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Experiments motivated by predictions of quantum mechanics indicate
non-trivial correlations between spacelike-separated measurements. The
phenomenon is referred to as a violation of strong-locality and, after Ein-
stein, called ghostly action at a distance. An intriguing and previously
unasked question is how the evolution of an assembly of particles to equilib-
rium-state relates to strong-locality. More specifically, whether, with this
respect, indistinguishable particles differ from distinguishable ones. To ad-
dress the question, we introduce a Markov-chain-based framework over a
finite set of microstates. For the first time, we formulate conditions needed
to obey the particle transport- and strong-locality for indistinguishable par-
ticles. Models which obey transport-locality and lead to equilibrium-state
are considered. We show that it is possible to construct models obeying
and violating strong-locality both for indistinguishable particles and for
distinguishable ones. However, we find that only for distinguishable parti-
cles strongly-local evolution to equilibrium is possible without breaking the
microstate-symmetry. This is the strongest symmetry one can impose and
leads to the shortest equilibration time. We hope that the results presented
here may provide a new perspective on a violation of strong-locality, and
the developed framework will help in future studies. Specifically, they may
help to interpret results on high-energy nuclear collisions indicating a fast
equilibration of indistinguishable particles.
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1. Introduction

It is commonly accepted that experimental results indicate non-trivial
correlations between spacelike-separated measurements. The effect is deeply
rooted in quantum mechanics [1–4] and is referred to as a violation of strong-
locality or local-causality. On the other hand, quantum statistics, observed
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in many experiments, can be derived using statistical methods for indistin-
guishable particles — the particles of quantum mechanics [5–7]. We ad-
dress here a previously unasked question — how is strong-locality related
to equilibration? More specifically, whether, concerning this question, in-
distinguishable particles differ from distinguishable ones. The question is
discussed within a Markov-chain framework over a finite set of microstates.

The principle of strong-locality states that an event E depends only on
events F in the event’s past light cone [4]; for illustration, see a sketch in
Fig. 1 (a). Thus, whatever the initial (at time t) microstates having F , the
probability of observing the event E (at time t + 1) is the same. Referring
to Fig. 1, it is independent of events θ located in the grey regions. However,
the probability may depend on events in the yellow and orange regions of
the plot. It is because their light cones between t and t + 1 overlap with
the light cone of E. The strong-locality principle embeds a weaker but more
intuitive property. The conserved quantities cannot be transported faster
than the speed of light in the vacuum. Experimental measurements [8–11]
give evidence of a violation of strong-locality in nature.

Fig. 1. Sketches illustrating the principle of strong-locality: (a) the illustration in
continuous space-time and (b) the illustration within the Cell Model with six cells,
∆ = 1 and periodic boundary conditions, see the text for details.

Numerous experiments show that isolated systems of interacting par-
ticles evolve from an arbitrary initial microstate to a steady-state — the
state whose macroscopic properties are independent of time. Frequently
steady-state properties agree with predictions of quantum statistics for the
maximum entropy state — the equilibrium-state.

Many physics models are based on the mathematical framework intro-
duced by Markov to describe stochastic processes — Markov chains. Among
the best-known ones is the Einstein–Smoluchowski description [12, 13] of
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the Brownian motion. It motivated Nelson [14, 15] to interpret quantum-
mechanical phenomena within stochastic mechanics [15] based on Markov
chains. It is disputed [16–18] whether transitions of Markov chains may
resemble measurements of quantum physics.

In this paper, a Markov-chain framework for studying the time evolution
of the assembly of particles is introduced. It allows addressing questions on
the relation between the equilibrium-state and strong-locality in a simple
indeterministic approach. Its basic parameters are transition probabilities
between microstates determining a configuration of all particles at a given
time. Isolated systems with the conserved number of distinguishable and in-
distinguishable particles are considered. We summarise the well-known con-
straints for the transition matrix regarding space-time reflection and trans-
lation invariance and conditions needed to reach the equilibrium-state. For
the first time, we introduce constraints granting the particle transport and
strong-locality for indistinguishable particles.

Models which obey particle transport-locality and lead to the equilibrium-
state are considered. We show that it is possible to construct models obeying
and violating strong-locality both for indistinguishable particles and for dis-
tinguishable ones. To uncover differences between the two types of particles,
we introduce the microstate-symmetry — the strongest symmetry that im-
plies the equiprobability of allowed transitions. This leads us to an answer
for the addressed question — without breaking the microstate-symmetry,
the strongly-local evolution to equilibrium is possible only for distinguish-
able particles.

