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We apply our recently formulated Gluon Exchange Model (GEM) to
baryon production in proton–nucleus reactions involving N > 1 proton–
nucleon collisions. We propose a description scheme for the process of soft
color octet (gluon) exchange, based on the assumption that probabilities
to form an effective diquark are equal for all allowed pairs of quarks. The
latter effective diquark can form either from two valence, one valence and
one sea, or from two sea quarks. Consequently, we calculate the probabili-
ties for different color configurations involving diquarks of valence–valence,
valence–sea, and sea–sea type. These probabilities appear to depend on the
number of exchanged gluons, which results in increasing baryon stopping
as a function of the number of proton–nucleon collisions in the nucleus. As
such, the nuclear stopping power appears to be governed by the emergence
of new color configurations as a function of N rather than by the energy
loss of the original valence diquark. The advantage of our approach lies
in its high predictive power which makes it verifiable by the new, precise
data on proton and neutron production from the CERN SPS. The latter
verification, and a set of predictions for the N -dependence of the baryon
stopping process, are included in the letter.

DOI:10.5506/APhysPolB.53.7-A3

1. Introduction

In a recent letter [1], we proposed a new model for diffractive and inelastic
hadron-induced collisions, based on the partonic (constituent) structure of
the incoming hadrons and on the exchange of soft color octets (gluons)
between the constituents. With this Gluon Exchange Model (GEM), we
achieved a precise description of proton and neutron spectra in the projectile
hemisphere of pp reactions at

√
sNN = 17.3 GeV. Presently, we apply the

same model to proton–nucleus reactions with the aim of obtaining better
insight into the nature of the baryon stopping process (nuclear stopping

(7-A3.1)
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power1). Within a general GEM scheme, we study the consequences of a very
restrictive, although natural statistical assumption on the color structure of
quark constituents, that is both valence and sea quarks in the projectile for
the process of multiple proton–nucleon collisions. This process results in the
formation of well-defined color configurations as a function of the number
of exchanged gluons N , which builds up baryon stopping as a function of
centrality and/or nuclear size. The comparison of our GEM calculations
with wide coverage experimental data on proton and neutron emission from
the NA49 experiment at the CERN SPS [3, 4] is included in the paper.
Predictions for the nuclear stopping power as a function of the number of
exchanged gluons are presented for N = 2, 3, 4, and 6.

This work inherits the entire formalism of GEM as we presented in
Ref. [1] (a more technical description can be found in an auxiliary paper [5]).
Here, we only remind that GEM can be considered as a generalization of
the original Dual Parton Model [6, 7] with a more complete treatment of the
color quantum number and a significant, even if natural, extension of the
Fock space of states available to participating protons and nucleons. As it
was stated in Ref. [1], the GEM model brings the advantage of providing a
complete description of the entire proton and neutron spectrum in pp colli-
sions, including the proton “diffractive peak” at high xF which is explained
as a specific case of color octet exchange between the valence quarks from
one and the virtual sea quark–sea antiquark pair from the other proton. As
it will become apparent in the course of this letter, the model brings very
little freedom for the transition between pp and proton–nucleus collisions
which adds up to the reliability of comparison with experimental data.

2. Insights into the nature of nuclear stopping power

In this section, we enumerate our earlier findings which directly inspired
the present analysis. These were:

(i) the qualitative difference between the shape of proton xF spectra in
the single proton–nucleon (pp) reactions and multiple proton–nucleon
(pA) collisions (Ref. [1], Fig. 2 therein) suggesting the presence of
qualitatively new processes in the latter;

(ii) the failure of our model calculation, arbitrarily limited to the valence
diquark-preserving diagrams of GEM (Ref. [1], Fig. 4 therein), to ex-
plain the experimental data on pC reactions showing that the energy
loss by the valence diquark alone cannot be held responsible for the
dominant part of baryon stopping in pA collisions;

1 This term is taken from Ref. [2].
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(iii) the result of our ad hoc fit of specific GEM diagrams to the latter
experimental data (Ref. [5], Fig. 14 therein), suggesting a very impor-
tant role of diagrams involving sea quarks in the transport of baryon
number.

