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In the field of complex networks, Identifying crucial spreaders with high
propagation ability is an important aspect of research, especially in the
background of the global spread of COVID-19. In view of this, a large num-
ber of ranking algorithms and their improved versions have been proposed
to evaluate the importance of nodes in the network, such as degree central-
ity, betweenness centrality, and k-core centrality. However, most of these
methods neglect to consider the average shortest path between important
nodes in the process of node importance evaluation, which will be difficult
to ensure that the initial crucial spreaders have a large influence on the
network. Recently, the VoteRank algorithm proposed a new idea for identi-
fying widely distributed key spreaders based on the voting mechanism, but
there are some aspects of this algorithm that require improvement. In this
paper, we propose a VoteRank improved by degree centrality, k-core, and
h-index (DKHVoteRank) for identifying critical spreaders in the complex
networks. We introduce additional metrics to optimize the voting mecha-
nism of the VoteRank to ensure that our algorithm can identify a widely
distributed spreaders with high importance in the network. We conducted
simulation experiments based on the Susceptible–Infected–Recovered (SIR)
model on 12 different complex network datasets, and the results show that
our proposed algorithm performs significantly better than other benchmark
algorithms in terms of propagation capability, propagation scale, and ap-
plicability of the algorithm.
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1. Introduction

Many activities of human society can be abstracted as networks for anal-
ysis [1], such as social networks [2], trade networks [3], transportation net-
works [4], power networks [5], etc. As society continues to evolve, these net-
work systems are becoming increasingly complex and precise. Biomolecular
networks [6] explore the functions of molecules in terms of their network
structure. Online trade networks [7], through community segmentation,
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identify people with the same preferences, so that products and advertise-
ments can be precisely delivered to the groups in need. In the background
of the global spread of the epidemic, the analysis of social networks and the
identification of nodes in the network that have a greater capacity to spread
play an important role in preventing the development of the spread of the
epidemic [2, 8, 9].

Identifying the influential key nodes in the network has become a hot
issue in the research of complex networks in recent years, which can be
defined as the influence maximization (IM) problem [10]. On the one hand,
identifying the influential key nodes in the network can effectively control
the network, and in power networks, the robustness and anti-destructiveness
of the network can be effectively enhanced through the maintenance of key
nodes in the network [5, 11]. In social networks, the use of cutting off
key nodes in the network can be effective in limiting the spread of, for
example, rumors or epidemics [9, 12]. On the other hand, the identification
of critical nodes can help us better understand the function and structure of
the network, thus bringing more convenience to our life [13]. The research
on identifying critical nodes in complex networks has also attracted the
attention of many scholars and many ranking methods for evaluating the
importance of networks have been proposed.

Traditional methods based on node centrality, such as degree centrality
(DC) [14], betweenness centrality (BC) [15], and closeness centrality (CC)
[16] are proposed to evaluate the importance of nodes in complex networks.
DC reflects the importance of a node by the number of its neighbors in a
complex network, while BC and CC are based on the global information
of the nodes in the network and can achieve more accurate results than
DC. However, these two methods need to calculate the shortest distance
of node pairs, which is more complex and difficult to apply to large-scale
network structures. Based on this, many scholars have also proposed some
new methods.

Chen et al. [17] proposed a semi-local method for node importance eval-
uation by taking the degree information of neighboring nodes into consider-
ation. Liu et al. [18] defined the importance of edges in the network based
on the degree information of nodes and then proposed a new evaluation
method — degree and importance of the line (DIL) method. Ren et al.
[19] combined degree and clustering coefficient information to evaluate node
importance. Some new centrality evaluation metrics have also been pro-
posed in recent years to calculate the importance of nodes. Kitsak et al.
[20] proposed a k-core centrality (KC) approach based on the location of the
nodes in the network, arguing that the nodes at the center of the network
are more important. Liu et al. [21] further distinguished the importance of
nodes located at the same layer in the KC method by calculating the average
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distance between the nodes and the node at the most central location of the
network. Wang et al. [22] then used the information entropy of nodes to
distinguish the importance of nodes located at the same layer. Yeruva et al.
[23] proposed the Pareto-shell decomposition method using a Pareto front
function based on the KC algorithm. Bea et al. [24] proposed the Neighbor-
hood Coreness (NC) and Extended Neighborhood Coreness (ENC) methods
by taking the k-core values of neighbor nodes and secondary neighbor nodes
into consideration. Hirsch et al. [25] proposed a new method for evaluating
the importance of nodes called the h-index, which was initially used to eval-
uate the influence of scientists and later was also widely used to evaluate the
importance of nodes in complex networks. Based on the h-index method,
Liu et al. [26] then proposed the Local h-index (LH-index) method, in which
the h-index values of neighboring nodes are also used in the calculation of the
node importance, making the evaluation results more accurate. Tong et al.
[31] redefined the entropic centrality model of nodes in complex networks as
a measure of the centrality of nodes. Sheikhahmadi et al. [32] proposed a
Mixed Core, Degree, and Entropy (MCDE) method that uses KC, DC, and
entropy for a comprehensive evaluation of the node importance.

