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The formalism for an efficient scheme for spin-rotational symmetric
matrix-product states (MPSs), also known as tensor trains (TTs), is pre-
sented. The methodology is applied for the study of ground-state en-
ergy and correlation properties of the isotropic spin-1 bilinear-biquadratic
quantum Heisenberg chain with nearest-neighbor interactions and periodic
boundary conditions as an example. The mathematical framework can be
used for arbitrary spin-rotational invariant spin-S chains.
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1. Introduction

Various studies are focusing on quantum systems on lattices as well as
their ground-state phase transitions and are motivated by realizations of
quantum chains/lattices as well as the relation of classical spin chains in
1 + d dimensions to d-dimensional quantum systems. General concepts
of critical systems such as scaling, critical exponents and universality of
quantum mechanical systems are gaining interest. Historically, research on
classical phase transitions was performed by use of models such as Ising
and Potts. Nowadays, understanding critical properties of especially low-
dimensional systems is a driving force for the establishment of fundamental
mathematical concepts [1, 2].

Modern approaches are of analytical or numerical type [3] and may be
considered exact for special integrable cases or approximate for generic sys-
tems. The famous Bethe ansatz [4] is applicable for the eigenstates of the
Hamiltonian and the corresponding transfer matrix of integrable systems
with infinitely many conserved currents. In principle, integrable systems
allow the analytical treatment of all eigenstates of the Hamiltonian [5].

(8-A3.1)
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Slightly distinct are exactly solvable systems with analytically tractable
ground states but inaccessible higher-lying spectrum. Analytically, there
are mappings of arbitrary systems to free bosonic systems. Quite general
are maps of spin systems to bosonic systems on the basis of spin waves with
an approximate treatment of boson–boson interactions. Especially for 1+ 1
dimensional systems, mappings that allow to ignore certain irrelevant inter-
actions and to obtain quite non-trivial results for spin–spin correlators in
terms of vertex-operator correlators with non-trivial algebraic asymptotic
decay exist.

Integrable systems in 1 + 1 dimensions are very particular. Exact treat-
ment of spectrum and correlation functions is achieved by a concerted com-
bination of algebraic and analytic means of analysis. Such calculations yield
valuable cornerstones for quantum many-body systems, but rely on rather
special consistency properties of scattering events like Yang–Baxter equa-
tions [6]. Generic but approximate means involve numerical diagonalizations
of Hamiltonians or transfer matrices on finite chains. Note that techniques
for the complete diagonalization of an entire Hamiltonian defined on chains
are typically restricted to 20 sites or to the determination of just the lead-
ing eigenstates up to 30 sites since the complexity of such calculations is
high and involves Hilbert spaces of dimension 220 or 230 for spin-12 objects
on 20 or 30 sites, respectively. Remarkably, such calculations are based on
matrix-like operations.

An indirect analysis of the ground state of large system sizes makes use
of a map to classical systems and a subsequent application of Monte Carlo
simulations of the classical model [7]. Accessible system sizes are large,
but accessible low temperatures are restricted by the so-called minus-sign
problem: Boltzmann weights of spin-configurations may acquire minus signs
that spoil the numerical accuracy of the calculations severely.

The focus of this work lies on intrinsically quantum-mechanical tech-
niques like the variational approach to the ground-state computation based
on MPS [8] that lead to highly efficient density matrix renormalization group
(DMRG) techniques [9]. Note that there are many realizations of variational
techniques in the literature [10–12]. Practically, the ground state of any
gapped quantum spin chain can be described by MPSs [13]. Inversely, any
MPS is the ground state of a local gapped Hamiltonian [14, 15].

Of particular importance is the treatment of quantum systems with sym-
metries either of discrete or continuous nature: They result from parity or
SU(2)-invariant interactions. Here, we like to apply a modern ansatz of vari-
ational states of matrix product type with built-in SU(2) symmetry. Note
that in this way many calculations can be done efficiently [16]. The local
objects are degree-3 tensors with SU(2) invariance. The foundation of the
formalism for a general computational scheme is given in this manuscript
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and all calculations for S = 1 with the potential of generalization to arbi-
trary spin-S and in the higher-dimensional case to tensor network states with
Abelian [17] and non-Abelian symmetries [18] are presented. Remarkably,
implementation of non-Abelian symmetries is quite involved. Nevertheless,
a guide for implementing a global SU(2) symmetry to tensor networks is
well-known [19]. Within the framework of this study, calculations can be
performed by use of Wigner 3-j symbols for the transfer matrix and eigen-
state as well as Wigner 6-j symbols for the eigenvalues. This is caused by
the decomposition of local matrix tensors into degeneracy and a structural
part [20] ruled by the symmetry and given by the Clebsch–Gordan coeffi-
cients. Hence, in comparison with non-symmetric theories, the number of
parameters is reduced.