These findings brought us to a specific realization of the GEM model,
relying on the concept of effective diquarks as (mostly) responsible for baryon
production. The main assumption underlying this work is that the latter
diquarks need to be formed from both valence and sea quarks in all the
three possible combinations (valence–valence, valence–sea, sea–sea). This
assumption is quantified in the following two options for the multiple proton–
nucleon collision process:

(a) a single soft gluon exchange brings the valence quarks of the projectile
proton into the color octet state, while the remaining N − 1 gluons
coupling to sea quarks remain essentially independent (the RN−1

8 rep-
resentation, see Section 4 for more details);

(b) two soft gluons bring the valence quarks of the projectile proton into
the symmetric color decuplet state, while the remaining N − 2 gluons
coupling to sea quarks remain independent (the RN−2

10 representation).

A more detailed discussion will be presented in Sections 3–5 below.

3. Irreducible representations of SU3

Irreducible representations (IRs) of SU3

Rm1,m2,m3 := (m1,m2,m3) (1)

are specified by triplets of integers

m1 ≥ m2 ≥ m3 ≥ 0 . (2)

The dimension of the representation (m1,m2,m3) is

D(m1,m2,m3) = [m1 −m3,m2 −m3] , (3)

where
[k, l] := 1

2(k − l + 1)(k + 2)(l + 1) . (4)

The bases of these representations can be presented graphically as Young
tableaux with three rows of length m1, m2, and m3, respectively. In the
following, we use also the dimensions of some IRs instead of (m1,m2,m3).



7-A3.4 M. Jeżabek, A. Rybicki

3.1. Examples of IRs

The following basic IRs will be essential for the discussion made in this
letter:

Fundamental representation (triplet): (1,0,0) or 3∼ ;

Anti-triplet (complex conjugate): (1,1,0) or 3∗
∼

;

Singlet: (1,1,1) or 1∼ ;

Adjoint (octet): (2,1,0) or 8∼ ;

Decuplet: (3,0,0) or 10∼ .

3.2. Notation

In general, the tensor product of representations Ra and Rb is denoted
as Ra ⊗Rb. However, a shortened notation is used for

N∏
⊗

3∼ := 3∼ ⊗ 3∼ ⊗ . . . 3∼︸ ︷︷ ︸
N times

:= 3N
∼

, (5)

and the decomposition of a reducible representation into a direct sum of IRs
is written as

R =
∑
⊕
Mm1,m2,m3 (m1,m2,m3) , (6)

whereMm1,m2,m3 denotes the multiplicity of the representation (m1,m2,m3)
in the direct sum.

4. Color configurations in pA collisions

In the framework of GEM, the production of secondary particles in pA
inelastic collisions is governed by the color state of constituents of the pro-
jectile (p) and the target (A). Therefore, it is essential to consider the color
configuration of valence and sea quarks in the proton, after the exchange of
N gluons (color octets) with N nucleons in the nucleus. For such a multiple
scattering process, the scattered proton is described by a state in the Fock
space including valence quarks as well as sea quark–antiquark pairs [1]. The
first and dominant contribution to this process arises when one of the gluons
couples to the valence quarks and the remaining N −1 octets are exchanged
with sea quark–antiquark pairs. The constituent quarks in the proton, both
valence and sea ones, are in the color representation

RN−1
8 := 8∼ ⊗ 3N−1∼ , (7)
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which can be expressed as a direct sum of IRs (m1,m2,m3), such that

m1 +m2 +m3 = N + 2 . (8)

The second possibility which we consider in this letter is that the valence
quarks in the proton absorb two color octets and are in a color symmet-
ric decuplet state. The remaining N−2 gluons couple to quark–antiquark
sea constituents of the proton, and the color configuration of all quark con-
stituents in the proton is

RN−2
10 := 10∼ ⊗ 3N−2∼ , (9)

which can again be expressed as a direct sum of IRs (m1,m2,m3), such that

m1 +m2 +m3 = N + 1 . (10)

As it was already fully apparent in our earlier work [1], the production of
secondary baryons in the hemisphere of the projectile depends in a most
crucial way on the diquark, i.e. a system of two constituent quarks in the
proton. The diquark must be in a color antitriplet state which implies that
it can be built from two constituent quarks which are not color symmetric.
From a technical point of view, these quarks must be placed in different rows
of the corresponding Young tableau for a given IR of color SU3.