In the above method, the node importance is measured by defining the
node importance index. However, it does not guarantee that the nodes with
high importance are widely distributed in the network. In the field of com-
plex networks, a node with high importance means that it has more influence
on its surrounding nodes and has a more important position in the global
network [33]. When dealing with the IM problem, it is often necessary to
identify a set of nodes with high propagation ability in the network. In or-
der to better exert influence on the network, we want the identified nodes
to be as widely distributed as possible in the network [10]. In a network,
the distance between initial spreaders has a large impact on the propagation
of information [34]. Some scholars proposed PageRank [27, 28], LeaderRank
[29, 30], and other ranking algorithms based on random walks. Zhang et al.
[35] proposed a voting mechanism-based method, called VoteRank, which
can effectively identify important nodes widely distributed in the network.
Sun et al. [36] applied the VoteRank algorithm to weighted networks and pro-
posed an extended algorithm called WVoteRank. Kumar et al. [37] used the
NC method to improve VoteRank and proposed the NCVoteRank algorithm.
Guo et al. [38] proposed the EnRenew algorithm to use the node information
entropy for the improvement of the VoteRank algorithm.

The VoteRank algorithm provides a new perspective for solving the IM
problem. However, the algorithm has some drawbacks. First, the VoteRank
algorithm treats the initial voting ability of all nodes as the same, without
differentiating them according to their attributes, and the model design is
not precise enough. Second, the algorithm only considers the attribute val-
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ues of the nodes’ neighbors when calculating the node scores and does not
consider the influence of the nodes’ attributes on the node scores. In addi-
tion, the VoteRank algorithm only weakens the voting ability of the nearest
node to the selected node in the updating process, which does not ensure that
the identified set of spreaders is distributed widely enough in the network.
Kumar et al. [37] use the node NC value to address the above shortcomings
and optimize the node score calculation process. However, the index is not
accurate enough in reflecting the importance of nodes. Guo et al. [38] rede-
fines the initial voting ability of nodes by information entropy, but do not
optimize the calculation process of node scores.

Inspired by the VoteRank algorithm, to address the shortcomings of the
algorithm, we have improved the algorithm in the following aspects:

(i) The initial voting ability of nodes is redefined using node degree values,
and it is considered that nodes with larger degree values need to vote
for more nodes and, therefore, need to have the stronger voting ability.

(ii) The node importance value is derived by combining the node degree
value, the k-core value, and the h-index value, which measure the
node capability from different aspects, and introduce the value into
the calculation of the node voting score. Thus, the final score of the
node reflects not only the attributes of the neighboring nodes, but also
the importance of the node itself in the network.

(iii) The update phase of the VoteRank algorithm is improved by expand-
ing the weakening range of nodes around the node selected in each
round of voting and adjusting the weakening parameters considering
the distance between nodes.

In this paper, we compare the DKHVoteRank algorithm with six other
benchmark algorithms, and evaluate the initial spreaders identified by dif-
ferent algorithms using the SIR model [40] based on propagation dynamics
theory [39]. The experimental results show that our proposed algorithm has
better performance compared with other algorithms.

The framework of this paper is as follows: Section 2 introduces the re-
lated methods of our algorithm and other improved algorithms, and the
details of the principles and steps of our proposed algorithm are clarified.
Section 3 introduces the evaluation model, evaluation metrics, and data sets
used in the experimental part. Section 4 analyzes the experimental results.
Section 5 concludes the content of this paper.
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2. Methods

We use G(V,E) to denote an undirected unweighted complex network,
N = |V | to denote the set of nodes of the network, and M = |E| to de-
note the set of edges of the network, where V = {v1, v2, · · · , vN}, E =
{e1, e2, · · · , eM}.

2.1. DC

DC [14] is the most classical node ranking method which considers a
node with more number of neighbors as more important. DC can reflect
the importance of the node to some extent, but it is difficult to distinguish
the nodes with the same degree. For example, the degree values of nodes 1
and 16 in Fig. 1 are both 8, so it is difficult to evaluate which of these two
nodes is more important. Meanwhile, nodes with higher importance in the
network do not always have higher degree values; for example, node 4 has
a smaller degree value than node 16, but node 4 is closer to the center of
the network than node 16. Therefore, relying on the DC method alone to
identify key nodes in the network is not accurate enough. Chen et al. [17]
realized the inadequacy of DC in measuring the importance of nodes and
proposed a semi-local method (SL), which considers the information of node
neighbors and secondary neighbors. This method effectively balances the
problems of low relevance of the DC method and the complexity of global
metrics calculation. The local importance CL(v) of node v can be defined as

Q(u) =
∑

w∈Γ (u)

N(w) , (1)

CL(v) =
∑

u∈Γ (v)

Q(u) , (2)

where Γ (v) denotes the set of neighbor nodes of node v, and N(w) denotes
the number of neighbor nodes and secondary neighbor nodes of node w.

2.2. KC

KC (also known as the k-shell method) is a node importance ranking
method proposed by Kitsak et al. [20]. This method considers that the
importance of a node depends on the location of the node in the network,
and the nodes located at the center of the network have greater importance.
The KC method lays the nodes as follows: first, all nodes in the network with
degree 1 are removed, which will cause the degree value of the remaining
nodes in the network to decrease, and further nodes in the network with
degree 1 are removed until all nodes in the network have a degree value
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Fig. 1. An example network to explain the principles and steps of different algo-
rithms, which is also used in [20, 24].

greater than 1. The KC value of the nodes removed in this step is defined
as 1. After that, all the nodes in the network with degree 2 are removed
from the network according to the same way until the degree of the remaining
nodes is greater than 2. The nodes removed in this step are defined with
the KC value of 2. After removing all the nodes in the network according
to this method, the KC value of each node is obtained. The higher the KC
value of the node, the closer the node is to the center of the network. In
Fig. 1, the network nodes are divided into three layers according to the KC
method, and the orange area indicates the nodes located at the center of the
network. The KC method can effectively identify the nodes located at the
center of the network, but the method does not distinguish well all nodes,
for example, there are 26 nodes in Fig. 1, which are only divided into three
layers, and the nodes in the same layer cannot be compared. Moreover, the
nodes with the largest KC values in the network are generally concentrated
(also obvious from Fig. 1), and if the node with the largest KC value is
selected as the initial spreaders, it will lead to overlapping influence, which
needs to be avoided as much as possible.

