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The purpose of this note is threefold: (i) to recall (with some points
made more explicit) the mathematical Weyl algebra model formulation,
given before, of the Staruszkiewicz theory of quantum Coulomb field; (i) to
add some new elements to the discussion of the representation of the
Lorentz group within this model; (%ii) to comment on some statements
on the structure of the theory which appeared recently.
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1. Introduction

In this note we want to comment on the mathematical structure of the
Staruszkiewicz theory of the long-range asymptotics of electromagnetic field.
This theory was postulated by its author in Ref. [1] in the form of a set of
algebraic conditions on its basic operators acting in some Hilbert space.
While having interesting physical motivation, that formulation could leave
some doubts whether its axioms have a consistent mathematical status, as
no closed mathematical model, known to exist, was shown to satisfy these
axioms. However, the nature of the postulates indicated in a rather obvious
way where one should look for such a model, namely in the range of Weyl
algebras of canonical commutation relations, but based not on a symplectic
vector space, but rather on a symplectic additive Abelian group. The present
author, being interested in related problems,' suggested a concrete solution
in Ref. [4], and later in Ref. [3] it was shown that indeed Staruszkiewicz’s
axioms, reformulated in an appropriate way, are implemented in a specific
representation of certain Weyl algebra. As this mathematical model is fully
consistent, no doubts remain.

L For the present author’s approach to the infrared problems in quantum electrody-
namics, see a recent account in Ref. [2], as well as Section 4 in Ref. [3].
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However, as it seems, the message of the Weyl algebra has not been given
consideration by some authors interested in the Staruszkiewicz theory, which
is a pity both from the fundamental, as well as the practical point of view.
This is exemplified by two recent articles, Refs. [5] and [6], the former is
fundamentally wrong, and the latter contains, apart from one result worth
noting, largely redundant and misleading considerations. In our opinion,
these articles would not have come to being (at least in the present form),
had their author taken the lesson of the Weyl algebra into account.

In view of the above, we find it desirable to recall the main structure
points of the Weyl algebra model once more, some of them more explic-
itly than before. We concentrate here on mathematics of the model; for
physical interpretation which makes it the physical theory put forward by
Staruszkiewicz, we refer the reader to Section 3 of Ref. [3], and to original
articles by Staruszkiewicz. The construction of the model is explained in
Sections 2 and 3. In Section 4 we describe, more exhaustively than in [3],
the correspondence of the model with Staruszkiewicz’s axioms. Section 5 is
devoted to the description of the representation of the Lorentz group acting
in the model. Besides known facts, it also contains some new contribu-
tions. Then, in Section 6, we comment on Ref. [5] and [6]. Some technical
information and proofs are shifted to Appendix.

2. Algebra

Let £ be a set of pairs (D, c¢), where D(l) and ¢(l) are real functions
on the future light cone, smooth outside the vertex, D are homogeneous of
degree 0, ¢ are homogeneous of degree —2, and restricted by the condition?

1

~ dre

ne c()d’l ez, (1)
where e is a positive constant, which in the Staruszkiewicz theory acquires
the meaning of the elementary charge (we use units i = 1, ¢ = 1 = speed of
light). Further, let £y denote the subset of £ composed of elements (D, ¢)
with n, = 0. The set £ has the structure of an Abelian group, with the
addition defined by

(Dl, 01) + (DQ, 02) = (D1 + Do, c1 + CQ) ,
and Lo is then a vector space, with obvious definition of multiplication by
scalars. We define on £ a symplectic mapping o : £ x £ — R by
1

o (D1, ¢1; Do, co) = 47T/[Dl(Z)cQ(Z) — Do(D)ey (1)] d21.

2 Notation of the integral and a few elementary facts on homogeneous functions on the
light cone are gathered in Appendix (Sec. 1).
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This mapping is additive in each of its arguments, bilinear on Ly x Ly, and
is nondegenerate in the sense of the following equivalence:

exp [io (D,¢; D', d)] =1 Y(D',d)eL > (D,c) = (0,0).

It follows that the symplectic group (£, o) defines a unique Weyl C*-algebra
generated by elements W (D, ¢) satisfying the relations

W(D1, Cl)W(DQ, 62) = exp [%O’(Dl, C1; Dg, CQ)] W(D1 + DQ, c1+ 62) y
W(D,¢)* = W(-D,—¢c),  W(0,0)=1. (2)

This algebra, which will be denoted A, is simple. These fundamental state-
ments follow from Corollaries (4.23) and (4.24) of Ref. [7], which generalize
their versions most often used, when (L£,0) is a nondegenerate symplec-
tic vector space. The algebra is thus consistently defined for an a prior:
arbitrary value of e. Elements W(D,c) with (D,c) € Ly generate a C*-
subalgebra Ajg.

