, one obtains

ΩMW
i =

τi ·
(
pµ − ∆

MPµ

)
γµi +mi√

m2
i +∆2 − pνpν

(40)

with τi defined just after Eq. (19). Note that the previous expression takes a
simple form when ∆ = 0, corresponding to the case of equal mass particles.

Other forms for the operators Oi and Ωi can be studied. As in work [3],
we have analyzed numerically some specific expressions for the charmonium
spectrum. In particular, we obtained very similar results as those published
in Ref. [3] by using the following operators. In “Model A”, we used

OA
i =

Ec
i − α⃗i · p⃗ c

i

Ec
i

. (41)

The corresponding covariant GRF operators are

ΩA
i =

piµγ
µ
i

Ec
i

. (42)
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In “Model B”, we have replaced in Eqs. (39) and (40) the particle masses
mi with the CMRF energies Ec

i . We have

OB
i =

α⃗i · p⃗ c
i + βiE

c
i√

(Ec
i )

2 + (p⃗ c
i )

2
(43)

and

ΩB
i =

τi ·
(
pµ − ∆

MPµ

)
γµi + Ec

i√
(Ec

i )
2 +∆2 − pνpν

. (44)

In the previous Eqs. (41)–(44), the CMRF particle energies Ec
i are given by

Eq. (24).

4. The covariant form for the correlated Dirac wave function

In this section, we study the problem of constructing the correlated Dirac
wave function in a GRF consistently with the covariant form of the model.
In [1], the correlated wave function was determined only in the CMRF. Now
we have to boost this wave function to a GRF. In more detail, we can write

Ψcorr(p;P ) = B1B2Ψ
c
corr(p⃗

c) , (45)

where Ψ c
corr(p⃗

c) represents the CMRF correlated Dirac wave function intro-
duced in Ref. [1]. Furthermore, the Dirac Boost operators B1 and B2 of
Eq. (9) are standardly used here.

In principle, the previous expression of Ψcorr(p;P ) would be sufficient to
study the bound state problem in any GRF. However, we prefer to express
Ψcorr(p;P ) by means of explicitly covariant quantities.

To this aim, one has to recall, in the first place, that the relative mo-
mentum p⃗ c can be written, with the Lorentz transformations (7), in terms
of the GRF momenta p and P ; these quantities are the arguments of Ψcorr

in the l.h.s. of Eq. (45).
Then, we elaborate on the boosted correlated wave function.
In the CMRF, the correlated Dirac wave function was obtained by means

of the reduction operator Kc
i , of the form of

Kc
i =

(
1

σ⃗i·p⃗ c
i

mi+Ec
i

)
. (46)

In more detail, for a two-body system, one has to apply the reduction oper-
ators of the two particles

Ψ c
corr = Kc

1K
c
2Φ

c(p⃗ c) , (47)
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where Φc(p⃗ c) represents the spinorial wave function. The numerical normal-
ization constant is calculated apart, as in Eq. (38) of Ref. [1] and omitted
in the following.

For the present procedure of “covariantization”, we preliminarily intro-
duce the following operator:

Λi =

(
1
0

)
(48)

that, applied to Φc, simply constructs a Dirac spinor with vanishing lower
components.

Then, by means of Λi, we can express with standard calculations the
operator Kc

i in the following form:

Kc
i = F c

i

(
pciµγ

µ
i +mi

)
Λi (49)

with the invariant factor

F c
i = (Ec

i +mi)
−1 . (50)

The expression of Eq. (49) is equivalent to Eq. (46) but is more suitable to
be transformed into a covariant expression.

We can apply the Boost operator of Eq. (9) to the Kc
i of Eq. (49) in

order to determine the reduction operator Ki in a GRF. We can write

Ki = BiK
c
i = F c

i Bi(p
c
iµγ

µ
i +mi)B

−1
i BiΛi . (51)

With standard calculations, one finds

BiΛi = FB (Pµγ
µ
i +M)Λi . (52)

Furthermore, the factor in parenthesis of Eq. (51) can be transformed by
means of Eq. (13). The result is

Ki = FBF
c
i (piµγ

µ
i +mi)(Pµγ

µ
i +M)Λi . (53)

By using the reduction operators of the two particles, one obtains the cor-
related wave function in a GRF, in the form of

Ψcorr(p;P ) = K1K2Φ
c = (FB)

2F c
1F

c
2 (p1µγ

µ
1 +m1) (p2µγ

µ
2 +m2)

× (Pµγ
µ
1 +M) (Pµγ

µ
2 +M)Λ1Λ2Φ

c . (54)