2. Model

This section firstly introduces the Symmetric Cell Models — the Markov
chains, which obey space-time symmetries (Sec. 2.1). Within the models,
indistinguishable and distinguishable particles are considered. Then require-
ments on the transition matrix needed to reach equilibrium-state (Sec. 2.2)
are summarised. The presentation is closed by giving the conditions for
transport-locality (Sec. 2.3) and strong-locality (Sec. 2.4) of the system evo-
lution.

2.1. Symmetric Cell Models

The simplest way to address the locality of evolution and approach to
the equilibrium-state in a dynamic model is to consider a 1+ 1 dimensional
discrete-time Markov chain with a conserved number of particles.

The following is postulated:

(a) Space: Space is assumed to be a vector of V discrete cells (v1, v2, . . . , vV )
arranged in a one-dimensional ring. The periodic boundary conditions
are needed for the space translation invariance (see below). For illus-
tration, a sketch for V = 6 is presented in Fig. 1 (b).
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(b) Particles: The total number of particles N is constant. For simplicity,
only spin-zero particles are considered. The number of particles in a
cell can vary between 0 and N . Indistinguishable and distinguishable
particles are considered.

(c) Microstates: The microstates of the system are characterised either
by numbers of particles in cells for indistinguishable particles or by an
arrangement of distinguishable particles. A microstate X of indistin-
guishable particles is given by the sequence of particle multiplicities in
cells

X =
(
nX
1 , nX

2 , . . . , nX
V

)
, (1)

where
V∑
i=1

nX
i = N . The total number of microstates (see, e.g. Ref. [19])

is
Wind(N,V ) =

(N + V − 1)!

N !(V − 1)!
. (2)

A microstate of distinguishable particles is denoted by X , and it is
given by the the sequence of cell numbers of particles for all N particles

X =
(
vX1 , vX2 , . . . , vXN

)
. (3)

The total number of microstates for distinguishable particles reads [19]

Wdist(N,V ) = V N . (4)

The above expression corresponds to the well-known result [20] for the
number of different arrangements of N labelled balls (distinguishable
particles) among V labelled boxes (cells).

(d) Time, time steps, and transitions: The system’s evolution in time τ is
assumed to be discrete. During the evolution, transitions between its
microstates occur. The time steps t at which microstates of the system
appear are equally distant in time, τ = δτ × t, where δτ is a time
interval between to consecutive time steps. The transition probability
from an initial microstate at t to a final microstate at t+1 is assumed to
depend only on the initial microstate. It is independent of microstates
preceding the initial microstate and the time step t. The transition
probability for indistinguishable particles is denoted by

B(X → Y |X) , (5)

whereas for distinguishable ones, it is

B(X → Y|X ) . (6)
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Unlike otherwise stated, explicit expressions are given only for indistin-
guishable particles. The corresponding expressions for distinguishable
particles can be obtained by substituting X by X , Y by Y, and B
by B.
Since the matrix represents probabilities, each of its elements must be
non-negative and no larger than one, and the sum of the probabilities
of all transitions from a given initial microstate must be equal to one

B(X → Y |X) ∈ [0, 1] , ∀X,Y ;
∑
Y

B(X → Y |X) = 1 , ∀X .

(7)
Let P̃ (X, t) denotes a probability to find a microstate X in the ensem-
ble of systems at t. By definition,

∑
X P̃ (X, t) = 1 for all t. Then the

probability of finding a microstate Y at t+ 1 is

P̃ (Y, t+ 1) =
∑
X

B(X → Y |X) P̃ (X, t) . (8)

The above assumptions define a class of Cell Models [19, 21] — discrete-
time Markov chains on a finite set of microstates [22]. The definition of a
Cell Model is completed by specifying the model transition matrix. The ma-
trix encapsulates introduced constraints — space-time symmetries, particle
number conservation law, transport-locality — and dynamics.

Symmetric Cell Models are the Cell Models which obey the space-time
symmetries:

(i) Space-translation symmetry : Given a translation T of particles in the
cell space, the transition probability from a microstate X to a mi-
crostate Y is the same as the transition probability between translated
microstates T (X) → T (Y )

B(X → Y |X) = B(T (X) → T (Y )|T (X)) . (9)

(ii) Space-reversal symmetry : Given a reflection R of particles with respect
to an axis in the cell space, the probability of any transition is equal
to the probability of the transition between the reflected microstates

B(X → Y |X) = B(R(X) → R(Y )|R(X)) . (10)

(iii) Time-reversal symmetry : The time-reversal symmetry for ergodic sys-
tems (see below) is obeyed if and only if, for every recurring time
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sequence of microstates, (X1, X2, . . . , Xm, X1), the probability of vis-
iting the microstates in the original order or the reversed one is the
same. Expressed in the transition matrix elements, the condition reads

B(X1 → X2|X1) ·B(X2 → X3|X2) · · ·B(Xm−1 → Xm|Xm−1) ·
·B(Xm → X1|Xm) = B(X1 → Xm|X1) ·B(Xm → Xm−1|Xm)

· · ·B(X3 → X2|X3) ·B(X2 → X1|X2) , (11)

and it is known as the Kolmogorov cycling condition [23, 24].