In this letter, we study the consequences of the relatively simple assump-
tion that exclusion of quark pairs symmetric in color is the only condition
imposed on diquark formation, that is, that probabilities to form a diquark
are equal for all the allowed pairs of quarks, independently of whether they
were valence or sea quarks in the initial state of the collision. We underline
the corresponding effective character of the diquark which goes well in line
with our earlier findings [1, 5, 8, 9].

The allowed types of diquarks depend on the color states of constituent
quarks:

(a) for the representations RN−1
8 , where N ≥ 1, the diquarks may be

composed of two valence quarks (i.e., be of VV type), of one valence
and one sea quark (VS type), or of two sea quarks (SS type). For
N = 1, however, only the VV type is allowed, and the last option (SS)
is possible only for N ≥ 3;

(b) for the representations RN−2
10 , where N ≥ 2, the types VS and SS are

allowed, but VV is not. An important new option is that all quarks are
in a fully symmetric color state and, therefore, no diquark can be built
out of the constituents of the proton (the 0 type). In particular for
N = 2, the corresponding representation (decuplet) is fully symmetric
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and the probability P0(10∼ ) of no diquark is equal to unity. In general,
for N ≥ 2, the probability for the 0 type is

P0

(
RN−2

10

)
=

(N + 2)(N + 3)

20 · 3N−2
. (11)

Presently, for a given IR (m1,m2,m3), we define a number Σ(m1,m2,m3):

Σ(m1,m2,m3) = m1 ·m2 +m2 ·m3 +m3 ·m1 (12)

which is equal to the number of quark pairs allowed to form a diquark, i.e.,
these pairs which are composed of quarks in different rows of the corre-
sponding Young tableaux. We define also the functions nVV(m1,m2,m3),
nVS(m1,m2,m3), and nSS(m1,m2,m3) which are equal to the numbers of
allowed quark pairs composed of two valence, one valence and one sea, and
two sea quarks, respectively.

It follows that

Σ(m1,m2,m3) = nVV(m1,m2,m3) + nVS(m1,m2,m3) + nSS(m1,m2,m3)
(13)

and

nVV(m1,m2,m3) = 2 , nVS(m1,m2,m3) = m1 + 2m2 + 3m3 − 4

for the case (a) above , (14)

nVV(m1,m2,m3) = 0 , nVS(m1,m2,m3) = 3(m2 +m3)

for the case (b) above . (15)

As it follows from our simple assumption, for the two families of reducible
representations RN−1

8 and RN−2
10 , the probability distributions of the three

types of diquarks (VV, VS, SS) and of no diquark are given by the following
formulae:

For the case (a), with N ≥ 1:

PA

(
RN−1

8

)
=

1

8 · 3N−1
∑

m1+m2+m3=N+2

Mm1,m2,m3D(m1,m2,m3)
nA(m1,m2,m3)

Σ(m1,m2,m3)
, (16)

where A = VV, VS, and SS, and the numbers Mm1,m2,m3 denote the non-
zero multiplicities in the direct sum of irreducible representations

RN−1
8 =

∑
⊕ Mm1,m2,m3 (m1,m2,m3) . (17)
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In the above equality, the dimensions of representations on both sides must
be equal, which means that

D
(
RN−1

8

)
= 8 · 3N−1 =

∑
m1+m2+m3=N+2

Mm1,m2,m3D(m1,m2,m3) . (18)

It follows that

PVV

(
RN−1

8

)
+ PVS

(
RN−1

8

)
+ PSS

(
RN−1

8

)
= 1 . (19)

For the case (b), with N ≥ 2:

PVV

(
RN−2

10

)
= 0 ,

PA

(
RN−2

10

)
=

1

10 · 3N−2
∑

m1+m2+m3=N+1
m2 6=0

Mm1,m2,m3D(m1,m2,m3)
nA(m1,m2,m3)

Σ(m1,m2,m3)
,

(20)

where A = VS and SS, and the numbers Mm1,m2,m3 denote the non-zero
multiplicities in the direct sum of irreducible representations

RN−2
10 =

∑
⊕ Mm1,m2,m3 (m1,m2,m3) . (21)