The article is organized as follows. In Sect. 2, the mathematical frame-
work for the implementation of su(2)-invariant MPSs is presented. Moreover,
mathematical objects that are necessary for the application of the methodol-
ogy on spin chains are introduced. In Sect. 3, explicit results from variational
computations are given. In Sect. 4, conclusions are presented.

2. MPSs

2.1. Construction of su(2)-invariant MPSs

A class of MPSs is given by

|ψ⟩ = traux (g1 ⊗ g2 ⊗ . . .⊗ gL) (1)

with D×D square matrices gk as well as some corresponding auxiliary finite
dimensional index space V = CD and dual space V ∗, where V is expressed by
a direct sum over irreducable spin-j representations with each j appearing an
arbitrary number of times nj , which is denoted by an integer i ∈ {1, . . . , nj}.
The trace is taken over the auxiliary matrix space. Dimensions of matrices
gk can be taken as arbitrary, but may be constrained by symmetry consid-
erations and details of the model. Furthermore, the kth copy of an su(2)
Lie algebra spin-j space C1+2j is taken as local quantum space Vk. Matrix
entries of gk are elements of Vk. The assumption of gk as su(2)-invariant
tensors in V ⊗C1+2j ⊗V ∗ leads trivially to su(2)-invariant |ψ⟩. The density
matrix of the whole state is ρ = |ψ⟩⟨ψ|

⟨ψ|ψ⟩ .
Due to the construction orthogonal states labeled |(j, i),m⟩ span V ,

where the magnetic quantum number is m = −j, 1− j, . . . , j. As a result of
translational invariance and for the sake of simplicity, site label k is dropped
whenever possible. In V ⊗ C1+2j ⊗ V ∗, any spin multiplet (j1, i1) from the
first factor space, the only spin multiplet j2 of the second space (i2 = 1),
and any spin multiplet (j3, i3) from the third factor space are coupled to a
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singlet state

|(j1, i1) , j2, (j3, i3)⟩=
(
j1 j2 j3
m1 m2 m3

)
|(j1, i1) ,m1⟩⊗|j2,m2⟩⊗|(j3, i3) ,m3⟩ ,

where the coupling coefficient is given by a Wigner 3-j symbol and Einstein
convention is used for m1,m2,m3.

Obviously, su(2)-invariant tensors gk can be expressed by use of site in-
dependent coefficients Aj1,j3i1,i3

and a superposition of elementary singlet states

gk =
∑
j1,j3

n1∑
i1=1

n3∑
i3=1

Aj1,j3i1,i3
|(j1, i1) , j2, (j3, i3)⟩k , (2)

where |(j1, i1) , j2, (j3, i3)⟩k is a complete orthonormal basis for the Hilbert
space at site k.

Note that an odd permutation of the columns in Wigner 3-j symbols
leads to a phase factor which results in Aj3,j1i3,i1

= (−1)j1+j2+j3 Aj1,j3i1,i3
as con-

dition for parity invariance. j1 ≤ j3 is assumed without loss of generality.
Selection rules for non-zero Wigner 3-j symbols lead to integer j1 + j2 + j3
and especially the combination with the noteworthy case j2 = 1 yields only
{j1, j3} = {0, 1} for j1 = 0 and {j1, j3} = {j1, j1}, {j1, 1 + j1} for integer
or half-integer j1. On this condition, all possible coefficients Aj1,j3i1,i3

reduce
to a set of nj1 × nj1 matrices Aj1,j1 and nj1 × n1+j1 matrices Aj1,1+j1 with
elements (Aj1,j3)i1,i3 = Aj1,j3i1,i3

.