2.2. Steady- and equilibrium-states

Steady-state of a Markov chain corresponds to the probability distribu-
tion P̃ (X, t) of finding a microstate X at t that is independent of t. This
distribution is denoted by πS(X) and it is the eigenstate of the transition
matrix corresponding to the eigenvalue 1.

Equilibrium state is a steady-state, which corresponds to the probability
distribution πeq maximising the entropy. In the absence of any further con-
straints than the accessible microstates, the maximum entropy of a system
corresponds to the equiprobable distribution. In other words, πeq = 1/W ,
where W = Wind and W = Wdist for indistinguishable and distinguishable
particles [21], respectively.

Properties of the equilibrium-state were studied within the Cell Model in
Ref. [19], where it was shown that a distribution of particle multiplicity in a
cell resembles the Bose–Einstein distribution for indistinguishable particles
and the Poisson distribution for distinguishable ones.

The two sufficient conditions to reach an equilibrium-state, regardless of
the initial distribution, are ergodicity and transition-matrix symmetry [22].
Ergodicity is necessary and sufficient to ensure that the transition matrix has
a unique steady-state [22, 25], and that the probability distribution asymp-
totically approaches it, regardless of the initial microstate. Time reversibil-
ity (11), which is assumed in the Symmetric Cell Models, is equivalent to
the detailed balance condition [23, 24]

πS(X)×B(X → Y |X) = πS(Y )×B(Y → X|Y ) . (12)

Therefore, a symmetric transition matrix (the matrix equal to its transpose)
leads to the equilibrium steady-state, πS = πeq.

We remind here the two conditions to fulfil for a finite discrete Markov
chain to be ergodic [22]. These are:

(a) Irreducibility : Each microstate is reachable from any other microstate
by a sequence of transitions with non-vanishing probability.
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(b) Aperiodicity : The maximum common divisor of the number of transi-
tions of each sequence linking one microstate to itself is one.

Ergodicity of discussed here matrices is tested in Appendix A.
We call a Symmetric Cell Model equilibrating if it is ergodic and it reaches

the equilibrium-state. This is equivalent to the model having an ergodic
and symmetric transition matrix. Models leading to the equilibrium-state
are discussed in the paper and denoted EQ+. An interesting example of
a non-equilibrating model (EQ−) for indistinguishable particles is given in
Appendix B and discussed in Appendix C. The assumption of statistical
and local (cell-by-cell) redistribution of cell multiplicities, unlike naively ex-
pected, leads to a non-equilibrium (non-statistical) steady-state.

2.3. Transport-locality

Let us postulate that in a single time step, particles (in general, con-
served quantities) can be displaced by no more than ∆ cells. We call this
requirement transport-locality. We remind that transport-locality is neces-
sary but not sufficient to obey strong-locality [4].

For distinguishable particles, the transport-locality requirement reduces
to a requirement of each particle moving by no more than ∆ cells during
a single time step. In physics, this corresponds to particle velocity being
limited by the speed of light in the vacuum.

For indistinguishable particles, particle’s trajectories and velocities are
undefined. Then the transport-locality implies the following. During a single
time step, the particle number in any interval of cells cannot be transported
beyond an interval by ∆ cells longer on the left and right and it cannot be
squeezed to an interval by ∆ cells shorter on the left and right. This provides
two transport-locality inequalities

i+k∑
j=i

nX
j ≤

i+k+∆∑
l=i−∆

nY
l ,

i+k∑
l=i

nY
l ≤

i+k+∆∑
j=i−∆

nX
j , (13)

where k = 0, 1, . . . and nX
j , nY

l are particle numbers in cells j, l of initial
(X) and final (Y ) microstates, respectively.

We note that if δτ and ∆ depended on t, different transitions would be
allowed or excluded by transport-locality at different time steps. Thus, the
transition matrix would depend on the time step. The resulting model would
not be a Markov chain any longer. Consequently, we assume that the time
interval between two consecutive time steps, δτ , is independent of the time
step and thus ∆ = const. To simplify the presentation, we discuss models
with ∆ = 1.
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In the following, transitions obeying transport-locality are referred to as
transport-local transitions and the models allowing only the transport-local
transitions will be denoted TL+. Models that violate transport-locality are
denoted TL−.