There exists a simple characterization of Ly and Ag, to become of impor-
tance in what follows. For n, = 0 one can use equivalence (35) in Appendix
(Sec. 1), to write ¢ = 0%F, where F is homogeneous of degree 0; this F is
unique up to the addition of constants. Therefore, elements of £y may be
written as (D, 0%F), and generators of Ag as W (D, 9*F). Denote by H the
future unit hyperboloid in Minkowski space. Then the whole algebra A is
generated by elements W (D,9?F) and W (0, ¢,), where

co(l) = veH. (3)

Note that ¢, — ¢, = 0?F, (with F,, explicitly given in (30) below). There-
fore, for generation of the algebra, next to the elements W (D, 0%F), it is
sufficient to use only one element W (0, ¢,).

The restricted Lorentz group Ej_ acts by a group of automorphisms on A.
For any function f on the future light cone and A € 51 we denote

[Taf] (1) = f(A71) (4)
and define the automorphism a4 by its action on the generating elements
ar(W(D,c)) = W(TaD,Tac), so0 apopy = ap.

The subalgebra Ag is invariant under the action of these automorphisms.
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3. Lorentz-covariant representations

Each C'*-algebra has Hilbert space representations by bounded operators.
To construct a cyclic, Lorentz-covariant representation of A, it is sufficient
to define a Lorentz-invariant state (i.e. a positive, normalized linear func-
tional) on the algebra. By the GNS procedure this state then gives rise to
a unique representation (see e.g. [8]), in which Lorentz transformations are
implemented by a unitary representation.

For that purpose, consider the space of complex, smooth functions on the
future light cone, homogeneous of degree 0. Next, identify (by an equivalence
relation) functions differing by an additive constant; the elements will be
denoted [G] etc. On that space we define the positive definite scalar product?

([G1], (G2l = ﬁ / G1(1)9°Go(1) &%l = —i / G (1) - 9G4 (1) d21 ;

the differential and integral operations appearing above are explained in Ap-
pendix (Sec. 1). The completion of this space in the topology of the product
is a Hilbert space, which we denote K. For real, smooth, homogeneous of
degree 0 functions D and F' we introduce notation

§(D,F)=r"2D —ix2F, (5)

where k is any positive real number. It is then not difficult to see that the
following prescription defines a Lorentz-invariant state w on the algebra A:

w(W(D,c)) =0 for ne # 0,
w (W (D,8*F)) = exp [l (D, F)] %]
= exp [~ (v [DIE + # I[F1IE)] (6)

— we sketch the proof of this fact in Appendix (Sec. 2). Then the GNS
procedure ensures that there exist a Hilbert space H, a vector {2 € H, and
a representation A > A — 7w(A) € B(H), such that (2 is cyclic for 7(A), and
for each A € A,

w(A) = (2,7(A)0). (7)

The representation 7 is unique up to unitary equivalence. As A is simple, the
representation is faithful. It should be clear that all objects j, w, H, {2, and 7
depend on the parameter k, but not to burden notation, we do not indicate
this explicitly. It may be shown that representations with different x’s are

3 In Ref. [3], there is a misprint at this place, the conjugation sign over the left argument
is missing.
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nonequivalent. Physical demands Staruszkiewicz imposes on his theory are
equivalent to the choice
kK=—, (8)

™

which should be set for Staruszkiewicz’s theory in further formulas. We
explain this choice in the next section.

While the GNS procedure guarantees mathematical consistency of the
representation, it is desirable to describe it in more explicit terms. As the
representation 7 is fixed and faithful, which implies that the map A — 7(.A)
is a *-isomorphism, to simplify notation we can omit its symbol and in what
follows identify

W(D,c) =n(W(D,c)).

Let ‘H,, C H denote the closure of the subspace spanned by all vectors of the
form of W (D, ¢)f2 with n. = n. Then H is the orthogonal direct sum, and
the generating elements interpolate unitarily as follows:

H=EPHn, W(D,c): Hnr> Hnin,. (9)
nez

With the use of the algebraic relations, all matrix elements are expressed in
the end in terms of values w(W(D,d?F)), as given in (6). Therefore, the
subalgebra Ajg is represented in a regular way, that is one-parameter groups
R 3> XA = W(AD,\3*F) are weakly (then also strongly) continuous, so by
Stone’s theorem (see, e.g. [9]) they are generated by self-adjoint operators

W (AD,\0?F) = exp [iA® (D, 0*F)] . (10)