2.2. Transfer matrix, norm, and projector

The transfer matrix
t = g† ⊗ g (3)

is defined as a linear map V⊗V ∗ → V⊗V ∗ with dimension (
∑

j (1 + 2j)nj)
2,

where g† is the dual of g. The norm of the MPS is thus given by

⟨ψ|ψ⟩ = tr tL =
∑
n

ΛLn . (4)

Note that the eigenvalues are sorted in such a way that the absolute value
decreases with increasing index n. In the thermodynamic limit L→ ∞ only
the largest eigenvalues with corresponding right normalized eigenstate |0⟩
contribute. For the diagonalisation of t, numerics must be used. However,
the fact that the leading eigenstate |0⟩ is a singlet and the singlet subspace
has dimension

∑
j n

2
j in contrast to the total dimension, (

∑
j(1 + 2j)nj)

2



An Efficient Algorithm of Parity, Translational and Spin-rotational . . . 8-A3.5

simplifies the evaluation significantly. Moreover, note that the in this ap-
proach required explicit calculation of the transfer matrix is simplified by use
of all available symmetries for the purpose of finding invariant blocks of the
transfer matrix which are as low dimensional as achievable since decreasing
the computational time with regard to the diagonalization is aimed for.

The projection operator on two spin-j1 spaces onto the total spin-j sub-
space with Einstein convention for m1,m3,m

′
1,m

′
3 can be expressed as

P j = (1 + 2j)

n1∑
i1=1

j∑
m=−j

(
j1 j j1
m1 m m3

)(
j1 j j1
m′

1 m m′
3

)
× (|(j1, i1) ,m1⟩ ⊗ |j,m⟩ ⊗ |(j1, i1) ,m3⟩)
×
(〈
(j1, i1) ,m

′
1

∣∣⊗ ⟨j,m| ⊗
〈
(j1, i1) ,m

′
3

∣∣) . (5)

The prefactor is caused by defining relations of projection operators, i.e.
P †
j = P j and P 2

j = P j .

The expectation value ⟨ψ|P j|ψ⟩
⟨ψ|ψ⟩ in the thermodynamic limit L→ ∞ can

be calculated by use of the largest eigenvalue of t and Eq. (7). Due to the
translational invariance, the calculation of this expectation value with site j
is sufficient since

⟨ψ |P j |ψ⟩
⟨ψ|ψ⟩

=
tr

(
tjt

L−2
)

tr tL
=

⟨0 |tj | 0⟩
Λ2
0

, (6)

where tj is a modified transfer matrix in V ⊗ V ∗. It can be expressed as

tj
1 + 2j

=
∑

{jl,j′l}
3

l=1

(−1)j1+j3+j
′
1+j

′
3+2j+2sAj1,j2i1,i2

Aj2,j3i2,i3

(
A
j′1,j

′
2

i′1,i
′
2

)∗ (
A
j′2,j

′
3

i′2,i
′
3

)∗

×
(
j1 j j3
m1 m2 m3

)(
j′1 j j′3
m′

1 m2 m′
3

){
s j s
j1 j2 j3

}
×
{
s j s
j′1 j′2 j′3

}
|(j1, i1) ,m1⟩

〈(
j′1, i

′
1

)
,m′

1

∣∣
⊗ |(j3, i3) ,m3⟩

〈(
j′3, i

′
3

)
,m′

3

∣∣ (7)

by use of Einstein convention for i1, i3, i′1, i′3,m1,m2,m3,m
′
1,m

′
3 since 4(j1+

j2 + j3) is even because the sum is an integer or a half-integer. Moreover,
m3 is a summation index in Eq. (5). Therefore, its sign can be changed.
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On the other hand, Wigner 3-j symbols in Eq. (5) are 0 if m1 +m+m3 =
m′

1 + m + m′
3 = 0 is not satisfied. P j is multiplied with two tensors g

and two tensors g†. Furthermore, a sum over products of four Wigner 3-j
symbols leads to Wigner 6-j symbols. Use of these relations yields Eq. (7)
after a lengthy, but straightforward calculation.