NC proposed by Bae and Kim [24] is based on the KC method in consid-
ering the KC value of a node and its neighbors to evaluate the importance
of a node. The NC value of a node can be expressed as
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NC(v) =
∑

w∈Γ (v)

ks(w) , (3)

where Γ (v) denotes the set of neighbors of node v, and ks(w) denotes the
KC value of node w. Based on the NC method, the ENC method is further
proposed, and the ENC values of the nodes can be expressed as

ENC(v) =
∑

w∈Γ (v)

NC(w) , (4)

where NC(w) denotes the NC value of node w.

2.3. h-index

h-index [25] is a metric proposed by Hirsch to measure the research
contribution of scientists. This method is defined as the h-index value of a
scientist if he has N papers, of which h papers are cited more than h and
the remaining (N − p) papers are all cited less than h. The h-index value
of this scientist is h. In recent years, this method has also been used to
evaluate the importance of nodes in complex networks due to the rationality
of the evaluation. When this method is used to evaluate nodes in complex
networks, then it can be defined as when a node has h neighbors whose
degree values are all greater than h and the remaining neighbors whose
degree values are all less than h, the node has an h-index value h. Take
node 1 in Fig. 1 as an example, the degree values of the neighboring nodes
of node 1 are 5, 4, 4, 4, 2, 2, 1, 1. Node 1 has 4 neighbors with degree
values greater than 4, and the degree values of the remaining nodes are less
than 4, so the h-index value of node 1 is 4. The h-index method measures
the importance of a node by the number of high-quality neighbor nodes of
that node. It does not consider the other neighbors of the node, which leads
to the conclusion that the method is not sensitive to some changes in the
network, for example, if the links between node 1 and four nodes 17, 18, 19,
20 are added, the degree of node 1 increases by 4, but its h-index value does
not change.

Liu et al. [26] proposed the LH-index method based on the h-index
method, which takes the h-index values of the neighbors into consideration,
and the LH-index value of node i can be defined as

LHindex(i) = hindex(i) +
∑
v∈Γ (i)

hindex(v) . (5)

The LH-index method can better distinguish node importance compared
to the h-index method, and the h-index values of nodes are affected by neigh-
boring nodes and, therefore, are more sensitive to changes in the network.
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2.4. VoteRank

Zhang et al. [35] proposed the VoteRank algorithm, based on a voting
mechanism, to select the most influential nodes based on the scores of the
nodes in each round of voting. Each node in the network contains two
attributes, {Sv, Vav}, where Sv is used to record the voting score of node v
after each iteration, and Vav indicates the voting ability of node v during each
iteration. The voting score of a node is equal to the sum of its neighbors’
voting ability and the VoteRank algorithm goes through the following five
steps:

Step 1: Initialize. Initialize the voting score Sv and voting ability Vav
of all nodes in the network to 0 and 1.

Step 2: Vote. In this phase, each node votes on its neighbors, and each
receives all votes from its neighbors. The voting score of node v in the T th

round of voting Sv(T ) can be expressed as

Sv(T ) = Sv(T − 1) +
∑
i∈Γ (v)

Vai(T − 1) . (6)

Step 3: Select. The node with the highest voting score is selected based
on the results of the current round of voting. The selected node vT max will
not participate in the next round of voting, thus changing the voting ability
of this node to 0.

Step 4: Update. In order to make the selected nodes as diffuse as
possible, the voting ability of the selected node’s neighbors needs to be
diminished. The diminished node voting ability can be defined as

Vav =

{
Vav − δ if Vav − δ > 0

0 otherwise
, (7)

where δ = 〈k〉/
(
〈k2〉 − 〈k〉

)
denotes the reduction coefficient of the node

voting ability, and 〈k〉 denotes the average degree of the network.
Step 5: Repeat. Repeat the process from Steps 2 to 4 until the top k

nodes are selected out.
Kumar et al. [37] argue that the voting ability of nodes needs to be

differentiated according to the topological position of nodes in the network,
and the NCVoteRank algorithm is proposed to improve the voting ability
of nodes by introducing the NC value of nodes, and the node NC value
is calculated according to Eq. (3). The NCVoteRank algorithm also first
initializes the voting ability Vav and the scores Sv of all nodes in the network
to 1 and 0. The following formula is used to calculate the node scores in the
voting phase:

Sv =
∑
i∈Γ (v)

(Vai ×NC(i)× (1− θ) + Vai × θ) , (8)
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where NC(i) is the node’s neighborhood coreness value, θ is an adjustable
parameter that takes values in the range of [0, 1], which is used to adjust
the weight of the node’s NC value, after which the node with the highest
score in this round of voting is identified and the information about the node
and the node’s neighboring nodes is updated. After that, the next voting is
performed until the first n initial propagation nodes are selected.