2.4. Strong-locality

According to the strong-locality principle, the probability of an event E
at t + 1 can be influenced only by events within its past light cone. Thus,
E must be independent of events outside its light cone when possible common-
past correlations are removed. Referring to Fig. 1, given an initial configu-
ration at t, any event E at t + 1 can depend only on the configurations F
of the system at time t, in the dark orange line in plot (a). The event E is
independent of all events θ in grey areas of Fig. 1

P (E | (F, θ)) = P (E | F ) (14)

for all allowed events F and θ. Note that events in the yellow and orange
regions can be correlated with E because possible common-past correlations
are not removed.

Violation of strong-locality can be quantified by introducing the strong-
locality parameter

νSL ≡
∑
E

∑
F

∑
θ

(
P (E | (F, θ))− P (E | (F, θ))

)2
, (15)

where P (E | (F, θ)) is obtained by averaging P (E | (F, θ)) over all possible
θ for given E and F . Obviously, for an evolution obeying strong-locality
P (E | (F, θ)) = P (E | (F, θ)) = P (E | F ), and thus νSL = 0. The matrices
obeying strong-locality will be denoted SL+ and those violating it SL−.

Figure 1 (b) shows an example sketch for the Cell Model with V = 6
cells and ∆ = 1. In this example, the test of strong-locality can be done by
setting E = n

(t+1)
2 , F = (n

(t)
1 , n

(t)
2 , n

(t)
3 ) and θ = (n

(t+1)
5 , n

(t)
4 , n

(t)
5 , n

(t)
6 ).

3. Results

Results presented in this section concern matrices that obey transport-
locality and lead to equilibrium-state. Matrices that obey and violate strong-
locality are constructed and discussed for both types of particles, distinguish-
able and indistinguishable ones.

Firstly, we introduce the microstate-symmetry used to classify matrices
of the Symmetric Cell Models (Sec. 3.1). Then the microstate-symmetric
matrix for distinguishable particles (Sec. 3.2) and the matrix for indistin-
guishable particles approximating the microstate-symmetric one (Sec. 3.3)
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are presented and discussed. Finally, examples of matrices for distinguish-
able and indistinguishable particles having complementary properties con-
cerning strong-locality are given (Sec. 3.4).

3.1. Microstate-symmetry

The strongest symmetry one can impose on the system is the microstate-
symmetry. It includes the previously introduced symmetries — the space-
time symmetries and the transition-matrix symmetry. To define the micro-
state-symmetry, we introduce allowed and forbidden transitions. The al-
lowed transitions are between microstates that fulfil constraints imposed on
the system. For this work, the constrain of transport-locality is of rele-
vance. The forbidden transitions are not allowed transitions. Note that all
transition-matrix elements corresponding to the forbidden transitions are
zero, whereas the allowed transitions may have non-zero and zero probabil-
ities. The latter ones are due to selected dynamics of the system evolution.

Let M be an arbitrary transformation of microstates that preserves the
set. That is the set of transformed microstates is the same as the original
set of microstates. In addition, let M preserves the allowed and forbidden
transitions, that is, if X → Y is allowed (forbidden), then M(X) → M(Y ) is
allowed (forbidden) as well. Then we call the transition matrix microstate-
symmetric if

B(X → Y |X) = B(M(X) → M(Y )|M(X)) , ∀M. (16)

It is immediate to check that a microstate-symmetric matrix, among the
others, respects translation, reflection, and matrix symmetries. From the
microstate-symmetry follows that the probabilities of allowed transitions
are equal

B(Xi → Yj |Xi) = const. (17)

for any i, j leading to an allowed transition and vanishing otherwise.
Needless to say that in the case of all transitions being allowed, including

teleportation ones, the microstate-symmetric matrix leads to the equilibrium
state after the first time step independently of the assumed initial state.
Thus, the matrix has the fastest equilibration time, teq = 1.

3.2. Microstate-symmetric matrix for distinguishable particles

It is easy to construct the transport-local matrix obeying the microstate-
symmetry for distinguishable particles. This is done by setting to zero the
probabilities of the transitions violating transport-locality and to a constant
the remaining ones. Because of the normalisation to 1 of the total prob-
ability, this constant must be equal to the inverse of the total number of



8-A2.10 M. Gazdzicki et al.

transport-local transitions from a given initial microstate. It is immediate
to check that, for distinguishable particles, this number does not depend
on the initial microstate but only on the total number of particles N and
the maximum distance ∆. In addition to transport-locality, the transition
matrix also preserves strong-locality. This is obvious, noticing that the ma-
trix construction is equivalent to a model in which a distinguishable parti-
cle has an equal probability of appearing in any of the cells, which are at
most ∆ cells distant from the starting cell. An example matrix of this type
(B ∈[EQ+ TL+ SL+]) calculated for V = 6, N = 4, and ∆ = 1 is shown in
Fig. 2 (a).