A common dimension of both reducible representations in the above equal-
ity is

D
(
RN−2

10

)
= 10 · 3N−2 =

∑
m1+m2+m3=N+1

Mm1,m2,m3D(m1,m2,m3) . (22)

A fully symmetric representation (N+1, 0, 0) in the above direct sum appears
only once, and thus MN+1,0,0 = 1. Its dimension D(N + 1, 0, 0) is equal to

[N + 1, 0] = 1
2(N + 2)(N + 3) . (23)

A simple calculation gives∑
m1+m2+m3=N+1

m2 6=0

Mm1,m2,m3D(m1,m2,m3) = D
(
RN−2

10

) [
1− P0

(
RN−2

10

)]
(24)

and
PVS

(
RN−2

10

)
+ PSS

(
RN−2

10

)
+ P0

(
RN−2

10

)
= 1 . (25)
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5. Explicit formulae for representations

5.1. Representations RN−1
8

In this section, explicit formulae are presented for the family of repre-
sentations RN−1

8 . These are expressed as direct sums of IRs, for 1 ≤ N ≤ 9
soft gluons exchanged between the projectile proton and N nucleons in the
nucleus.

R0
8 = 8∼ = (2, 1, 0) ,

R1
8 = 8∼ ⊗ 3∼ = (3, 1, 0)⊕ (2, 2, 0)⊕ (2, 1, 1) ,

R2
8 = 8∼ ⊗ 32∼ = (4, 1, 0)⊕ 2 · (3, 2, 0)⊕ 2 · (3, 1, 1)⊕ 2 · (2, 2, 1) ,

R3
8 = (5, 1, 0)⊕ 3 · (4, 2, 0)⊕ 3 · (4, 1, 1)⊕ 2 · (3, 3, 0)⊕ 6 · (3, 2, 1)

⊕ 2 · (2, 2, 2) ,

R4
8 = (6, 1, 0)⊕ 4 · (5, 2, 0)⊕ 4 · (5, 1, 1)⊕ 5 · (4, 3, 0)⊕ 12 · (4, 2, 1)

⊕ 8 · (3, 3, 1)⊕ 8 · (3, 2, 2) ,

R5
8 = (7, 1, 0)⊕ 5 · (6, 2, 0)⊕ 5 · (6, 1, 1)⊕ 9 · (5, 3, 0)⊕ 20 · (5, 2, 1)

⊕ 5 · (4, 4, 0)⊕ 25 · (4, 3, 1)⊕ 20 · (4, 2, 2)⊕ 16 · (3, 3, 2) ,

R6
8 = (8, 1, 0)⊕ 6 · (7, 2, 0)⊕ 6 · (7, 1, 1)⊕ 14 · (6, 3, 0)⊕ 30 · (6, 2, 1)

⊕ 14 · (5, 4, 0)⊕ 54 · (5, 3, 1)⊕ 40 · (5, 2, 2)⊕ 30 · (4, 4, 1)

⊕ 61 · (4, 3, 2)⊕ 16 · (3, 3, 3) ,

R7
8 = (9, 1, 0)⊕ 7 · (8, 2, 0)⊕ 7 · (8, 1, 1)⊕ 20 · (7, 3, 0)⊕ 42 · (7, 2, 1)

⊕ 28 · (6, 4, 0)⊕ 98 · (6, 3, 1)⊕ 70 · (6, 2, 2)⊕ 14 · (5, 5, 0)

⊕ 98 · (5, 4, 1)⊕ 155 · (5, 3, 2)⊕ 91 · (4, 4, 2)⊕ 77 · (4, 3, 3) ,

R8
8 = (10, 1, 0)⊕ 8 · (9, 2, 0)⊕ 8 · (9, 1, 1)⊕ 27 · (8, 3, 0)⊕ 56 · (8, 2, 1)

⊕ 48 · (7, 4, 0)⊕ 160 · (7, 3, 1)⊕ 112 · (7, 2, 2)⊕ 42 · (6, 5, 0)

⊕ 224 · (6, 4, 1)⊕ 323 · (6, 3, 2)⊕ 112 · (5, 5, 1)⊕ 344 · (5, 4, 2)

⊕ 232 · (5, 3, 3)⊕ 168 · (4, 4, 3) . (26)