Inspired by the VoteRank algorithm, Guo et al. [38] proposed the EnRe-
new algorithm by using the node information entropy as the initial voting
ability of a node. The information entropy Ev of node v can be calculated by

Ev =
∑

u∈Γ (v)

Huv =
∑

u∈Γ (v)

−Puv logPuv , (9)

where puv = du∑
l∈Γ (v) dl

, and Huv denotes the propagation ability that node v
receives from node u. The EnRenew algorithm selects the node in the net-
work with the largest propagation ability as the selected node, and weakens
the propagation ability of the node’s l-length reachable nodes. The weakened
propagation ability can be calculated by

Hul−1ul = Hul−1ul −
1

2l−1
Hul−1ul

E〈k〉
, (10)

where ul indicates that the distance between node ul and the selected node
is l, and E〈k〉 = −〈k〉

〈k〉
n log 〈k〉n is the information entropy of any node in the

k-regular graph network.

2.5. Our method

The previous sections introduced several traditional methods for identify-
ing important nodes in the complex networks and their respective improved
algorithms. The DC method reflects the importance of a node by the num-
ber of neighboring nodes, and the larger degree value means it has more
influence in the network locally; the KC method focuses on the location of
a node in the network, and the larger the k-core value, the closer the node
is to the center of the network. The h-index method is more concerned with
the number of high-quality neighbors around the node. The above three
algorithms have low computational complexity and can better measure the
node importance from different dimensions.

The VoteRank algorithm selects influential spreaders in the complex net-
works by using a voting mechanism. We believe that a more suitable node-
importance metric should be used to improve the VoteRank algorithm — one
that better reflects the position of the nodes in the network topology during
the voting process. Therefore, we propose an algorithm called DKHVoteRank
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and we use three methods DC, KC, and h-index to improve the VoteRank
algorithm. The details of DKHVoteRank algorithm are as follows:

(i) First, the degree value di, KC value ki, and h-index value hi of all nodes
in the complex network are calculated. The above three metrics are
combined using the homotopy function to obtain the local importance
of the nodes pi, which is calculated as follows:

pi =
di√∑N
j=1 d

2
j

+
ki√∑N
j=1 k

2
j

+
hi√∑N
j=1 h

2
j

, (11)

where N denotes the number of nodes in the network. The degree
value of a node can reflect the local influence ability of the node in
the network to some extent, the k-core value reflects the importance
of the node’s position in the network, and the h-index value reflects
the importance of the node through the number of high-quality nodes
in the node’s neighborhood. We want to obtain a metric that can
synthesize the importance of different aspects of the nodes, so we use
the homotopy function u(x) = x/

√∑
x2 [19, 41] to process di, ki, and

hi simultaneously, so that it can correctly reflect the combined results
of different forces.

(ii) Initialize node score and voting ability. In this phase, the node vot-
ing score is initialized to 0, and the voting ability Vav is calculated
according to the following formula:

Vav = log

(
e+

kv
kmax

)
, (12)

where e is a constant that represents the base of the natural logarithmic
function, kmax denotes the maximum value of the node degree in the
network. In the VoteRank algorithm, all nodes’ initial voting ability
in the network is set to 1 in the initialization phase. We believe that
the initial voting ability of nodes should be differentiated according
to the degree value of nodes. The larger the degree value of nodes
which means that nodes have more neighboring nodes and need to
cast more votes in the voting phase, the stronger the voting ability
of nodes themselves should be. Therefore, the logarithmic function is
used in this step to describe the trend of node voting ability with the
degree value.
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(iii) Voting phase. In the voting phase, each node in the network receives
votes from its neighbors and votes for its neighbors. In calculating
the node score for each round of voting, the node score is calculated
by multiplying the node’s local importance pi with the node’s voting
ability Vav , calculated as follows:

Sv(i) =
∑
i∈Γ (v)

(Vav pi) . (13)

The VoteRank algorithm calculates the final score of a node by sum-
ming up the voting ability of the node’s neighboring nodes. It cal-
culates the final score of a node only by the attribute values of the
neighboring nodes, without considering the influence of the node’s own
attributes on the node’s score, so at this stage, we take the node’s im-
portance value pi into account in the calculation of the node’s score.
After calculating the scores of all nodes, the node with the highest
score is selected in this round of voting, and the selected node will not
participate in the subsequent voting process.

(iv) Update node attribute values. The node with the top voting score in
this round is selected, and its voting ability is set to 0. We assume
that node vT is the selected node for the T th round of voting. Then,
we update the voting ability values of the nearest and the next-nearest
neighbors of node vT as follows:

V av =

{
Vav − δ if Vav − δ > 0

0 otherwise
, (14)

where δ = 1
〈k〉×d(vk,vT ) denotes the reduction coefficient of the voting

ability, and d(vk, vT ) denotes the distance between vk and vT . This
step makes it more difficult to elect nodes in the domain of the selected
nodes in the voting process thereafter by weakening the voting ability
of the neighbors of the selected nodes, so that the identified set of
selected nodes can be widely distributed in the network. At the same
time, we weaken the voting ability of nodes within distance 2 from
the selected node. Considering the negative correlation between the
influence and the distance between nodes, the node distance is taken
into account in the weakening mechanism, and the farther the distance
from the selected node, the lower the weakening value is set.

(v) Iteration phase. Repeat Steps (iii) to (iv) until the top k nodes are
selected.
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The detailed steps of the DKHVoteRank algorithm are shown in Algo-
rithm 1. In lines 2–4, the local importance of each node in the network is
calculated according to Eq. (11), and we denote the number of nodes and
edges in the network by n, m, respectively, and the computational complex-
ity of this step is O(n). In lines 6–19, the voting phase of the algorithm is
entered. First, the nodes’ scores are calculated after each round of voting,
and the node with the highest score is selected after which the neighbors
and secondary neighbor information of the selected node are updated, so
the computational complexity is O(n〈k〉2), where 〈k〉 represents the average
degree of the network, 〈k〉 = 2m

n . The above steps need to be repeated s
times, and s denotes the number of initial spreaders. Ultimately, the com-
putational complexity of the algorithm can be expressed as O(n+ sn〈k〉2),
which can also be approximated as O(n〈k〉2), since the value of s is generally
much smaller than n.