3.3. Approximating the microstate-symmetric matrix
for indistinguishable particles

In the case of indistinguishable particles, the transition matrix which
obeys microstate-symmetry does not exist. It is impossible to set all prob-
abilities of the transport-local transitions to a constant. In general, there
are fewer microstates for indistinguishable particles than for distinguishable
ones for the same multiplicities in cells and the number of transport-local
transitions depends on the initial state. On the other hand, the probabil-
ity normalisation condition

∑
Y B(X → Y |X) = 1 is independent of the

initial microstate. The latter two requirements are in contradiction. The
above is easy to see considering transitions from two examples of initial mi-
crostates for distinguishable and indistinguishable particles. The first one
has all particles distant from each other by more 2∆. In the second example,
all particles are in the same cell.

The matrix for indistinguishable particles that most closely approximates
the microstate-symmetric matrix is constructed as follows. All off-diagonal
elements corresponding to transport-local transitions are equal and non-zero.
The ones violating transport locality are set to zero. Then diagonal elements
are calculated from the probability normalisation condition. By construc-
tion, the matrix is symmetric and obeys all the space-time symmetries of
the Symmetric Cell Models. The matrix is also ergodic; see Appendix A
for detail. Thus, it belongs to the class of equilibrating Symmetric Cell
Models. By construction, the matrix obeys transport-locality. However, it
violates strong-locality (Sec. 2.4). This is because the strong-locality condi-
tion (νSL = 0) for indistinguishable particles requires different off-diagonal
elements for initial microstates with different numbers of transport-local
transition, whereas the matrix has identical off-diagonal elements. An ex-
ample matrix of this type (B ∈[EQ+ TL+ SL−]) calculated for V = 6,
N = 4, and ∆ = 1 is shown in Fig. 2 (b). The strong-locality violation
parameter (15) for this matrix is νSL ≈ 0.010.
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Fig. 2. Transition matrices of the Symmetric Cell Models for four particles in six
cells. The matrices for distinguishable particles are shown in the left plots and the
indistinguishable particles in the right plots. All matrices obey transport-locality
and lead to equilibrium-state. The microstate-symmetric matrix for distinguishable
particles is shown in plot (a). It is of the type of B ∈[EQ+ TL+ SL+]. The
matrix approximating the microstate-symmetric one for indistinguishable particles
is shown in plot (b) and it is of the type of B ∈[EQ+ TL+ SL−]. The bottom
plots show the B ∈[EQ+ TL+ SL−] matrix for distinguishable particle (c) and
the B ∈[EQ+ TL+ SL+] for indistinguishable ones (d). Microstates are ordered
according to their sequential number S(X) defined as a position of the microstate in
a vector of “human-friendly” microstates labels calculated as for

∑N
i=1 vi×10i−1 and∑V

i=1 nV−i×10i−1 for distinguishable and indistinguishable particles, respectively.
The colour scale indicates transition probability, with the white colour denoting
zero probability for allowed transitions. Transitions forbidden by the transport-
locality are in grey. Note different colour scales adopted to underline qualitative
differences between the matrices.



8-A2.12 M. Gazdzicki et al.

One can construct the microstate-symmetric matrix for indistinguish-
able particles by redefining the set of allowed transitions such that their
number is the same for all microstates. This requires assuming that either
not all transport-local transitions are allowed or teleportation transitions are
possible.

3.4. Complementary types of transition matrices

Here, we construct transport-local and equilibrating matrices for distin-
guishable particles violating strong-locality (B ∈[EQ+ TL+ SL−]) and for
indistinguishable particles obeying strong-locality (B ∈[EQ+ TL+ SL+]).
Concerning the strong-locality, they complement matrices discussed in
Secs. 3.2 and 3.3. The unusual properties of the matrices are obtained at
the expense of their rather complex structure, see Fig. 2 (c) and (d).

B ∈[EQ+ TL+ SL−]:

It is easy to construct transition matrices for distinguishable particles
leading to an equilibrium-state preserving transport-locality and violating
strong-locality. For example, one assumes that only a single randomly se-
lected particle can move to the right or left cell at each time step. It
is straightforward to see that the matrix fulfils the requirements of the
equilibrating Symmetric Cell Models. By construction, the matrix obeys
transport-locality. However, it violates a strong-locality — the movement
of a particle from a given cell implies that all other particles do not move.
An example matrix of this type calculated for V = 6, N = 4, and ∆ = 1
and setting probabilities to move to the right and left to 1/3 is shown in
Fig. 2 (c).