The algebraic relations of the algebra imply the commutation relations for
the generators, satisfied on a suitable domain (which we do not need to
specify explicitly for our purposes):

[ (D1,0%Fy) ,® (D2, 0°F,)] = —io (D1, 0%Fy; Dy, 0°Fy) id . (11)

When restricted to Ho, m(Ap) is a Fock representation. Namely, let H
be the Fock space based on the ‘one excitation’ space K defined above, and
identify (2 as the Fock-vacuum in that space. For [G] € K denote by d([G])
and d*([G]) the annihilation and creation operators in that space,

d([Gh2 =0, [d(G1]), d"([G2])] = ([G1]; [Ga])kc -

Then
®(D,0°F) [, = S {dli(D. ) + (0. P}, (12
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with j(D, F) as defined in (5) (which agrees with (11)). In particular, for
A € R we have W (A, 0)|y, = id, and by commutation relations we then find

W (X, 0)|, =e?id, so W(A0) = expliAQ],

where @ is a self-adjoint operator with the eigenvalues ne and the corre-
sponding eigenspaces H,, (interpreted as the charge operator).

The representation thus obtained is irreducible. Indeed, let a bounded
operator B commute with all W (D,¢). Then commutation with W (\,0)
implies that BH, C H,. Next, representation of 4y on the Fock space
Ho is irreducible, so Bly, = aid. Finally, B commutes with W (0, nc,), so
B = aid on the whole space H.

The representation is also Lorentz-covariant:

ay(W(D,c)) = W(TyD, Tyc) = UMW (D, c)U(A)*, (13)
with the representation of U(A) given by
UANW(D,c)2 =W (TrD,Txc)S?2. (14)

Each of the spaces H,, is invariant with respect to this representation, so in
correspondence to the decomposition (9), we have

A) =P Un(4)

neL

4. Correspondence with Staruszkiewicz’s axioms

Here we comment on the correspondence of our Weyl algebra model with
Staruszkiewicz’s axioms, which was established in Ref. [3].

We briefly summarize Staruszkiewicz’s construction in our language. His
classical ‘phase’ field S(z) is the general (save for some regularity demands)
solution of the wave equation, homogeneous of degree 0. Such a field may
be represented by* (see Eqs. (40,41) in [3])

S(x) = / (1) sgn(x - 1)d2l — /32 <|”3 §|>d2l+5v,

— l 2
S,,f47r o Z)le, (15)

4 Here we make use of the representation of the wave equation solutions given in (36)
in Appendix (Sec. 1). Expressions sgn(xz-1), log|z-1|, and also (z-1£:0)™" to appear
below, make sense as distributions in x.
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where ¢(1) and D(l) are smooth functions on the future light cone, homoge-
neous of degree —2 and 0, respectively; the field S(z) does not depend on
the choice of v € H. The constant .S, is interpreted as a phase variable in
the reference system with time axis along v.

The phase field S(z) gives rise to a Maxwell field, defined in regions
outside the cone x? = 0, homogeneous of degree —2, by

Fap(z) =V, (xai(;)) —Va (be(x)) = # [2aVeS(2) — 2 VaS(2)]

ex?

1 la{L'b — lbma 2 .9 2
= 0°D(l) —i=c(l)| d°l + c.c. 16

87m:2/ w10 (0D —ized] dl+ec (16)
In general, this formula is singular on the cone. However, for ¢ = 9*F, there
exists a distinguished prescription to regularize the formula and extend it
to the whole Minkowski space: for z? # 0 integrate 92 in (16) by parts (as
in (34)), and only then divide by z2. Using the identity

82 laxb — lbilfa . 2 1

= —2"Lapy 73 5
x-1—1i0 v b(iL‘-l—ZO)2

and again integrating L., by parts, one obtains

1 [ L [D(I)—i2F(1)]
_87r/ (z-1—10)2

which is the general free asymptotic field on Minkowski space, of electric
type, cf. Eq. (18) in [3]. Note that the term written explicitly in (17) is a
boundary value of an analytic function of x + iy, where y is inside the past
light cone. Therefore, this term is the positive frequency part of the Fourier
representation, while its conjugation is the negative frequency part.