We note that Eq. (18) provides a useful cross check of these formulae

D
(
R1

8

)
= 24 = 15 + 6 + 3 ,

D
(
R2

8

)
= 72 = 24 + 2 · 15 + 2 · 6 + 2 · 3 ,

D
(
R3

8

)
= 216 = 35 + 3 · 27 + 3 · 10 + 2 · 10 + 6 · 8 + 2 · 1 ,

D
(
R4

8

)
= 648 = 48 + 4 · 42 + 4 · 15 + 5 · 24 + 12 · 15 + 8 · 6 + 8 · 3 ,

D
(
R5

8

)
= 1944 = 63 + 5 · 60 + 5 · 21 + 9 · 42 + 20 · 24 + 5 · 15

+25 · 15 + 20 · 6 + 16 · 3 ,



The Gluon Exchange Model in Proton–Nucleus Collisions 7-A3.9

D
(
R6

8

)
= 5832 = 80 + 6 · 81 + 6 · 28 + 14 · 64 + 30 · 35 + 14 · 35

+54 · 27 + 40 · 10 + 30 · 10 + 61 · 8 + 16 · 1 ,
D
(
R7

8

)
= 17496 = 99 + 7 · 105 + 7 · 36 + 20 · 90 + 42 · 48

+28 · 60 + 98 · 42 + 70 · 15 + 14 · 21 + 98 · 24 + 155 · 15

+91 · 6 + 77 · 3 ,
D
(
R8

8

)
= 52488 = 120 + 8 · 132 + 8 · 45 + 27 · 120 + 56 · 63 + 48 · 90

+160 · 60 + 112 · 21 + 42 · 48 + 224 · 42 + 323 · 24

+112 · 15 + 344 · 15 + 232 · 6 + 168 · 3 . (27)

5.2. Representations RN−2
10

In this section, we present explicit formulae for the family of representa-
tions RN−2

10 . These are expressed as direct sums of IRs, for 2 ≤ N ≤ 9 soft
gluons.

R0
10 = 10∼ = (3, 0, 0) ,

R1
10 = 10∼ ⊗ 3∼ = (4, 0, 0)⊕ (3, 1, 0) ,

R2
10 = 10∼ ⊗ 32∼ = (5, 0, 0)⊕ 2 · (4, 1, 0)⊕ (3, 2, 0)⊕ (3, 1, 1) ,

R3
10 = (6, 0, 0)⊕ 3 · (5, 1, 0)⊕ 3 · (4, 2, 0)⊕ 3 · (4, 1, 1)⊕ (3, 3, 0)

⊕ 2 · (3, 2, 1) ,

R4
10 = (7, 0, 0)⊕ 4 · (6, 1, 0)⊕ 6 · (5, 2, 0)⊕ 6 · (5, 1, 1)⊕ 4 · (4, 3, 0)

⊕ 8 · (4, 2, 1)⊕ 3 · (3, 3, 1)⊕ 2 · (3, 2, 2) ,

R5
10 = (8, 0, 0)⊕ 5 · (7, 1, 0)⊕ 10 · (6, 2, 0)⊕ 10 · (6, 1, 1)

⊕ 10 · (5, 3, 0)⊕ 20 · (5, 2, 1)⊕ 4 · (4, 4, 0)⊕ 15 · (4, 3, 1)

⊕ 10 · (4, 2, 2)⊕ 5 · (3, 3, 2) ,

R6
10 = (9, 0, 0)⊕ 6 · (8, 1, 0)⊕ 15 · (7, 2, 0)⊕ 15 · (7, 1, 1)

⊕ 20 · (6, 3, 0)⊕ 40 · (6, 2, 1)⊕ 14 · (5, 4, 0)⊕ 45 · (5, 3, 1)

⊕ 30 · (5, 2, 2)⊕ 19 · (4, 4, 1)⊕ 30 · (4, 3, 2)⊕ 5 · (3, 3, 3) ,

R7
10 = (10, 0, 0)⊕ 7 · (9, 1, 0)⊕ 21 · (8, 2, 0)⊕ 21 · (8, 1, 1)

⊕ 35 · (7, 3, 0)⊕ 70 · (7, 2, 1)⊕ 34 · (6, 4, 0)⊕ 105 · (6, 3, 1)

⊕ 70 · (6, 2, 2)⊕ 14 · (5, 5, 0)⊕ 78 · (5, 4, 1)⊕ 105 · (5, 3, 2)