B ∈[EQ+ TL+ SL+]:

The construction of a matrix for indistinguishable particles that leads
to equilibrium preserving strong-locality is more complicated. It is possible
to enforce strong-locality starting from the already introduced procedure of
independent cell-by-cell redistribution of cell multiplicities (see Sec. 2.2 and
Appendix D on the B ∈[EQ− TL+ SL+]). One takes particle multiplic-
ity n in a cell, and for each of its redistribution in the neighbouring cells
(no more than ∆ cells away) assigns a probability. The final microstate
is obtained by drawing one of the redistributions for each cell and sum-
ming over contributions from all cells. By assumption of the independent
cell-by-cell redistribution within ±∆ cells, the model obeys transport- and
strong-locality. It is straightforward to select probabilities that obey space-
translation and reflection symmetries — the resulting matrix is ergodic. To
assure the symmetry of the transition matrix is less trivial. Assuming the
equiprobability of each of the redistribution of n particles in the neighbour-
ing cells, one constructs the matrix fulfilling the required constraints besides
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the matrix-symmetry (see Appendix C). It is, however, possible to enforce
the symmetry of the transition matrix, starting with the equiprobable re-
distribution for n = 1 and enforcing symmetry for n > 1 in a recursive
procedure. The matrix-symmetry requires that some redistributions for n
particles have selected probabilities fixed by cases with less than n particles.
The construction is rather technical and presented in Appendix D in detail.
Its validity was checked up to N = 1000. An example of a matrix of the
type B ∈[EQ+ TL+ SL+], calculated for V = 6, N = 4, and ∆ = 1 is
shown in Fig. 2 (d).

3.5. Summary

We consider here a previously unasked question — how does the evo-
lution of an assembly of particles to the equilibrium-state relate to strong-
locality? More specifically, whether, concerning this question, indistinguish-
able particles differ from distinguishable ones. The question is motivated by
quantum mechanics, which encompasses both properties, equilibration and
violation of strong-locality, for indistinguishable particles.

The framework introduced here to address the question is based on
discrete-time Markov chains over a finite set of microstates of indistinguish-
able and distinguishable particles. The space-time symmetries are imposed.
For the first time, we introduce conditions needed to obey the transport- and
strong-locality for indistinguishable particles within Markov chains. The
constraints and dynamics are encapsulated in the Markov-chain transition
matrix defining the time evolution of the assembly of particles.

Models which obey particle transport-locality and lead to the equilib-
rium-state are considered. We show that it is possible to construct models
obeying and violating strong-locality both for indistinguishable and for dis-
tinguishable particles. To uncover differences between the two types of par-
ticles, we introduce the microstate-symmetry — equiprobability of allowed
transitions. It is the strongest symmetry, and it includes the symmetries
considered in this work — the space-time and matrix symmetries.

For distinguishable particles, the microstate-symmetric model exists. It
leads to equilibrium-state obeying strong-locality. For indistinguishable par-
ticles, the microstate-symmetric model does not exist. The matrix for in-
distinguishable particles which most closely approximates the microstate-
symmetric one violates strong-locality when evolving to the equilibrium-
state. These findings suggest an answer to the primary question — only
for distinguishable particles, the strongly-local evolution to equilibrium is
possible without breaking the microstate-symmetry.

Depending on postulates of a model, the answer may lead to different
consequences. For example, assuming that dynamics of indistinguishable
particles fulfils the microstate-symmetry, one concludes that either not all
transport-local transitions are allowed or teleportation transitions are pos-
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sible. One may speculate that this and other conjectures inspired by the
results presented here can be tested by studying high-energy nuclear col-
lisions. They indicate that the apparent equilibrium hadronic-final state
of many indistinguishable particles is produced in collisions within a short
time [26].

We hope that the work provides new tools and perspectives on strong-
locality and its violation.

4. Code and numerical results availability

The code reproducing the key results of this paper is available under the
link https://gitlab.cern.ch/ipidhurs/cell-model-fitter. Under the
same link, one will also find numerical values for the matrices presented in
the plots.
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Appendix A

Ergodicity of the discussed matrices

Here, we show that all matrices discussed in this work are ergodic.
We recall (Sec. 2.2) the requirements for ergodicity in a finite Markov

chain [22]:
(a) Irreducibility. Each microstate is reachable from any other microstate

by a sequence of transitions with non-vanishing probability.
(b) Aperiodicity. The maximum common divisor of the number of transi-

tions of all sequences linking one microstate to itself is one.
The discussed matrices are irreducible because, at the very least, transi-

tions that change only multiplicities of any two adjacent cells (one or both
being non-empty) by one unit have a non-zero probability. Consequently,
by repeating these transitions, one can reach any microstate starting from
any initial microstate.

The matrices are aperiodic because, at the very least, one of the transi-
tions which do not change a microstate (X → X) has non-zero probabilities
in all matrices. Consequently, any number of time steps for a microstate to
recur can be increased by one step by adding the transition X → X.

https://gitlab.cern.ch/ipidhurs/cell-model-fitter
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Appendix B

Example of the [EQ− TL+ SL+] matrix for indistinguishable particles

It is easy to construct a transport- and strong-local Symmetric Cell
Model (Sec. 2.2), heaving a non-equilibrium steady-state. An interesting
example is given below.