Algorithm 1 DKHVoteRank
Input: a complex network G(V,E) with V = {v1, v2, . . . , vn} and E = {e1, e2, . . . , en},

number of initial spreaders topk
Output: S includings topk nodes
1: S = ∅
2: for all v ∈ V do
3: pi =

di√∑N
j=1 d

2
j

+ ki√∑N
j=1 k

2
j

+ hi√∑N
j=1 h

2
j

. compute the node local importance

4: V av = log
(
e+ kv

kmax

)
. initialization the voting ability

5: end for
6: while |S| ≤ topk do
7: for all v ∈ V do
8: Sv(i) =

∑
i∈Γ (v)(V av ∗ pi)

9: end for
10: Add vi to S, delete vi form V , where vi = argmax

v
{Sv}

11: for vj ∈ Γ (vi) do . Eliminating nodes, which v′is reachable in two hops
12: V aj = V aj − 1/〈k〉
13: Sj = Sj − V ai
14: for vk ∈ Γ (vj) do
15: V ak = V ak − 1/(2 ∗ 〈k〉)
16: Sk = Sk − V aj
17: end for
18: end for
19: end while
20: return S;

3. Experimental setup

There are two methods to evaluate the importance of the initial spreaders
determined by different algorithms [42]. The first approach uses the node
deletion method, which considers the importance of a node as equivalent
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to the impact on the network after the deletion of that node. The second
approach is based on a propagation dynamics model, where the identified
initial spreader is used as a source of information propagation and the im-
portance of the initial spreaders is evaluated by simulating the propagation
in the network. The first method, which needs to calculate the distance of
all node pairs in the network when calculating the network operation effi-
ciency, has a large computational complexity and is difficult to be applied
to large-scale network structures. In the propagation dynamics model, by
simulating the process of information propagation in the network, the cal-
culation results are more straightforward, and this method has also become
the major method for evaluating the initial spreaders at present.

3.1. Spreading model

The SIR model [43, 44] has been known as the most commonly used
propagation model due to its good operability and applicability. In the SIR
model, the nodes in the network are classified into three categories, respec-
tively, susceptible nodes (S), infected nodes (I), and recovered nodes (R).
In the beginning, a small number of nodes in the network are selected as
infected nodes, which are in state I, and the remaining nodes in the network
are defined as susceptible nodes in state S. In each step of propagation,
the infected nodes have a certain probability to assimilate the susceptible
nodes in their neighbors into infected nodes, and the infection probability
is defined as β. At the same time, the infected nodes in the network have
a certain probability of recovery and are transformed into recovered nodes,
and the recovery probability of the nodes is defined as λ. The infected
probability has a threshold value βth, and when the infection probability is
less than this threshold, the information cannot be effectively propagated
in the network. Therefore, in order to make the propagation process more
rapid so that we can observe the differences between different initial spread-
ers in the propagation process, we set the infection probability β = 1.5βth,
where βth = 〈k〉

〈k2〉−〈k〉 and 〈k〉 denotes the average of node degrees in the
network. In the SIR model, the infection rate is defined as the ratio of the
infection probability to the recovery probability, ζ = β

λ , and this metric also
has a significant impact on the process of information dissemination in the
network.

3.2. Performance metrics
3.2.1. Network efficiency

Network efficiency η [19] is a common metric used to evaluate network
connectivity. The higher the network efficiency, the stronger the connectivity
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between nodes in the network. The formula for calculating network efficiency
can be expressed as

η =
1

n(n− 1)

∑
vi 6=vj

1

d(vi, vj)
, (15)

where n denotes the number of nodes in the network and d(vi, vj) denotes
the shortest path between nodes vi and vj . When a node is removed from
the network, the edges connected to that node are also removed at the same
time, which may cause the shortest path between some pairs of nodes in the
network to be interrupted and the distance between node pairs to increase,
thus leading to a decrease in network efficiency. Therefore, the percentage of
the decrease in network efficiency after removing a node can be an important
indicator of the node’s importance in the network. Assuming that the net-
work efficiency is η0 before the nodes are removed and the network efficiency
becomes η′ after the nodes are removed, then after node vi is removed, the
rate of decrease in network efficiency µi can be expressed as

µi = 1− η′

η0
. (16)

The network efficiency decline rate can be used to measure the impor-
tance of a single node in the network, while the importance of a certain set
of nodes in the network can be evaluated.

3.2.2. Propagation scale

Under the SIR model, in each iteration step, infected nodes infect neigh-
boring susceptible nodes to achieve propagation in the network. At the same
time, infected nodes have a certain probability of becoming recovered nodes
in the propagation process, so the number of infected nodes in the network
will gradually increase with time and then decrease. When the number of
infected nodes decreases to 0, only susceptible nodes and recovered nodes
are left in the network and the network stops spreading. Based on this, we
can use F (t) to denote the ratio of infected nodes and recovered nodes to
the total number of nodes, which is a curve that changes with time dur-
ing network propagation. It can be used as an indicator to evaluate the
propagation ability of initial spreaders. F (t) can be expressed as

F (t) =
nI(t) + nR(t)

n
, (17)

where nI(t) and nR(t) denote the number of infected nodes and recovered
nodes in the network, respectively, at time t. When the number of infected
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nodes drops to 0, F (t) reaches its maximum value F (tc), which can be
expressed as

F (tc) =
nR(tc)

n
, (18)

where tc indicates that the number of infected nodes drops to 0 at the
moment tc. This can be used as a metric to evaluate the propagation scale
of the initial spreader.