3. Application

As an application of the mathematical framework, the physically rather
complex isotropic spin-1 bilinear-biquadratic quantum Heisenberg chain with
nearest-neighbor interactions and periodic boundary conditions on L sites
written as a polynomial of nearest-neighbor spin vectors or as a superposi-
tion of projection operators

H =

L∑
k=1

hk

= J
L∑
k=1

(
S⃗kS⃗1+k + α

(
S⃗kS⃗1+k

)2
)

= J

L∑
k=1

(1 + α+ 3 (α− 1)P 0 (k)− 2P 1 (k)) (8)

is considered, where α ∈ R is an arbitrary number in our calculations and S⃗k
are spin-S SU(2) matrix representations. For practical purposes, we take J
to be 1 or −1. This Hamiltonian describes the most general SU(2)-invariant
three-state-model with nearest-neighbor interactions. Due to the su(2)-
invariant |ψ⟩, the Lie algebra symmetry is a built-in property of the MPS
representation of this chain with L many identical spins. Moreover, spin-j
is arbitrary in our construction. Hence, j = 1 is chosen as the application.
However, the presented framework is applicable to any spin-j Heisenberg
chain with nearest-neighbor interaction of the form of

∑L
k=1Q(S⃗kS⃗1+k),

where Q(x) is a polynomial with degree 2j in x. The reason is that ev-
ery such Hamiltonian can be written as a superposition of projectors, i.e.∑L

k=1

∑2j−1
j′=0 aj′P j′(k). This fact is used in Eq. (8).

3.1. Review

Realizations of the isotropic spin-1 bilinear-biquadratic quantum Heisen-
berg chain are well-known [21]. Moreover, this model was used extensively
for tensor network algorithms [22]. Its SU(2) symmetry is fixed due to the
Mermin–Wagner–Coleman theorem [23]. Eigenstates can be described by
the total angular momentum quantum number S. Note the discrete trans-
lational symmetry and SU(3) symmetry for α = 1,±∞ [24].
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Known results for this model include the gapped Haldane phase with
hidden topological order for J = 1 and −1 < α < 1 [25], which contains
the simple Heisenberg antiferromagnet for α = 0 and the Affleck–Kennedy–
Lieb–Tasaki (AKLT) case for α = 1

3 as well as a phase transition to the
dimerized phase for J = 1 and α ≤ −1 or J = −1 and α ≥ 1, which
contains the exactly solvable spin-12 XXZ model [26]. Discussions about a
possible existence of a gapped nematic phase are ongoing [27]. The gapless
ferromagnetic phase for J = −1 and α < 1 is followed by a gapless phase
with dominating quadrupolar spin correlations for J = 1 and α > 1 [28].
Furthermore, note the Kosterlitz–Thouless phase transition for J = 1 and
α = 1 [29].

3.2. AKLT model

The AKLT model, i.e. the case of α = 1
3 , can be dealt with by ex-

actly using the presented method [8]. For the purpose of demonstrating the
approach, the matrix

g =

(
|0′⟩ −

√
2 |+⟩√

2 |−⟩ − |0′⟩

)
is considered, where the vector elements |±⟩ and |0′⟩ are eigenstates of Sz.
This matrix is determined by use of the fact that h annihilates matrix ele-
ments of g ⊗ g. The transfer matrix t

t =


1 2

−1
−1

2 1


has eigenvalues −1 and 3. The density matrix is given by ρ = |ψ⟩⟨ψ|

⟨ψ|ψ⟩ , whereas
the reduced density matrix ρl can be expressed by use of Einstein’s summa-
tion convention for α, α′, β, β′ with

ρl =
(g1 ⊗ . . .⊗ gl)αα′

(
tL−l

)
α′β′,αβ

(
g†
1 ⊗ . . .⊗ g†

l

)
β′β

tr tL
,

which yields

ρl =
K (L− l)K (l)

3L + 3 (−1)L
,
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K (l) =


3l+(−1)l

2 (−1)l

3l+(−1)1+l

2
3l+(−1)1+l

2

(−1)l 3l+(−1)l

2

 .

Eigenvalues of the reduced density matrix ρl are

1 + 3 (−3)−l

4
=

1

4

(
1 + 3 (−1)−l e−l ln 3

)
,

1− (−3)−l

4
=

1

4

(
1− (−1)−l e−l ln 3

)
.

Thus, the well-known [8] correlation length ξ = 1
ln 3 of the AKLT model is

reproduced, whereas the ground-state energy e0 = t⟨ψ|H |ψ⟩
⟨ψ|ψ⟩ = −2

3 follows
by use of Eq. (1).