One assumes that during a transition, the number of particles in the
cell i at t is redistributed between the cells from i − ∆ to i + ∆ at t + 1,
such that all possible configurations have equal probability. That is, all the
(partial) redistributions have a probability equal to the inverse of the total
number of redistributions of n particles within the 2∆+ 1 cells

(2∆)!n!

(n+ 2∆)!
.

The redistribution of particles is performed independently for all initial mi-
crostate cells. Then the final microstate is constructed by summing the
partial contributions to each cell of the final microstate from all cells of the
initial microstate. The transition probability is the product of the proba-
bilities of each partial redistribution in the single-cell times the number of
different (total) redistributions reaching the same final microstate.

By construction — the particle number is redistributed locally and inde-
pendently cell-by-cell — the matrix obeys transport- and strong-localities,
VSL = 0.

The translation and reflection symmetries are simple to check since the
partial redistributions are equiprobable (no asymmetry between particles
“going to the right or the left”). The redistribution probabilities are inde-
pendent of the cell number.

The ergodicity can be proven with the general arguments presented above
(Appendix A), which are valid for all matrices considered in the paper,
including this one.

With the transition matrix, it is possible to compute the steady-state,
which appears to be non-equilibrium. In fact, in the next section, we show
the proof that the transition matrix is time-reversible but not symmetric.

Thus, the assumption of statistical and local (cell-by-cell) redistribution
of cell multiplicities, unlike naively expected, leads to a non-equilibrium
(non-statistical) steady-state. The model transition matrix is B ∈[EQ−TL+
SL+]. The matrix calculated for V = 6, N = 4, and ∆ = 1 is shown in
Fig. 3 (a) and the corresponding microstate probability distribution of the
steady-state in Fig. 3 (b).
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Fig. 3. (a) Example of the B ∈[EQ−, TL+, TL−] transition matrix for four indis-
tinguishable particles in six cells. The matrix leads to non-equilibrium steady-state
obeying transport- and strong-locality. Transitions forbidden by the transport-
locality are in grey. (b) The microstate probabilities in the steady-state of the
example matrix (in blue). The red dashed line corresponds to the probabilities
at equilibrium, which are by definition equal to 1/Wind, where Wind is the total
number of microstates. Microstates are ordered according to their sequential num-
ber S(X) defined as a position of the microstate in a vector of “human-friendly”
microstates labels calculated as

∑V
i=1 nV−i × 10i−1.

Appendix C

Asymmetry of the example [EQ− TL+ SL+] matrix
for indistinguishable particles

Here, we discuss the steady-state of the transition matrix B ∈[EQ−TL+
SL+] introduced in Appendix B. By doing so we show that the transition
matrix is time-reversible but not symmetric. Its example for V = 6, N = 4,
and ∆ = 1 is presented in Fig. 3 (a).

By construction
B(X → Y |X) =

s(X → Y )

r(X)
, (C.1)

where r(X) is the total number of partial redistributions from the microstate
X = (nX

1 , · · · , nX
V )

r(X) =

V∏
i=1

(ni + 2∆)!

(2∆)!ni!
, (C.2)

and s(X − Y ) is the total number of different redistributions going from X
to Y .
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Note that s(X → Y ) is symmetric s(X → Y ) = s(Y → X). For each
partial redistribution of the particles from X to Y , there is a canonical
partial redistribution from Y to X — it is the same process in the reverse
direction. Of course, in general, r(X) ̸= r(Y ), as we will discuss below.

From the symmetry of s (C.1), one gets

B(X → Y |X) =
s(X → Y )

r(X)
= r(Y )

s(Y → X)

r(Y )r(X)
=

r(Y )

r(X)
B(Y → X|Y ) .

(C.3)
This is equivalent to

r(X)B(X → Y |X) = r(Y )B(Y → X|Y ) . (C.4)

It is rather immediate to write the steady-state distribution πS(X), which
is just the r(X) normalized to one

πS(X) =
r(X)∑
Z r(Z)

, πS(X)B(X → Y |X) = πS(Y )B(Y → X|Y ) .

(C.5)
Clearly, πS(X) is time-reversible if it is the steady-state. It can be easily
proved that it fulfills the definition of the steady-state by summing over X,
reminding that

∑
X B(Y → X|Y ) = 1.