3.2.3. Average distance between spreaders

The average distance is an important index to evaluate the dispersion of
the initial spreader, which has an important impact on maximizing influence.
With the limited number of initially selected nodes, we want the selected
nodes to be as dispersed as possible in the network to improve the coverage
area during propagation. In most real networks, the node distribution shows
the phenomenon of community aggregation, and if the selected nodes are too
concentrated, it is difficult to spread the information to other communities
effectively. The average shortest path can be found by the distance between
any two nodes in the node set, which is calculated as follows:

Ls =
2
∑

vi 6=vj∈S Dij

s(s− 1)
, (19)

where S denotes the initial spreader selected by different algorithms, s de-
notes the number of nodes in S, and Dij denotes the shortest distance be-
tween nodes vi and vj . Larger values of Ls indicate that the spreaders are
more widely distributed and have better coverage in the network.

3.3. Data description

To test the performance of the algorithm, we performed operations using
12 real network datasets, selected with different data sizes and data sources.
These datasets are frequently used in research on complex networks. The
following is a description of the datasets used for the tests:

(1) karate: a small social network dataset containing interpersonal rela-
tionships and interconnections among 34 members of the Karate Club
of America [45];

(2) dolphins: an undirected social network that portrays the interactions
and community distribution of 62 dolphins [46];

(3) jazz: this dataset contains the interactions of a network of jazz musi-
cians [47];

(4) CEnew: a biological metabolic network [48];
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(5) email: a network of email exchanges among members of Rovira Virgili
University [49];

(6) Netscience: a coauthorship network of scientists working on network
theory and experiments [50];

(7) USAir: a network of the US air transportation system in 2010 [51];
(8) hamster: a friendship network between users of the website

hamsterster.com [52];
(9) Facebook: a crowd-sourced dataset containing information about the

social circles of Facebook users [53];
(10) power: a power grid network in the USA [54];
(11) router: reflects the Internet topology at the router level [55];
(12) condmat: a coauthorship network between researchers on the topic of

condensed matter [56].

Some of their basic network properties are listed in Table 1.

Table 1. Basic characteristics of the 12 complex network datasets, where 〈k〉 de-
notes the average degree of the network, and denotes the threshold of infected
probability in the SIR model.

Network n m 〈k〉 βth

karate 34 78 4.59 0.148
dolphins 62 78 5.13 0.172
jazz 198 2742 27.70 0.027
CEnew 453 2025 8.94 0.026
email 1133 5451 9.62 0.057
Netscience 1461 2742 3.75 0.168
USAir 1574 17215 21.87 0.009
hamster 2426 16631 13.71 0.024
Facebook 4039 88234 43.69 0.009
power 4941 6594 2.67 0.348
router 5022 6258 2.49 0.079
condmat 23133 93497 8.08 0.047

4. Experiment results

In Section 3, we have presented two methods based on the node deletion
method and propagation dynamics simulation for evaluating the accuracy
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of different identification algorithms, and the main metrics of both evalua-
tion algorithms have been described. In this chapter, we set up experiments
for evaluation. To better show the details of the algorithms, we first take
two small-scale datasets, karate and dolphins, as examples to compare the
identification results of different algorithms. Considering that the node dele-
tion method is difficult to apply to large-scale network data sets and that
the simulation results based on the propagation dynamics model are more
convincing for evaluating IM problems, in the second part of this chapter,
we evaluate different algorithms mainly based on the propagation dynamics
model. We select the VoteRank algorithm and its two improved algorithms
NCVoteRank, EnRenew, and the improved algorithms SL, ENC, and LH-
index for DC, KC, and h-index, as benchmark algorithms for comparing our
proposed algorithms.

4.1. Comparison in small networks

Figure 2 shows the identified nodes in the karate and dolphins networks
by our algorithm, which are marked in red. Figure 3 shows the nodes identi-
fied by the other six algorithms in the above two networks, (a)–(f) in Fig. 3
show the identification results of the different algorithms in the karate net-
work, and (g)–(l) show the crucial nodes identified in the dolphins network.
Table 2 shows the number of the set of nodes identified by different algo-
rithms, ratio of nearest neighbors (RNN, which can be used to reflect the
influence of the set of nodes on the network) of the selected nodes to the
number of network nodes, and the decrease rate of the network efficiency
after removing the selected set of nodes.

(a) karate (b) dolphins
Fig. 2. The karate and dolphins networks, the nodes marked in red are a set
of influential nodes identified by the DKHVoteRank algorithm (For purposes of
description, the number of some nodes in the karate network is labeled).

