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In this paper, we analyze the role of central (t0) and density-dependent
(t3) terms of the effective Skyrme interaction on the imaginary part of
the optical potential, angular distributions, and analyzing powers of the
low-energy neutron elastic scattering on a series of doubly closed shell nu-
clei in the framework of self-consistent mean-field approach and beyond.
The central term is the leading term of the effective interaction, while the
density-dependent term is well known to be an effective way to simulate the
three-body interaction. To do it, the microscopic optical potential has been
generated from the particle vibration coupling on top of the random-phase
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approximation collective states built from the particle–hole excitations on a
mean-field calculation. It has been found that the contributions of (t0, t3)
terms are dominant on the surface and in the interior of the absorption
part. The effects of t0 term are the strongest among other terms. The
obtained results show that, if the central and density-dependent terms are
taken into account, the agreement on angular distributions is significantly
improved, especially at the forward scattering angles. The two terms were
also found to have strong yet unsystematic effects on analyzing power.
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Microscopic optical potential (MOP) is expected to be a useful tool to
study exotic nuclei lying far from the stability island. There has been im-
pressive progress over the last decade to develop this kind of potential based
on the nuclear many-body theories [1, 2]. At energy lower than 50 MeV
where the nuclear structure effects become important, the MOP based on
nuclear structure models has successfully unified the nuclear structure and
nuclear reactions in terms of the n–A elastic scattering. Therefore, the elas-
tic scattering observables have been directly connected with the underlying
nucleon–nucleon (NN) effective phenomenological interactions [3–6]. The
effective interactions (mostly the finite-range Gogny and zero-range Skyrme
interactions) have been initially designed for nuclear structure calculations.
Within the framework of self-consistent mean-field approach and beyond,
these effective Skyrme and Gogny interactions (with about 10 parameters)
provide a rather good description of the binding energies, charge r.ms. radii,
and excited states of finite nuclei as well as the properties of nuclear matter
around its saturation density ρ0. In nuclear reactions, these effective inter-
actions have been successfully used to describe the nucleon elastic scattering
by 208Pb [3], neutron elastic scattering by 16O[4], proton inelastic scatter-
ing by 24O [7], nucleon elastic scattering by 40Ca and 48Ca [5, 8, 9], and
nucleon elastic scattering by 16O, 40Ca, 48Ca, and 208Pb [6, 10–12]. It is
interesting to note that the MOPs at the positive and negative energies are
naturally and consistently connected since these potentials are based on the
self-energy extracted from the mass operator in the framework of many-body
Green function method.

However, the precision of the mentioned MOPs is not high compared to
the phenomenological one due to some deviations from the experimental data
at backward angles. This is, indeed, an intricate problem which requires an
intensive analysis of the sensitivity of nuclear reaction observables on each
component of the effective Skyrme interaction. Such an analysis is partic-
ularly important to significantly improve and/or build a new generation of
optical potential. Recently, we have reported the first intensive analysis
of the effects of velocity-dependent (t1, t2) and spin-orbit terms on neutron
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elastic scattering observables at low energies within a fully self-consistent
particle-vibration coupling built on top of the RPA excited states [12]. In
the present paper, the above model has been further applied to analyze
the role of central and density-dependent interactions on the neutron elastic
scatterings of doubly closed-shell targets.

Below, we show the conventional non-relativistic zero-range density and
momentum-dependent phenomenological Skyrme interaction

VSkyrme(r1, r2) = t0(1 + x0P
σ)δ(r) t0 term or central term

+ 1
2 t1(1 + x1P

σ)
[
k′2δ(r) + δ(r)k2

]
+ t2(1 + x2P

σ)k′ · δ(r)k t1, t2 term or velocity-dependent term
+ iW0(σ⃗1 + σ⃗2) · [k′ × δ(r)k] W0 term or spin-orbit term

+ 1
6 t3(1 + x3P

σ)ρα(R)δ(r) t3 term or density-dependent term ,
(1)

where r = r1 − r2, R = 1
2(r1 + r2), k = 1

2i(∇⃗1 − ∇⃗2), k′ is the her-
mitian conjugate of k (acting on the left), P σ = 1

2(1 + σ⃗1 · σ⃗2) is the
spin-exchange operator, and ρ is the total nucleon density. The parameters
t0, t1, t2, t3,W0, α, x0, x1, x2, x3 are obtained by fitting to the experimental
data.