For [ c(1)d?l # 0 the above procedure for extending (16) does not work
as it stands. Still, there are (various) ways to regularize Fy;(x) also in this
case, but this is not what concerns Staruszkiewicz. He restricts attention to
the region 22 < 0 and observes that the field F;(x) is charged there, with
the charge

Fab(a:)

d*l +c.c., (17)

Q= 417T/C(l)d2l (18)

obtained by integrating electric field over a sphere.
Next, the phase field S(x) is quantized heuristically by the substitution
c¢— ¢, D — D, with the condition®

[/ e(Z)D(Z)d%,/ﬁ (1) e (V) d2l’] = i47r/c(l)D(l) d%,

5 D and ¢ are now operators, and D and c¢ are test functions.
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Eq. (44) in [3], which reproduces Staruszkiewicz’s commutator, Eq. (45)
in [3]. If one now postulates, still on heuristic level,

W(D,c) = exp [z’a (D,c;f),é)] , (19)

with condition (1) to ensure that the quantized S, in (15) is a phase operator,
then these elements satisfy our algebra, which we now regard as the precise
formulation of quantization. For further details, we refer the reader to the
discussion encompassing Eqs. (46)—(51) in [3], where the elements W (D)
and R(c) are, in present notation, given by W (D) = W (D,0) and R(c) =
W (0, c). This completes the correspondence on the level of algebra.

Now one has to implement Staruszkiewicz’s conditions on the state on
the algebra, which are formulated in Section 4 of Ref. [1|. First of all,
the state should be Lorentz-invariant, which is satisfied in our construction
irrespective of the value K > 0. Next, our element W (0,¢,) is easily iden-
tified with Staruszkiewicz’s exp[—iS,], and the vector W (0, ¢,)f2 with his
|v) = exp[—i5,]|0). The way, in which Staruszkiewicz formulates the remain-
ing conditions, implies that elements W (D, 9>F) are represented in a regular
way, which again is satisfied in all our representations; in Staruszkiewicz’s no-
tation ®(D, 9*F) are combinations of the operators cyy,, clfn and the charge
operator. In particular,

B(1,0)= /e(z) &2 =0 (20)

™

is the charge operator; compare this formula with the classical charge (18).
The last, but crucial for the choice of the parameter k, of Staruszkiewicz’s
conditions is that (2 is annihilated by charge (20) and by positive frequency
part of fields (17). Together, this amounts to the condition
[3215(1) - i%e(zﬂ 2=0. (21)

This has to be compared with our annihilation operator. Namely, compar-
ing (19) with (10), and using (5), one obtains for ¢ = 9*F

1 .

@ (D,0°F) = / [D(l)é(l) - F(l)@@(l)} 2
0

- o /j(D,F)(l) (57202 D(1) — inse(D)] 421 + .

Therefore, in the zero charge sector we have by (12)

d([G) = é <Z> / a) [0?D) — ime(t)] .

Agreement with condition (21) is achieved for k = 2/m, as anticipated in
Eq. (8).
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5. Structure of representations U, (A)

General theory of unitary representations of the universal covering group
of the group El was developed by Gelfand et al. [10], with the result of full
classification of irreducible representations, grouped in two series, the so-
called main and supplementary series. Moreover, each unitary representation
decomposes into irreducibles. Therefore, it is an interesting problem what
is a more detailed structure of subrepresentations Uy, (A). Here we gather,
with some new additions, known information on that question.

We start by introducing generators of representations (4) and (14). For
an infinitesimal Lorentz transformation A%, ~ 4y + w®,, where a, b are
spacetime indices, define Ly, and Mg, by

Ty =~ id+3w™®Lgy U(A) = id —Sw™ My , (22)
which in the case of Ty acting on scalar functions gives

90
dle”

and one easily calculates the Casimir operators of this representation

Lab = laab - lbaaa 8& =

—AL®Lyy=(1-0+2)1-0,  YL™Ly =0, (23)

where the left star-superscript denotes the dual antisymmetric tensor.

Consider the representation Uy(A). Its carrier space Ho is the symmet-
ric Fock space based on the one-excitation Hilbert space K. Definition (14)
implies that Up(A)|x = Ta|x. But the space K consists of functions homoge-
neous of degree 0, so both Casimir operators (23) vanish for this restriction.
Therefore (see, e.g., formulae (4.3.27, 28) in [11]),

U()(A)’]C ~ 6270(/1) s (24)

where &,, 5, m € Z, o € R, is the main series of irreducible, unitary repre-
sentations (in the notation of [12]), and the relation is to be understood as
unitary equivalence; in Appendix (Sec. 3), we give the explicit transforma-
tion to the standard form. The tensor powers of this representation, which
act in N-excitation spaces in Hg, decompose into main series with m € 2Z
(see the first in the series of three papers by Naimark, Ref. [13], in which he
decomposes tensor products of irreducible representations of El)

The structure of representations Uy, (A) for n # 0 is more involved, there
is no single building block for them as in the n = 0 case. Consider the
second Casimir operator