In the karate network, the node numbers identified by our algorithm
are 33, 1, 17, and these three nodes have a large distribution range in the
network — the number of nearest neighbor nodes of the three nodes accounts
for 94.1% of the total number of nodes in the network, which can directly
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Fig. 3. The identification results of the six benchmark algorithms in the karate
and dolphins networks, the nodes marked in red indicate the nodes identified by
the algorithms as influential, where (a)–(f) indicate the identification results of the
different algorithms in the karate network, respectively, and (g)–(l) indicate the
identification results in the dolphins network.

influence the majority of nodes in the network and rank first among the seven
algorithms. Nodes 33 and 1 identified by our algorithm are also identified
by the other six algorithms, which also shows that these two nodes have a
very important role in the karate network. For small-scale networks, the
results identified by different algorithms may appear to be highly similar.
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Table 2. The identification results of the seven algorithms for the karate and
dolphins networks are presented in the table with the numbers of the selected node
sets, the ratio of the nearest neighbors (RNN) of the selected node sets to the total
number of network nodes, and the decrease rate of the network efficiency (µ) after
removing the selected node sets.

Method
karate dolphins

Selected nodes RNN µ Selected nodes RNN µ

DCHVoteRank [34, 1, 17] 0.941 0.442 [14, 57, 28, 51, 36] 0.645 0.306
NCVoteRank [3, 34, 1] 0.912 0.556 [14, 45, 13, 1, 20] 0.645 0.228
EnRenew [1, 34, 33] 0.912 0.658 [14, 45, 37, 20, 57] 0.613 0.258
VoteRank [34, 1, 33] 0.912 0.658 [14, 45, 17, 20, 57] 0.677 0.275
LH-index [1, 34, 3] 0.912 0.556 [14, 45, 37, 33, 20] 0.467 0.274
ENC [1, 34, 3] 0.912 0.556 [14, 37, 45, 33, 50] 0.435 0.243
SL [1, 3, 34] 0.912 0.556 [14, 37, 45, 33, 50] 0.435 0.243

Both EnRenew and VoteRank algorithms consider the node 34 to be very
critical for the network. We can clearly see from Fig. 2 that nodes 33 and
34 of the network are located adjacent to each other and share most of their
neighboring nodes, which means that these two nodes have a large overlap
of influence on the local scope of the network. The simultaneous selection of
these two nodes will have a greater impact on the efficiency of the network,
but there may be a “1 + 1 < 2” situation in terms of exerting influence on
the network, which needs to be avoided. The four algorithms NCVoteRank,
LH-index, ENC, and SL identify node 3 in the network, which is located
in the hub position of the network, however, it is directly connected with
both nodes 1 and 33, which causes the farthest distance between the three
identified nodes to be only 2. Meanwhile, node 3 shares all neighbors with
the other two nodes, therefore, the selection of node 3 also generates a certain
amount of influence duplication. Our chosen node 17, although located at
the edge of the network, has less overlap with the influence range of the other
two nodes. It has to be said that if only node 17 is compared with nodes 1
and 34, node 17 is much less important for the network, but the combination
of node 17 with nodes 1 and 33 is seen to have a stronger influence on the
network than the other algorithms, which is also evident from the subsequent
experimental results of the simulated propagation. In the dolphins network,
our algorithm identifies nodes distributed at key locations in different parts
of the network, which have the greatest impact on the network efficiency,
as well as a higher number of nearest neighbors than most of the compared
algorithms. Overall, our algorithm pays more attention to the influence of
the identified set of nodes on the network compared to the importance of
individual nodes.
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4.2. Experiment result based on SIR model

In Section 3, we have illustrated the importance of the infection rate
for the initial spreaders in the network propagation process, and the related
evaluation metrics. Meanwhile, the proportion of initial spreaders has a
large impact on the final infection scale in the network. In this section, we
design four sets of experiments to observe the performance of the spread
of the initial spreaders identified by our proposed DKHVoteRank algorithm
and the other six benchmark algorithms from different perspectives in the
12 datasets listed in Table 1.

4.2.1. The variation curve of propagation scale with time for different initial
spreaders

In order to observe more intuitively the initial spreaders identified by
different algorithms in the network propagation, in Fig. 4, we show the
propagation scale curve with time during the propagation. The purpose of
this experiment is to observe the propagation ability of the initial spreaders
identified by different algorithms under the same conditions.

From the experimental results, we can see that our proposed DKHVoteR-
ank algorithm has better performance compared to the other six algorithms.
Specifically, among the 12 datasets, the spreader identified by DKHVoteRank
algorithm has the strongest propagation ability, especially in jazz, CEnew,
email, hamster, and condmat datasets. The spreader identified by our al-
gorithm has a higher slope in the initial propagation stage and can reach
stability at a faster speed, and the final propagation scale is significantly
higher than other algorithms, which means the spreader identified by our
algorithm has a faster propagation speed and stronger propagation ability.
In addition, our algorithm has strong applicability and achieves better per-
formance in different datasets, which is also significantly better than other
algorithms, for example, in email, Netscience, and condmat datasets, En-
Renew algorithm performs second only to our proposed algorithm, but in
karate, dolphins, jazz, USAir, and router, the performance is not outstand-
ing. Similarly, the VoteRank algorithm has the highest propagation speed in
the initial stage of propagation in USAir and Facebook datasets, but also
does not perform well in karate and email networks.

It is worth mentioning that we choose three improved methods based on
h-index, KC, and DC for reference, LH-index, ENC, and SL, respectively,
and it can be seen from almost all experimental results that the perfor-
mance of the above three algorithms is significantly weaker than the other
four algorithms based on the voting mechanism. The possible reason is that
the above three algorithms only evaluate the value of individual nodes and
neglect to consider node value from the global perspective of the network,
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which makes it difficult to ensure that the initial spreader is widely dis-
tributed in the network, thus is makes the experimental results significantly
weaker than the algorithms based on the voting mechanism. This view can
also be verified in Fig. 7.