The transition probability matrix B(X → Y |X) is thus ergodic and time-
reversible, but not symmetric. Therefore, the steady state πS(X) cannot be
the equiprobable one. There must be X and Y with r(X) ̸= r(Y ). To verify
the latter, it is enough to note that for N > 1, there is always at least one
transition with B(X → Y |X) ̸= B(Y → X|Y ). Let us consider the initial
microstate X with nX

i = N , and the final one Y with nY
i = N − 1 and

nY
i+1 = 1. From Eq. (C.1) it follows that the probability B(X → Y |X)

is equal to (2∆)!N !/(N + 2∆)!. On the other hand, the probability of the
inverse transition, B(Y → X|Y ), is 1/(2∆+1) (the partial probability of the
particle in cell i+1 to move to the cell i) times (2∆)!(N −1)!/(N +2∆−1)!
(the probability that N−1 particles in cell i remain in cell i). Consequently,

1

2∆+ 1

(2∆)!(N − 1)!

(N + 2∆− 1)!
=

1

2∆+ 1

N + 2∆

N

(2∆)!N !

(N + 2∆)!
= B(Y → X|Y )

= B(Y → X|Y ) < B(X → Y |X) =
(2∆)!N !

(N + 2∆)!
. (C.6)

In particular, in the large-N limit, the transition X → Y has a probability
2∆+ 1 larger than the transition Y → X.
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Appendix D

Construction of the [EQ+ TL+ SL+] matrix for indistinguishable particles

Here, we explicitly construct the transition matrix B ∈[EQ+ TL+ SL+]
discussed in Sec. 3.4. It obeys transport- and strong-localities (Sec. 2.3),
and it is symmetric and ergodic.

The construction follows the procedure presented in Appendix B for the
B ∈[EQ−TL+ SL+] matrix. However, the probability of partial redistri-
butions is not constant. The set of partial redistributions for a cell with n
particles is obtained using the recursive procedure starting from the system
with n = 1 particles and fixing the probabilities for the higher n enforcing
symmetry order-by-order. The ergodicity and the symmetries are obeyed as
long as the probabilities to “move left” are equal to the ones “moving right”.

For simplicity, we will consider the case of ∆ = 1. It is straightforward
to generalize the procedure for an arbitrary ∆.

Possible (partial) redistributions of a single particle in cell i at t to move
the neighbouring cells {ni−1, ni, ni+1} at t + 1 are {1, 0, 0}, {0, 1, 0}, and
{0, 0, 1}. Assuming probabilities to “move right” P

(1)
R , “move left” P

(1)
L , and

stay P
(1)
S in the cell i are equal, P

(1)
R = P

(1)
L = P

(1)
S = 1/3, one gets the

simplest case. It is worth mentioning, however, that one can generalize the
procedure as long as the probability to “move right” and “move left” are
equal.

For n = 2, there are two cases to consider:

(i) Two particles in the same cell “split” into different cells. We fix the
probability of the partial redistribution to be equal to the probabil-
ity of the partial redistributions for the inverse process P

(2)
SPLIT =

(P
(1)
SPLIT)

2 = 1/9. There are three possible outcomes, depending on
which cell remains unoccupied in the partial redistribution.

(ii) Two particles in the same cell “stay together” in the processes. There
are still three outcomes (the cell in which both particles land), we fix
them assuming that they are equiprobable, and using the fact that the
sum of all probabilities must be 1

P
(2)
S =

1

3

[
1− P

(2)
SPLIT

]
=

2

9
. (D.1)

Thus, by construction, all the partial redistributions of cell multiplicities
have probabilities equal to the corresponding reverse processes. The above
procedure must be repeated recursively up to N . It grants that the transition
matrix is symmetric. The number of independent redistributions s(X → Y )
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is independent of the redistribution probabilities and symmetric s(X →
Y ) = s(Y → X). The probability of each independent process connecting
X to Y has its inverse that by construction has the same probability. Thus,
the probability of each partial redistribution has the same numerical value
as its inverse.

Then the “stay-together” probabilities for n > 2 up to N depend on
the total number of available partial redistributions and the probabilities
obtained for smaller n. They can be shown to be equal to

P
(n)
S =

1

3

1− ∑
0<k≤l≤n−k−l

Cn−k−l,k,lP
(n−k−l)
S P

(k)
S P

(l)
S

−
∑

0<m≤n−m

Cni−m,mP
(n−m)
S P

(m)
S

 , (D.2)

where the number of different combinations Cn−k−l,k,l of particles in three
cells with multiplicities n− k− l, k, and l is either 1 (if k = l = n− k− l), 3
(if either k = l < n− k− l or k < l = ni − k− l), or 6 (if k < l < n− k− l).
In the same way, the combinations Cn−m,m are either 6 (if n − m > m)
or 3 (if n − m = m). We have no proof that P

(N)
S remains positive, and

thus the transition matrix exists for arbitrary large N . However, we checked
numerically that Eq. (D.2) gives P

(n)
S > 0 for n up to 1000. It is possible

to verify the construction for any finite N providing a sufficient computing
time is available.
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