Cy = LM M, (25)
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of the representation U(A). By a general theorem for self-adjoint operators,
we have the orthogonal decomposition
Ho=HOOHS, HY=KerConH,, H=CoH,. (26)
In Appendix (Sec. 4), we show the following result. If n. = n, then
CoW(D,e)2=0 <<= 3JveH,2>?<0,z-v=0, \cR:

D = —nek arctan [xl] Y ¢ = ne (1—x2) (U-Z)Q—(:U-l)2 ‘ (27)

[(v )2 4(x - 1)2]2 ’

v -

moreover, for W (D, c)f2 of this form one has
eade(vb +ixp) M gW (D, )2 =0. (28)

In the special case x =0, vectors defined by (27) are of the form of W (0, nc,){2,
with ¢, as defined in (3). Relation (28) is then the statement of their spher-
ical symmetry in the frame with time axis along v; cf. [1]. The closure of
the linear span of these vectors forms a Hilbert subspace of HY, which we
denote HH . This leads to further decompositions

HO=HI NP H,=HIoHPaH:, (n#0),

where the space HY is defined by the first relation. By the above equivalence
subspaces H.X are nontrivial. Whether HY are nontrivial is, to our knowl-
edge, an open question. In particular, an interesting problem is whether
vectors defined by (27) with x # 0 are in H.

All subspaces appearing above are invariant with respect to U, (A): this
is obvious for #9 and H., while for HE and HY it follows from the obvious
relation Thcy(l) = c,(A7') = cpo(l). Therefore, this representation has
the corresponding decomposition, with subrepresentations denoted with the
same superscripts as their carrier spaces.

The representations U (A) decompose into irreducible representations
with nonzero eigenvalues of C, that is the main series representations &,, »
with m # 0, but the details of the decomposition are not known. A pri-
ori, both series may appear in the decomposition of U2(A), i.e. of UH(A)
and U2°(A). Explicit construction of the decomposition of U (A), briefly
characterized below, has been obtained by Staruszkiewicz [14]. On the other
hand, to our best knowledge, nothing constructive is known on U2°(A).

To achieve the desired decomposition of U (A), Staruszkiewicz [14] uses
the fact that the vectors W (0, nc,)f2, v € H, form a Lorentz-invariant total
set in H, and he diagonalizes the quadratic form kernel on H x H

(W(0,ncy) 2, W (0,nc,)S2) . (29)
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The explicit value of this kernel may be easily calculated. Namely, let us
denote

Fyu(l) = elog [“ﬂ . sothat 02F, (1) = cu(l) — cy(l). (30)
u .
Then the value of the kernel (29) follows immediately from the definition of
state (6) (see Eq. (71) in [3]; Staruszkiewicz’s calculation is different)

(2,w (O,naQFv,u) 2) =exp [_ZHanuH%C

(ne)Q (31)

= €xp |:_ (X’U,u coth Xvau — 1):| )
where x,, = arcosh(v - u) is the hyperbolic angle between v and u, and
where in the final expression we substituted (8). Applying the methods
of Gelfand et al. [10], Staruszkiewicz succeeded in decomposing U with
the following remarkable result: for (ne)?/m > 1 it decomposes into a direct
integral of main series irreducible representations &g, (all of them with zero
value of the second Casimir operator), while for (ne)?/m < 1 there is one
single addition of a representation ®, from the supplementary series, with
v=1—ne/\/m (see also [15, 16]).

One should mention that Staruszkiewicz’s diagonalization formula in the
form given in [14], which applies to functions f(u) of compact support, needs
an extension to the whole space ’Hf , which is necessary for the correctness
of the diagonalization in agreement with the general theorem on the direct
integral decomposition of the representation U (A) (with positive decom-
position measure). For this extension, it is necessary and sufficient that the
diagonalization measure function K (v;z) be nonnegative (notation in this
paragraph refers to formulae in [14]). This is not immediately obvious from
Staruszkiewicz’s formula: although we know by the Weyl algebra model
that (f|f) > 0, the method used for the decomposition of this product is
independent of positivity of K (v;z), and at the same time the formula does
not test its positivity locally, as it relies strongly on analyticity of functions
f (k;v), and analyticity of the product in e?. However, the final step as-
suring positivity of K(v;z) is not difficult to be made in the Weyl algebra
model. Namely, consider the matrix element (f|exp[iACi]|f), where C} is
the first Casimir operator of the representation U, For A € R. this is the
Fourier transform of a positive measure. At the same time, for A € C with
ImA > 0, and f of compact support, this element is an analytical function
of €2 (which is shown by the use of the H-Fourier transform, or indeed some
explicit formulae of Ref. [15]), and one can apply the Staruszkiewicz method
for its diagonalization. For Im A “\, 0 one obtains the Fourier transform
of the integrand of the diagonalization of (f|f), which therefore must be
nonnegative.
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The question of the Staruszkiewicz decomposition of the product (f|f)
has been taken up recently in Ref. [6]. The author, apparently not aware
of the Weyl algebra model assuring consistency of Staruszkiewicz’s theory,
devotes most of his article to a redundant, roundabout proof of positivity
of kernel (31) (see also remarks in the next section). However, he also gives
a proof of the positivity of K(v;z) (using the language of positive spherical
functions on the Lorentz group and the generalized Bochner theorem), which
is probably the first to have been published explicitly. The simple proof
sketched in the previous paragraph is not related to this advanced method.