To investigate the role of each term of the effective interaction on the
nuclear reactions observables, the effective interaction must be fully and
consistently used in the whole process to generate the MOP. Until now, there
are two fully self-consistent calculations by Blanchon et al. [5] (with Gogny
interaction) and Nhan Hao et al. [6] (with Skyrme interaction). We will only
sketch here the major points of our MOP. According to Refs. [6, 10–12], the
MOP is given as

Vopt = VHF +∆Σ(ω) , (2)

where
∆Σ(ω) = Σ(ω)− 1

2Σ
(2)(ω) . (3)

In Eqs. (2) and (3), VHF is a static, real, local, and energy-independent
Skyrme–Hartree–Fock mean field. The first order, Σ(ω), is the contribution
from the particle-vibration coupling calculated as in Refs. [6, 14, 15]. This
dynamical potential is non-local, complex, and energy-dependent. The sym-
bol ω is the nucleon incident energy. The second order potential, Σ(2)(ω),
is taken into account to treat the issue of the Pauli principle correction.
The NN effective phenomenological interaction SLy5 [13] has been adopted.
Note that all parameters are fixed and are the same as in Refs. [6, 10–12].
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Fig. 1. The calculated W (R, s = 0) for neutron elastic scattering by 16O at low
incident energies. The linepoints curve shows the calculation with the full effective
SLy5 Skyrme interaction. The green curve shows the calculation without spin-orbit
term. The blue line shows the calculation without t1, t2 term. The purple line (gray
line) shows the calculation without t0 (t3) term, respectively. The calculated results
for t1, t2,W0 using the same MOPs are adapted from [12].

Fig. 2. The calculated W (R, s = 0) for neutron elastic scattering by 40Ca at low
incident energies. The linepoints curve shows the calculation with the full effective
SLy5 Skyrme interaction. The green curve shows the calculation without spin-orbit
term. The blue line shows the calculation without t1, t2 term. The purple line (gray
line) shows the calculation without t0 (t3) term, respectively. The calculated results
for t1, t2,W0 using the same MOPs are adapted from [12].
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To see the effects of each term on the absorption, we consider the di-
agonal contributions W (R, s = 0) of the imaginary part, where W (R, s) =∑

lj
2j+1
4π Im∆Σlj(r, r

′, ω), with R = 1
2(r + r′) corresponding to the radius

and shape of Im∆Σ, and s = r − r′ being its non-locality. Figures 1, 2, 3,
and 4 show the calculations of W (R, s = 0) with and without t0, t3, t1, t2,
and W0 terms for neutron elastic scattering by 16O, 40Ca, 48Ca, and 208Pb
at different incident energies.

Fig. 3. The calculated W (R, s = 0) for neutron elastic scattering by 48Ca at low
incident energies. The linepoints curve shows the calculation with the full effective
SLy5 Skyrme interaction. The green curve shows the calculation without spin-orbit
term. The blue line shows the calculation without t1, t2 term. The purple line (gray
line) shows the calculation without t0 (t3) term, respectively. The calculated results
for t1, t2,W0 using the same MOPs are adapted from [12].

First, the obtained results show that on the surface and also in the in-
terior, the effects of t0, t3 terms are dominant compared with other terms.
The inclusion of t0, t3 terms strongly reduces the absorption of the imagi-
nary part which means that these terms strongly decrease the coupling to
collective states. The effects of t0 interaction are always larger than that of
t3 interaction. These results show, in nuclear reactions, not only the leading
role of t0 term (the major part of the nucleon–nucleon effective interaction)
but also the important role of the t3 term which somehow simulates the
3-body interaction. Figures 5, 6, 7, and 8 show the angular distributions for
neutron elastic scattering by 16O, 40Ca, 48Ca, and 208Pb with and without
t0, t3, t1, t2, and W0 terms at different incident energies. For all nuclei at
all incident energies, the obtained results show that the t0, t3 terms play an
important role (especially on the forward scattering angles) since the inclu-
sion of these terms strongly improves the agreement of angular distributions
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with experimental data. There is a systematic agreement between the calcu-
lations and the experimental data for the angular distributions at scattering
angles smaller than 40o. It shows that the surface properties of the MOP
have been very well treated. The agreement gets worse with increasing the
scattering angles, especially at backward angles. This disagreement is an
intricate problem (it also happens for previous works for both POP [16]
and MOP [17]) due to the lack of absorption in the interior region of the
imaginary part of MOP. The main reason could be the limit of the zero-
range effective Skyrme interaction since it is designed firstly for the nuclear
structure.

Fig. 4. The calculated W (R, s = 0) for neutron elastic scattering by 208Pb at low
incident energies. The linepoints curve shows the calculation with the full effective
SLy5 Skyrme interaction. The green curve shows the calculation without spin-orbit
term. The blue line shows the calculation without t1, t2 term. The purple line (gray
line) shows the calculation without t0 (t3) term, respectively. The calculated results
for t1, t2,W0 using the same MOPs are adapted from [12].