The correlated Dirac adjoint wave function can be easily constructed by
means of standard handling of the Dirac matrices. One has to use also the
following property of the operator Λi:

Λ†
iγ

0
i = Λ†

i . (55)
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The result is

Ψ̄corr(p;P ) = Ψ †
corr(p;P )γ01γ

0
2 = Φc†Λ†

1Λ
†
2 (Pµγ

µ
1 +M) (Pµγ

µ
2 +M)

× (p1µγ
µ
1 +m1) (p2µγ

µ
2 +m2) (FB)

2F c
1F

c
2 . (56)

Equations (54) and (56) complete the development of this section by using
explicitly covariant operators for the Dirac wave function. The result shows
that the use of the correlated wave function in a GRF is consistent with the
whole covariant model. Finally, we note that the factor (FB)

2F c
1F

c
2 , being

a constant, is not relevant for the covariant wave equation. Furthermore, in
principle, the covariant integral wave equation of Eq. (34), with the Dirac
correlated wave function of Eq. (54), could be solved in a GRF, determining
directly the corresponding spinorial function.

The author thanks the group of “Gestión de Recursos de Computo Cien-
tífico, Laboratorio de Biología Computacional, Facultad de Ciencias — Uni-
versidad Nacional de Colombia” for the access to the computation facilities
that were used to perform the numerical calculations that have been neces-
sary to develop the model discussed and generalized in this work.

Appendix A

Determination of the particle energy

Considering Eq. (1), we observe that the CMRF energy values Ec
1 and

Ec
2 are usually determined by means of the auxiliary prescription [2, 6]

(Ec
1)

2 − (Ec
2)

2 = m2
1 −m2

2 (A.1)

that is related, in general, to the asymptotic properties of the relativistic
free Hamiltonian of the two-body system.

The CMRF energies Ec
i are easily found by using Eqs. (2) and (A.1).

One has

Ec
1 =

1

2

(
M +

m2
1 −m2

2

M

)
,

Ec
2 =

1

2

(
M − m2

1 −m2
2

M

)
. (A.2)

The validity of Eqs. (A.1) and (A.2) for a bound system in the general case
of m1 ̸= m2 should be carefully verified. However, for the specific case
m1 = m2, that is physically very relevant for the study of the q q̄ mesons,
one simply has

Ec
1 = Ec

2 =
M

2
. (A.3)
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For completeness, starting from Eq. (A.2), one can detemine ∆ of Eq. (20).
By using Eq. (16) for the time component of the relative momentum in the
CMRF and the definition of the ηi given in Eq. (18) of Subsection 2.3, one
obtains

∆ =
M

2

m1 −m2

m1 +m2
− 1

2

m2
1 −m2

2

M
. (A.4)

For the case of two equal mass particles, the standard result of Eq. (A.3),
can be also obtained in a different way: one can use the symmetry properties
of the system and consider Ec

1 and Ec
2 as mean values of the corresponding

Hamiltonian operators.
Due to the relevance of this argument in the context of this work, we

summarize its derivation.
We introduce the CMRF Hamiltonian, schematically written in the fol-

lowing form:
Hc = Hc

1 free +Hc
2 free +W , (A.5)

where the first two terms represent the free Hamiltonian of the two particles
and W is the interaction term. The corresponding eigenvalue equation is

Hc|Ψ c⟩ = M |Ψ c⟩ . (A.6)

Given that the two particles have the same mass, the interaction is symmet-
ric with respect to particle interchange

P12WP12 = W , (A.7)

where P12 represents the particle interchange operator.
In consequence, the eigenstates have definite symmetry

P12|Ψ c⟩ = (−1)σ|Ψ c⟩ (A.8)

with σ = +1 for symmetric and σ = −1 for antisymmetric states, respec-
tively.

We can define the interacting Hamiltonian operator for each particle in
the form of

Hc
i = Hc

i free +
1

2
W (A.9)

with i = 1, 2. In this way, one can immediately sum the Hamiltonians of the
two particles to obtain the expression of Eq. (A.5)

Hc = Hc
1 +Hc

2 . (A.10)

Furthermore, the standard interchange property

PijH
c
i Pij = Hc

j (A.11)

is automatically satisfied.
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By using Eqs. (A.6), (A.8), (A.10), and (A.11), one finds

⟨Ψ c|Hc
1|Ψ c⟩ = ⟨Ψ c|Hc

2|Ψ c⟩ = M

2
. (A.12)

Further investigation is needed to study the case of two particles with dif-
ferent masses.
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