We end this section with the observation that the representation U,(A)
may be unitarily transformed to the space Hg. For a fixed t € H, the element
W (0, nct) maps Ho unitarily onto H,,. Therefore, the formula

UL(A) = W(0,n¢)*Up (AW (0, ncy)

defines a unitarily equivalent representation, acting in the Fock space Hg.
Its generators, by (40) in Appendix (Sec. 4), are

W (0, ne)* MgpW(0,nct) = Mgy — n®(0, Lapcy) -

Using this for the definitions (26), we find what follows. Under the unitary
mapping W (0, nc;), the subspace H.< is the image of the closure of the range
of the operator

[*M“b —nd (0, *L“bctﬂ [Mab — (0, Labct)]
acting in Ho, while H? is the image of its kernel.

6. Comments on references [5] and [6]

As shown by the preceding discussion, the mathematical model of the
Staruszkiewicz theory, formulated as a specific representation of an appropri-
ately chosen Weyl algebra, is precisely defined and cannot raise any doubts
about its mathematical consistency (irrespective of the value of e). This
formulation, recalled in Sections 2 and 3 above, was presented in Section 3
of Ref. [3], based on an earlier Ref. [4]. Therefore, while Ref. [6] contains
a result mentioned in the last section, which is worth noting, most of its
contents consists of, in our view, largely redundant and misleading consider-
ations. The main problem the author formulates, is to show ‘independently’
the positivity of kernel (31). In his words: “In fact, a proof of positivity of
[this — A.H.] kernel, independent of the Staruszkiewicz theory [given in [1]
— A H.], would give us a proof of (relative) consistency of his theory.” How-
ever, in the light of the Weyl algebra model, there is no need for any further
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consistency check. One should also stress that, without a complete consis-
tent model, the positivity of kernel (31) alone, contrary to what the author
claims, would by far be not sufficient to prove the consistency of the whole
theory. On the other hand, positivity of the kernel in the initial form (29)
is a trivial fact in the scheme given above, as the kernel is simply the scalar
product of vectors in the Hilbert space ’H,I;I , for any value of e and n.

Another recent article by the same author, Ref. [5], cannot be left with-
out comment either, as it contains serious mistakes leading to false main
statements of the article. The Staruszkiewicz theory not being a subject
of my active research, I have only now looked closely at the content of this
article. In this article the author claims that, in our notation,

Hy=HT @My, Un(A)=UTN)@Uy(A).  (false!)

This is the content of his lemmas, whose proofs take almost the whole of
the article. Basing on the claims of these lemmas, the author formulates
unjustified further claims on the decomposition of U,(A), going beyond
Staruszkiewicz’s result mentioned above.

To explain where is the error, we consider vectors of the form

w (D, 82F) W(0,ncy)f2, where o (D, 9’F;0, ncv) =0,

which implies that the elements W (0, nc,) and W(D,9?F) commute. The
condition on the above vanishing of symplectic mapping o is equivalent to

/ D()e,(1)d*1=0. (32)

The author claims that there is a unitary equivalence H,, — HTIL{ ®Hp under
which all such vectors, for all v, are transformed as

W (D,9°F) W(0,nc,)2 = W(0,nc,) 2@ W (D,0°F) 2. (false!)

If that was true, the scalar products of various vectors of this type, taken
after the mapping, should be the same as before the mapping.® Well, there is
no reason to believe this should be true, but let us check this explicitly. Note
that these vectors may equally well be written as W (0, ne,)W (D, 0*F)$2,
in which form condition (32) on D may be dropped, as an additive constant
in j(D, F) is irrelevant in (D, 9?F) (12) and W (D, *F) (10) on Ho. Let
W (0, nc, )W (D', 0?F')f2 be another vector, with v’ # v. Using algebraic

S In fact, the claim that this is the case is the main point in author’s proof, see formulas
(11) and (12) in the article.
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relations (2), definition of the state (6) and (7), and taking into account
relation (30), one finds after simple calculation