3.3. Results for the ground state with −1 ≤ α ≤ 1
3

Numerical results obtained by a program written in Maple are presented
in this subsection. For P 0 and P 1 in the Hamiltonian given in Eq. (8),
Eq. (5) is used. Calculations were performed for −1 ≤ α ≤ 1

3 and J = 1.
For the algorithm, the transfer matrix t is given explicitly by Eqs. (2)

and (3), while the Hamiltonian can be written down by use of Eqs. (5)
and (8). Wigner 3-j and 6-j symbols are evaluated explicitly during this
calculation. Eigenvalues and right as well as left eigenvectors of the explicitly
determined t are computed. The analysis of the expectation value in |ψ⟩ of
H is performed by use of the relation

⟨ψ |h|ψ⟩
⟨ψ|ψ⟩

= JΛL−2
0 ⟨0 |(3 (α− 1) t0 − 2t1)| 0⟩ ,

which follows from Eqs. (6) and (8), where |n⟩ are the corresponding right
orthonormalized eigenvectors to the eigenvalues Λn of the transfer matrix t
in the spin-1 subspace. The gradient of the energy with respect to Aj1,j2i1,i2

, i.e.
∇ = ∂A, can be computed due to the fact that t and J(3(α−1)t0−2t1) are
polynomials in Aj1,j2i1,i2

. Moreover, Λ0 and |0⟩ also depend on these parameters.
Hence, gradients of Λ0 and |0⟩ are calculated by use of the gradient of the
transfer matrix and the leading eigenstate

∇Λ0 = ⟨0 |∇t| 0⟩ , ∇ |0⟩ = −
∑
n

⟨n |∇t| 0⟩
Λn − Λ0

|n⟩
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in analogy to the quantum mechanical perturbation theory. Hence, the
energy is minimized with respect to Aj1,j2i1,i2

under the constraint that |0⟩ is the
leading eigenstate of t. An optimization routine of Maple was used for this
analysis. Remarkably, this described approach for the minimization leads to
an efficient and stable numerical analysis, since J(3(α− 1)∇t0− 2∇t1) and
∇|0⟩ are used for the computation of all tensors and the infinite product,
respectively, that result from the infinite sized MPS.

Purely integer of half-odd integer spin multiplets is considered for the
sake of simplicity. Results for n 1

2
= 3, n 3

2
= 2, and n 5

2
= 2 are presented.

The ground-state energy per site for α = −1 is found to be e0 = −3.991,
which deviates only by the order of 10−3 from the exactly known value
e0 = −4 [30]. Note that for this point, the model is critical which decreases
the accuracy. Correspondingly, e0 = −1.4014849 is found for α = 0, which
is off by the order of 10−7 from the best-known numerical value [31]. The
exact result e0 = −2

3 for the AKLT case of α = 1
3 is reproduced by the

presented method.
By increasing the numbers of copies of spin multiplets in the auxiliary

space to n 1
2
= 6, n 3

2
= 6, n 5

2
= 4, and n 7

2
= 1, e0 = −3.9995 for α = −1 is

obtained, which deviates by the order of 10−4 from the exact value in con-
trast to the previous 10−3 precision. Thus, the accuracy of the analysis can
be enhanced by such a scheme. Moreover, these results proof the stability
of the presented approach.

Note that the dimension of the auxiliary space for n 1
2
= 3, n 3

2
= 2, and

n 5
2
= 2 is 26. In contrast, MPSs without built-in SU(2) symmetry that

lead to equivalent results would have dimension 90, which is rather large
for calculations with periodic boundary conditions. Furthermore, it is also
remarkable that the total dimension of V ⊗V ∗ is (

∑ 5
2

j= 1
2

(1+2j)nj)
2 = 676,

while the singlet subspace has dimension
∑ 5

2

j= 1
2

n2j = 17, which demonstrates
that the presented approach simplifies the mathematical evaluation of the
transfer matrix t significantly.