In Figs. 9, 10, 11, and 12, we compare the experimental data with the
analyzing powers obtained within the present MOP for neutron elastic scat-
tering by 16O, 40Ca, 48Ca, and 208Pb with and without the t0, t3, t1, t2, and
W0 terms at different incident energies. These results show that the t0, t3
terms have strong but unsystematic effects on analyzing powers. For exam-
ple, the inclusion of t0, t3 terms for 48Ca at 7.97 MeV improves the agreement
with experimental data but it becomes worse for 16O at 10 MeV. In general,
the agreement between the calculation and experimental data is poor. It
shows that, in our model, the spin-orbit interaction of the effective Skyrme
interaction is not well adapted to describe the polarization observables.
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Fig. 5. Angular distributions of neutron elastic scattering by 16O at low incident
energies. The linepoints curve shows the calculation with the full effective SLy5
Skyrme interaction. The green curve shows the calculation without spin-orbit term.
The blue line shows the calculation without t1, t2 term. The purple line (gray line)
shows the calculation without t0 (t3) term, respectively. The experimental data
points are taken from [18]. The calculated results for t1, t2,W0 using the same
MOPs are adapted from [12].

Fig. 6. Angular distributions of neutron elastic scattering by 40Ca at low incident
energies. The linepoints curve shows the calculation with the full effective SLy5
Skyrme interaction. The green curve shows the calculation without spin-orbit term.
The blue line shows the calculation without t1, t2 term. The purple line (gray line)
shows the calculation without t0 (t3) term, respectively. The experimental data
points are taken from [18]. The calculated results for t1, t2,W0 using the same
MOPs are adapted from [12].
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Fig. 7. Angular distributions of neutron elastic scattering by 48Ca at low incident
energies. The linepoints curve shows the calculation with the full effective SLy5
Skyrme interaction. The green curve shows the calculation without spin-orbit term.
The blue line shows the calculation without t1, t2 term. The purple line (gray line)
shows the calculation without t0 (t3) term, respectively. The experimental data
points are taken from [18]. The calculated results for t1, t2,W0 using the same
MOPs are adapted from [12].

Fig. 8. Angular distributions of neutron elastic scattering by 208Pb at low incident
energies. The linepoints curve shows the calculation with the full effective SLy5
Skyrme interaction. The green curve shows the calculation without spin-orbit term.
The blue line shows the calculation without t1, t2 term. The purple line (gray line)
shows the calculation without t0 (t3) term, respectively. The experimental data
points are taken from [18]. The calculated results for t1, t2,W0 using the same
MOPs are adapted from [12].
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Fig. 9. Analyzing power of neutron elastic scattering by 16O at low incident ener-
gies. The linepoints curve shows the calculation with the full effective SLy5 Skyrme
interaction. The green curve shows the calculation without spin-orbit term. The
blue line shows the calculation without t1, t2 term. The purple line (gray line)
shows the calculation without t0 (t3) term, respectively. The experimental data
points are taken from [18]. The calculated results for t1, t2,W0 using the same
MOPs are adapted from [12].

Fig. 10. Analyzing power of neutron elastic scattering by 40Ca at low incident
energies. The linepoints curve shows the calculation with the full effective SLy5
Skyrme interaction. The green curve shows the calculation without spin-orbit term.
The blue line shows the calculation without t1, t2 term. The purple line (gray line)
shows the calculation without t0 (t3) term, respectively. The experimental data
points are taken from [18]. The calculated results for t1, t2,W0 using the same
MOPs are adapted from [12].
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Fig. 11. Analyzing power of neutron elastic scattering by 48Ca at low incident
energies. The linepoints curve shows the calculation with the full effective SLy5
Skyrme interaction. The green curve shows the calculation without spin-orbit term.
The blue line shows the calculation without t1, t2 term. The purple line (gray line)
shows the calculation without t0 (t3) term, respectively. The experimental data
points are taken from [18]. The calculated results for t1, t2,W0 using the same
MOPs are adapted from [12].

Fig. 12. Analyzing power of neutron elastic scattering by 208Pb at low incident
energies. The linepoints curve shows the calculation with the full effective SLy5
Skyrme interaction. The green curve shows the calculation without spin-orbit term.
The blue line shows the calculation without t1, t2 term. The purple line (gray line)
shows the calculation without the t0 (t3) term, respectively. The experimental
data points are taken from [18]. The calculated results for t1, t2,W0 using the
same MOPs are adapted from [12].

This work is a further step of our project devoted to get (as much as pos-
sible) the nuclear structure information directly and microsopically from the
analysis of scattering experimental data. The obtained results show that it is
very hard (even impossible) to have a very high precision global microscopic
optical potential generated directly from the existing NN effective interac-
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tion. We plan, in our long-term goal, to build a new generation of optical
potential which could be the combination between the phenomenological and
microscopic optical potential. Therefore, the obtained information plays an
important role and helps us to build the framework for new optical poten-
tials. For the next step, we will investigate the sensitivity of the nuclear
reaction observables on each parameter of the effective Skyrme interaction.
In the light of this work, the elastic scattering observables could be the new
constraint to get the new sets of parameters for the effective phenomeno-
logical Skyrme-type interactions which could simultaneously describe the
nuclear structure and nuclear reactions at low-energy.
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