(W(0,nc,)W(D,0°F)2, W (0,nc, )W (D', 0°F") 22)
= (W(0,nc,) 2, W(0,nc,y)82) (W (D,0°F) 2,W (D', 0°F') 2)

x exp{ F/ 7D F) +j (D F)] d%} ,

with j(D, F) defined in (5). The last factor is nontrivial (different from 1) in
general, which contradicts basic relations of [5]. For instance, let us replace
(D,F) by (AD,AF) and (D', F’) by (ND',NF’"), \,\' € R, and calculate
02 JONON of the relation for A = X' = 0. The result, with G = j(D, F) and
G = j(D', F'), is

(W(0,nc,)d*([G]) 92, W (0, ney )d* ([G']) £2) = (W(0,ncy,)02, W(0, ncy ) £2)

. {(d*([G])Q,d* ([6) 2) - 1’;3/(%, - )@ [ (e —cv)G’dQZ};

the second term in braces is missing in formula (11) in [5]. This falsifies not
only author’s proof. The claim on the tensor product factorization of U,
itself is shown to be wrong.

The equivalence /nonequivalence of representations U,, with differing n’s,
which was the object of Ref. [5], remains unsettled, and depends on the
structure of representations U and U,Y.

7. Appendix

1. Homogeneous functions on the light cone

Here we gather a few properties, needed in the main text, of functions
f(1) on the future light cone, with definite homogeneity. More information
may be found in [3].

Let ¢(I) be homogeneous of degree —2. Then the following formula

/c(l)dzl :/c(1,f) a0,

where on the r.h.s. one integrates over the angles in a Minkowski frame
with ey = ¢, defines a Lorentz invariant value, that is for each Lorentz
transformation 7'y defined in (4), one has

/ (T4c](1) 421 = / ors / Lape(l) 2 = 0, (33)

where L, are the generators of representation 74 defined at the beginning
of Section 5.
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Denote 0f(l) = 0f(1)/0l, where some extension of f(I) to a neighbor-
hood of the light cone is assumed. For different extensions, df(l) restricted
to the cone gives different values, which differ by terms proportional to .
However, for D(l), F(I) homogeneous of degree 0 (and extended for the
sake of differentiation with the preservation of this property), the expres-
sions ?D(1) and OD(I)-OF(l) are extension-independent, and the following
integral identity holds:

/DGQFdQZ = —/6D-6Fd2l = /Fa2D d?1, (34)

which may be shown to follow from the second identity in (33). Moreover,
one can show that the following equivalence is true:

/c(l)d2l =0 <= 3F():c=0%F, (35)

where F' is homogeneous of degree 0 and unique up to the addition of a
constant.

Finally, we note that for Z(s,1), a function of a real variable s and of
on the future light cone, with homogeneity Z(\s, \l) = A"2Z(s,1), A > 0,
the integral

/ Z(x-1,1)d%l (36)

defines a solution of the wave equation. This representation is related to the
Fourier representation. For more information, see Section 4 in Ref. [3] or
Ref. [2].

2. State w

To prove positivity of the linear functional w defined by (6), it suffices to
show that w(A*A) > 0 for each A = sz\il EW (D, ci), & € C (see Ref. [7]).
However, because of the first condition in the definition (6), it is sufficient

to consider the special case when all n., are equal to n.,. Then there exist
F; such that ¢; — ¢; = 0%F;, so A = W(0,c1)A’, where

N
: 1
A= aW (D, 0*F) € Ay, & =cg, 5i_87-r/chid21.
=1

Thus w(A*A) = w(A™A’), so the problem is reduced to the subalgebra Ay.
However, it is easy to see that on that subalgebra we have

w (W (D,0°F)) = (2,exp [i® (D,0°F)] ©2) ,
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with &(D,0?F) defined in (12). The r.h.s. defines a Fock state, so the
positivity follows. Obviously, w(1) = 1, which closes the proof that w is
a state. Finally, |T4D|/x = ||Dl|lx and || TaF|x = ||F]|x, so the state is
Lorentz-invariant.

3. Proof of equivalence (2/)

Here we use the notation of abstract indices [17], in which the spacetime

indices are pairs of spinor indices, e.g. a = AA, and [* = 0404, where 0

is a
two-component spinor, and o is its conjugation. For each G(l) a complex,
homogeneous function of degree zero, one has 019 ;G(1) = 0 (9, = 8/do™),

so we can define g(o0,0) by
9;G(1) = V2mo,49(0,0),  g(é0,é0) = € 2g(0,0), (37)

where the second relation, with £ € C\ {0}, shows the homogeneity type
of g. The Hilbert space of functions g with such homogeneity, equipped
with the product (g1, 92)2,0 = [ G192 d?1, is the standard carrier space of the
representation &g o(A). We show below that

([G1], [G2])k = (91, 92)20, (38)

so the mapping G — ¢ realizes equivalence (24).