3.4. Correlation functions

Calculation of all correlation functions of the state can be done by use
of the representation of the transfer matrix in Eq. (4). As an example, the
two-point spin–spin correlation function ⟨Sz0Szr⟩ =

⟨ψ|Sz
0S

z
r |ψ⟩

⟨ψ|ψ⟩ is considered,
whereas this correlator is connected to the ground-state two-point function
ωr of H in Eq. (8) by ⟨Sz0Szr⟩ = 2ωr [3] due to the fact that the ground
state of the Hamiltonian is constructed by the MPS ansatz in Eq. (1). Nev-
ertheless, it is possible to perform all calculations for other correlators.
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The two-point spin–spin correlation function ⟨Sz0Szr⟩ in the thermody-
namic limit L→ ∞ can be expressed as

⟨Sz0Szr⟩ =
tr

(
tL−rSz0t

rSzr
)

tr tL

=

∑
β,γ Λ

L−r
β Λrγ |⟨β |Sz| γ⟩|

2∑
α Λ

L
α

L→∞−→
∑
n

(
Λn
Λ0

)r
|⟨0 |Sz|n⟩|2 , (9)

while ⟨0|Sz|n⟩ can be determined by use of

⟨0 |Sz|n⟩ = (−1)j1+2j2+j3

√
2

3
Aj2,j3i2,i3

Aj3,j1i3,i1

{
j2 1 j1
1 j3 1

}
. (10)

Equation (10) holds since j can be rewritten with Wigner 3-j symbols as

j = (−1)1+2j
√
j (1 + j) (1 + 2j)

(
j 1 j
j 0 −j

)
.

Hence, Sz in a spin-j-multiplet transforms with respect to the upper index z
as a spin-1 object and has matrix elements given by Wigner 3-j symbols.
Moreover, the introduced methodology in Sect. 2 yields

⟨0 |Sz|n⟩ = (−1)1+j+j1+2j2+j3±2j+2(1+j1+j2)
√
j (1 + j) (1 + 2j)Aj2,j3i2,i3

Aj3,j1i3,i1

×
{
j2 1 j1
j j3 j

}(
j2 j1 1
m2 m1 m

)(
j2 j1 1
m2 m1 0

)
=

(−1)1+j+j1+2j2+j3±2j+2(1+j1+j2)

3
Aj2,j3i2,i3

Aj3,j1i3,i1

{
j2 1 j1
j j3 j

}
.

Note the Einstein convention for m1,m2. Furthermore, the knowledge that
1 + j1 + j2 ∈ N0 and j = 1 yields the desired Eq. (10).

Use of Eqs. (9) and (10) together with the previously introduced transfer
matrix algorithm yields the desired correlators. Exemplary results of this
analysis are summarized in Table 1. The expected exponential decay is
observed. Comparison [3] of the obtained values for the correlators yields
good agreement with an order of at least 10−3 for precision even for the
critical case. Note that the analysis can be performed for all positive r.
Exemplary results are given in Fig. 1. However, only integer r is of physical
relevance.

Note that remarkably, all of the presented results (the ground-state prop-
erties and correlation functions) for a certain α can be determined together
within computation times lower than a minute by use of notebook comput-
ing.
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Table 1. Results for the spin–spin correlator ⟨Sz
0S

z
r⟩ for J = 1, α = 0, and

α =
√
1− 2√

5
= tan π

10 .

r ⟨Sz
0S

z
r⟩|α=0 ⟨Sz

0S
z
r⟩|α=

√
1− 2√

5

1 −1.401 −1.337

2 0.731 0.456

3 −0.525 −0.161

4 0.353 0.058

5 −0.262 −0.021

6 0.187 0.008

Fig. 1. Correlation function Cr = ⟨Sz
0S

z
r⟩ for α = 1

3 (left) and α = 0 (right).

4. Conclusion

An efficient formulation of su(2)-invariant MPSs for arbitrary spin-S
was presented. The goal of this manuscript was to calculate ground-state
properties such as energy or two-point correlation functions for spin-S chains
within this framework. Basic objects for the calculation are tensors of rank 3.
The computation was done explicitly by use of Wigner 3-j and 6-j symbols.
The usefulness of this mathematical scheme was proven by its application
on the isotropic spin-1 bilinear-biquadratic quantum Heisenberg chain with
nearest-neighbor interactions and periodic boundary conditions. Exemplary
results for the ground-state energy and spin–spin correlators were presented.
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The achieved accuracy is acceptable for practical purposes. Nevertheless, the
precision can be enhanced quite easily for higher numbers of copies of spin
multiplets in the auxiliary space.
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