⊕ 49 · (4, 4, 2)⊕ 35 · (4, 3, 3) . (28)

One can check that Eq. (22) is fulfilled

D
(
R1

10

)
= 30 = 15 + 15 ,

D
(
R2

10

)
= 90 = 21 + 2 · 24 + 15 + 6 ,

D
(
R3

10

)
= 270 = 28 + 3 · 35 + 3 · 27 + 3 · 10 + 10 + 2 · 8 ,
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D
(
R4

10

)
= 810 = 36 + 4 · 48 + 6 · 42 + 6 · 15 + 4 · 24 + 8 · 15

+3 · 6 + 2 · 3 ,
D
(
R5

10

)
= 2430 = 45 + 5 · 63 + 10 · 60 + 10 · 21 + 10 · 42 + 20 · 24

+4 · 15 + 15 · 15 + 10 · 6 + 5 · 3 ,
D
(
R6

10

)
= 7290 = 55 + 6 · 80 + 15 · 81 + 15 · 28 + 20 · 64 + 40 · 35

+14 · 35 + 45 · 27 + 30 · 10 + 19 · 10 + 30 · 8 + 5 · 1 ,
D
(
R7

10

)
= 21870 = 66 + 7 · 99 + 21 · 105 + 21 · 36 + 35 · 90 + 70 · 48

+34 · 60 + 105 · 42 + 70 · 15 + 14 · 21 + 78 · 24 + 105 · 15

+49 · 6 + 35 · 3 . (29)

6. Results

In Table 1, we present the final probability distributions for the two
families of reducible representations RN−1

8 and RN−2
10 , for the three types

of diquarks (VV, VS, SS) and for no diquark (the 0 type). For simplicity,
the two physical cases corresponding to these two families (Sec. 4) will be
labeled “color octet exchange” and “color decuplet exchange” from now on.

Table 1. Probabilities for the two families of representations as a function of N .
The probabilities are computed through Eqs. (16), (20), and (24).

8
∼
⊗ 3N−1

∼
10
∼
⊗ 3N−2

∼

N VV VS SS 0 VS SS

1 1 — — — — —

2 0.5917 0.4083 — 1 — —

3 0.3740 0.5223 0.1037 0.5 0.5 —

4 0.2520 0.5407 0.2073 0.2333 0.6238 0.1429

5 0.1784 0.5213 0.3002 0.1037 0.6179 0.2784

6 0.1319 0.4908 0.3773 0.0444 0.5733 0.3823

7 0.1010 0.4582 0.4408 0.0185 0.5234 0.4581

8 0.0797 0.4272 0.4931 0.0075 0.4770 0.5155

9 0.0644 0.3989 0.5367 0.0030 0.4366 0.5604

What is immediately apparent in the table for the RN−1
8 representation

family as a function of N is the rapid decrease of probability for diquark
formation from two valence quarks (the VV type), and the corresponding
emergence of the SS diquark type. For the color decuplet case (the RN−2

10
family), it is the even more rapid suppression of the 0 type (no diquark) as
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a function of N . This implies that only pA reactions involving small nuclei
(like pC collisions) or very specific centrality selections are suitable to study
the role of this specific contribution to baryon spectra in the final state.

7. Comparison to experimental data

Presently, the results of calculations performed in Sections 4–6 will be
put in comparison with experimental data on proton–carbon reactions at√
sNN = 17.3 GeV. These data from the NA49 experiment [3, 4] are the

same we described in Ref. [1], where our model calculation, arbitrarily lim-
ited only to diagrams preserving the valence diquark, failed to describe the
baryon distributions in the final state. The model calculation of the differ-
ent contributions to baryon spectra from color octet (RN−1

8 ) and color de-
cuplet (RN−2

10 ) exchanges is performed in a way identical to that described
in Refs. [1, 5]. The diagrams for color singlet fragmentation for the configu-
rations of types VV, VS, and 0 are the diagrams (c), (f), and (e) published
previously in Ref. [1] (Fig. 1 therein), while the corresponding diagram for
the SS type is illustrated in Fig. 1 below. The fragmentation and isospin
flip functions as well as the small corrections for the presence of diagrams
with single diffraction in the nucleus and for isospin differences between
pp and proton–nucleon collisions are all realized identically as described in
Refs. [1, 5]. The only “free” parameter we take in the model is the rela-
tive weight of color octet to color decuplet contributions. As it will become
apparent below the latter is strongly constrained by the experimental data.