4.2.2. The variation of final propagation scale under different proportions of
initial spreaders

This experiment compares the size of the initial node propagation abil-
ity identified by different algorithms by adjusting the proportion of initial
spreaders. From Fig. 5, it can be seen that as the proportion of initial spread-
ers increases, the final infection scale in the network is constantly getting
larger, and the differences between different algorithms become more and
more obvious. From the experimental results of the karate, jazz, email, US-
Air, and hamster datasets, the curves of infection scale with the proportion
of initial spreaders of other benchmark algorithms roughly overlap, while the
DKHVoteRank algorithm performs significantly better than the other algo-
rithms, which indicates that our proposed algorithm can effectively identify
the important nodes that are ignored by other algorithms. From the experi-
mental results of 12 datasets, we can find that the DKHVoteRank algorithm
can achieve better experimental results than other algorithms with different
initial node ratios, which also shows the stability and applicability of the
algorithm.

4.2.3. The change of final propagation scale at different infection rates

The lower the recovery probability, the more difficult it is for a node to
transform from an infected node to recovered node, and the more persistent
the impact on its neighboring nodes, and the larger the final propagation
scale will be. From Fig. 6, it can be concluded that when the number of
nodes in the network is small, different algorithms are not greatly affected by
the infection rate, but when the network size gradually increases, different
algorithms show differences. The experimental results also show that our
proposed algorithm still maintains a better performance compared to other
algorithms under the influence of different infection rates.
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(a) karate (b) dolphins (c) jazz

(d) CEnew (e) email (f) Netscience

(g) USAir (h) hamster (i) Facebook

(j) power (k) router (l) condmat

Fig. 4. The change the curve of infection scale with time during the spread of the
initial spreaders identified by different algorithms. The results are averaged over
1000 simulation experiments and we set the infection probability at β = 1.5βth,
initial spreaders ratio ρ = 0.02, and infection rate ζ = 1.25, to ensure the smooth
processes of the spread.
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(a) karate (b) dolphins (c) jazz

(d) CEnew (e) email (f) Netscience

(g) USAir (h) hamster (i) Facebook

(j) power (k) router (l) condmat

Fig. 5. The change curve of the final infection size with the proportion of initially
infected nodes, and the results are also selected as the average of 1000 simulations,
and the infection proportion ζ = 1.25, due to the lower number of nodes in the
karate, dolphins, and jazz networks, the initial spreaders ratio is set at [0.02, 0.16],
and the other nine networks are set at [0.005, 0.04].
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(a) karate (b) dolphins (c) jazz

(d) CEnew (e) email (f) Netscience

(g) USAir (h) hamster (i) Facebook

(j) power (k) router (l) condmat

Fig. 6. The variation curve of the final infection scale with the infection rate. We
set the initial spreaders ratio ρ = 0.02, and take the average of 1000 simulations for
each result. The node infection rate is another key indicator affecting the network
propagation ability, and since we set the infection probability at β = 1.5βth, we
adjust the infection rate by changing the value of the node recovery probability
during the experiment.
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(a) karate (b) dolphins (c) jazz

(d) CEnew (e) email (f) Netscience

(g) USAir (h) hamster (i) Facebook

(j) power (k) router (l) condmat

Fig. 7. The average shortest distance of the initial spreaders identified by different
algorithms. The average shortest path of the initial spreaders has an important
impact on the final propagation effect. In order to make the initial spreaders to have
a stronger influence on the network, we want the nodes identified by the algorithms
to be spread out in different locations of the network as much as possible.
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4.2.4. The average distance of different proportions of initial spreaders

As can be seen from Fig. 7, the initial spreaders identified by the
DKHVoteRank algorithm have a higher distance, which means that these
nodes are more dispersed in the network. The traditional importance rank-
ing methods, such as DC, BC, CC, k-core, etc., evaluate the importance
of individual nodes without taking measures to avoid over-concentration of
nodes, so the nodes identified by adopting the above algorithms may have
a large clustering coefficient, which has an impact on the final propagation
effect. The algorithm based on the voting method, after identifying the im-
portant nodes in the network, will weaken the voting ability of the neighbors
of that node, thus avoiding the initial spreaders from being too clustered and
affecting the propagation ability in the network. Our proposed algorithm,
based on the traditional VoteRank algorithm, weakened the voting ability
of all nodes with a distance of 2 from the selected node. It enhances the
dispersion of the spreaders identified by this algorithm in the network even
more. Therefore, the experimental results are significantly better than other
algorithms.

5. Conclusion

In this paper, we propose an algorithm called DKHVoteRank to identify
critical spreaders in complex networks. We optimize the VoteRank algorithm
by introducing the DC, KC, and h-index methods, so that our method can
better distinguish the importance of different nodes. At the same time, we
improve the weakening rules of the VoteRank algorithm so that the critical
spreaders identified by the DKHVoteRank algorithm are more widely dis-
tributed in the network compared to the traditional VoteRank algorithm.
In order to compare the advantages and disadvantages of different algo-
rithms, we perform simulation propagation in 12 different types of datasets
based on the SIR model. According to the experimental results, our pro-
posed algorithm has better performance in terms of propagation capability,
propagation size, and algorithm applicability compared to VoteRank and its
improved algorithms as well as improved algorithms of traditional classical
ranking algorithms, such as NCVoteRank, EnRenew, ENC, SL, LH-index. In
this paper, we verify the feasibility and effectiveness of our proposed algo-
rithm in identifying critical spreaders in the network, which is valuable for
limiting the propagation of information in the network and improving the
destructive resistance of the network system.
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