D
q

A p

s
q

q

qq
s

q
s

qq
s

qD

qD

Fig. 1. The basic diagram for color singlet (string) formation for the color configu-
ration of the SS type as described in the text, drawn for the case N = 3.
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Figure 2 presents the distribution of net protons and net neutrons in
pC reactions in which the projectile proton collides with multiple (N > 1)
nucleons, put together with the results of our present GEM calculation. We
find that the relative weights of 94.5% color octet and 5.5% color decuplet
exchange result in the best description of the data. We find this description
satisfactory although we note that the present calculation still appears to
underestimate the (very strong) isospin effects between proton and neutron
spectra, in particular at high rapidity. We find this issue interesting and
leave it for a future paper [10].

multiple collisions
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{
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vs type
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y
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   _   

   _   

OCTET 94.5%,   DECUPLET 5.5%

vv

Fig. 2. Rapidity distribution of net protons and net neutrons in pC reactions in
which the projectile proton undergoes more than one collision with carbon target
nucleons, obtained from the NA49 experiment [3, 4], and compared to our GEM
calculation described in the text. The collision energy is

√
sNN = 17.3 GeV.

The calculation for protons (neutrons) is drawn in magenta (green) for the total
distribution and in red (blue) for the contributions. The dominant contributions
from color octet exchange are indicated as VV, VS, and SS type. For the small
contributions from color decuplet exchange, only the 0 and VS type are indicated
by arrows as the SS contribution is too small to be visible in the plot. Note: for
the SS configuration from color octet exchange and all the decuplet contributions,
the difference between protons (red) and neutrons (blue) remains nearly invisible
in the plot.
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The break-up of the total proton and neutron distribution into the differ-
ent contributions from Table 1 is also included in the figure. For the strongly
dominant color octet exchange an evident hierarchy is apparent as a function
of rapidity. The valence–valence (VV) diquark appears mostly responsible
for the forward rapidity and the valence–sea (VS) diquark for the interme-
diate rapidity part of the baryon spectrum, while the contribution from the
sea–sea (SS) diquark is localized closest to central rapidity (y = 0). The
very small weight obtained for color decuplet exchange evidently precludes
a precise delimitation of this contribution; we are rather inclined to conclude
that an upper limit of the order of ∼10% for color decuplet exchange is sug-
gested by the experimental data, building up, together with SS diquarks
from color octet exchange, an altogether non-negligible contribution to net
baryon density at mid-rapidity.

Account taken that the presently studied sample of “multiple collision”
pC reactions corresponds to an average number of ∼2.6 carbon nucleons hit
by the projectile2, it is already maximally sensitive to the very interesting
contribution from the no diquark (0 type) diagram as evident from Table 1.
Thus, the very small size of this contribution, suggested by the data and
apparent in Fig. 2, does not speak optimistically for a possible experimental
identification of baryons from this diagram in the foreseeable future.

The study presented in Fig. 2 shows that already for the collision of the
proton with the relatively small C nucleus, an essential role is played by new
color configurations involving sea quarks (VS and SS type), not available in
pp collisions. The presence of these new configurations explains the earlier
failure of valence-diquark preserving calculations to explain the experimental
data [1].

8. Baryon stopping as a function of the number of collisions

In this section we address the consequences of the findings made in this
letter, which we quantify in terms of calculations for net proton spectra as a
function of the number of nucleons hit by the projectile proton which corre-
sponds to the number of exchanged soft gluons. For the present calculation,
we approximate the GEM model by its dominant contribution which is color
octet exchange (the RN−1

8 representation). The justification can be found in
Fig. 3 which shows a consistently good description of the data by the model.

The (absolutely normalized) proton rapidity distributions obtained by
GEM for the case of N = 2, 3, 4, and 6 collisions are shown in Figs. 4 (a),
(b), (c), and (d), respectively. In order to allow for a better inspection of
the increase of nuclear stopping power, the proton distribution from NA49
data at ∼2.6 collisions is included in each plot. An evident trend emerges

2 For more details, see Refs. [1] and [11].
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Fig. 3. Rapidity distribution of net protons in pC reactions in which the projectile
proton undergoes more than one collision with carbon target nucleons, obtained
from the NA49 experiment [3, 4], and compared to our GEM calculation assuming
100% color octet exchange. The contributions from the VV, VS, and SS configu-
rations are indicated in the plot.

from the four figures: the contribution from the valence diquark (VV type),
dominant at N = 2, rapidly decreases with N , while at the same time, the
far more central sea–sea configuration (SS type), non-existent at N = 2,
emerges at N = 3 and rapidly increases with N . With the valence–sea
(VS) configuration being reasonably stable as a function of N , this results
in a rapid “push” of initial baryon number towards lower rapidities (nuclear
stopping power increasing as a function of the number of collisions). Thus
the origin of the latter increase of nuclear stopping power lies in the emer-
gence of new (VS, SS) color configurations as a function of the number of
exchanged color octets rather than in the energy loss of the original valence
(VV) diquark.
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Fig. 4. Rapidity distributions of net protons obtained by the GEM model assuming
100% color octet exchange, for pA reactions with N = 2, 3, 4, and 6 nucleons
hit by the projectile proton. The contributions from the VV, VS, and SS color
configurations are indicated. In order to allow for a better inspection of the increase
of nuclear stopping power, the proton distribution obtained from NA49 data [3, 4]
is included in each plot.

9. Summary and discussion

In this letter, being a direct continuation of our letter [1], we applied the
Gluon Exchange Model introduced therein to pA reactions involving N > 1
proton–nucleon collisions. On the basis of a simple assumption of a statisti-
cal, i.e. equally probable formation of diquarks from valence and sea quarks
in a color antitriplet state, we developed a full algebra for the emergence of
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new color configurations as a function of the number N of exchanged gluons.
The only “free” parameter of our model, that is the contribution of the color
decuplet exchange to the baryon stopping process, appeared very strongly
constrained and limited by the experimental data. Our application of color
algebra to the multiple collision process brings a satisfactory description
of the very precise and complete experimental information on proton and
neutron emission at the CERN SPS [3, 4].

The “minimalistic” — or simply rigorous — character of our model, in-
volving only a specific color algebra apart from elements developed earlier
for pp collisions in Ref. [1], puts it in our mind in strong contrast to the ear-
lier ideas by Capella and Salgado [12, 13]. Contrary to our present work, the
latter included an additional dynamical element (the string junction based
on the concept by Rossi and Veneziano [14]). The quantitative constraints
resulting from color algebra were, to the best of our knowledge, not included
explicitly. The subdivision of the baryon spectrum into diquark-preserving
(DP) and diquark-breaking (DB) components made in the cited works brings
some degree of similarity with respect to the presence of VV and VS con-
figurations resulting from our color algebra but the SS component, essential
for the description of pA collisions at high N (atomic mass, centrality), is
completely absent in Refs. [12, 13]. Moreover, the “no diquark” configura-
tion resulting from color decuplet exchange is missing in the cited works. A
more detailed comparison of the two approaches remains beyond our present
scope because it would necessitate a reanalysis of the new, very restrictive
data [3, 4] (including not only protons but also neutrons which is not char-
acteristic of the earlier datasets) by the earlier model [12, 13] in order to
further verify its validity.

The picture of nuclear stopping power resulting from our analysis shows
the baryon stopping process as resulting from color (soft gluon) exchange,
and governed by the emergence of new color configurations involving valence
and sea quarks. These configurations depend on the number of exchanged
gluons and therefore are richer in the multiple collision process which is
the driving force for the increase of nuclear stopping power as a function of
nuclear size, or centrality of the pA reaction. In particular, effective diquarks
involving only sea quarks (SS type) appear essential in the process.

The fact that baryon spectra are governed by the emergence of new color
configurations, not associated with the original valence diquark and not
available in pp collisions, explains the failure of valence diquark-preserving
models in explaining the nuclear stopping power in our recent works [1] as
well as in the past [15]. Importantly, as a consequence, the baryon stopping
process appears to be very strongly connected to the number of proton–
nucleon collisions but much less, if at all, to the energy loss of the original
valence diquark.
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