Consider the self-dual part of the generator Lqy: TLgp = %(Lab — *Lap),
which in the spinor language has the form” TLy, = —eap 0 AaB). Using this
identity and definition (37), we find

FLaeG1 L Gy = =27 Laly Gigo - (39)
On the other hand, tensorial calculation easily shows that
LacG1Ly Gy = *LacG1 Ly Ga = 1ol 0G1 - 0G5 .
We now choose t € H, contract (39) with ¢?¢*, and divide the resulting
equation by —27(¢ - 1)2, which leads to

| — _ _
g192 = _EaGl - 0Gy — 5 ("LocG1Lo°Ga — LocG1*Lo°Gy)

8n(t-1)

. o _
- _EC{’GH - 0Gy — "Ly { G1Lo“Ga — GaLo G )} ’

L
8n(t-1)?
where index 0 indicates contraction with ¢, and in the second step we used
easily verifiable identities *Lo.t - | = 0, *Lo.LoG; = 0. Integrating this
identity we arrive at (38).

" The reference for these properties is Section 3.4 in [17].
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4. Proof of equivalence (27) and identity (28)
With the use of relations (13), (22), and (2), one verifies that

[May, W(D, )] = W(D,c){—P(Lap D, Labc + map(D, )}, (40)
map(D, c) = %U(D ¢; Loy D, Lape) = /DLabcd l
[Maln P (D7 CI)] =P (LabD7 Labcl) ) (41)

where the last relation applies in the case of ny = 0. Using these relations,
for Cy the second Casimir operator (25), one obtains

CLW (D, c) = 1w(D, c){*M“b — (LD, *L%¢) —|—*mab(D,c)}

% { My = @(La D, Lane) + man(D, )}

Applying this relation to the vector 2, and taking into account (41) and the
second identity in (23) to commute *M® with &(Lg,D, Layc), one finds

CQW(D’ c)_Q = %W(D’ C){@(*LabD, *Labc) . *mab(D, C)}

x {@(LabD, Lape) — map(D, c)}Q . (42)

Next, one notes that if n. = n, then ¢ = nc, +0*F, with an arbitrarily fixed
u € H, and the associated function F'. It is now easy to show that

Laye = 0*(lafy — lnfa), where f, = —ne% + OpF".

Using relation (12), we obtain

S(LarD: LNy = 5 { dllhar)) + & ([har)) }

where

hap = j(Lay D, lafo — lpfa) = laky — lpka ,

Up

ky=0p7(D,F)+ iner? k-l =inex? . (43)

u-1l’

We note that 9,k — ke = 0, 50 0*hap = 100%ky—1,0%kq, and in consequence,

[A(h)), d* ([has)] = ([R**), [hasl)ic = 0.
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Therefore, the r.h.s. of (42) takes the form: %W(D,C) applied to
(3 CHd (har]) ~ V2 md (ha]) +'mmg } 2. (44)

Suppose that CoW (D, c)f2 = 0. Vanishing of the first term in (44)
means that the symmetrical function G(I1,l2) = e™“hyy(l1)heq(l2) is the
zero vector in the symmetrized Hilbert space K ®¢ K. This is equivalent to
the existence of a function J(I) such that G(l1,l2) = J(I1) + J(I2). However,
G(l,1) =0, so J(I) = 0. We arrive at the following consequence:

ll/\k(ll)/\lg/\k(lg) =0 Vi, (45)

We fix arbitrary lp and ko = k(lp), and note that lo AIm kg # 0 by the second
relation in (43), so also lpAkg # 0. For each [ such that loAkgAl # 0, we then
have k(1) = a(l)ko + B(1)lo + v(1)I. As k(1) is defined up to the addition of a
term proportional to I, we can replace it by I;:(l) = a(l)ko+ B(1)lp. Consider
now the set of pairs [y, such that Ig A Im kg A l; Aly # 0; such pairs form
a dense set in the set of all pairs. For these pairs, equation (45) gives

li Nl ANkg Nl [a(ll)ﬁ(lz) — Oé(lg)ﬂ(ll)] =0

and the wedge product in front of the bracket does not vanish. It follows
that (a(1), (1)) = o(1)(~, 8), where (7, ) is a constant pair, so k(1) = o(1)E,

where & = vk + §lg is a constant complex vector. Using the second equality
1
n (43), we find inexz = o(1)§ - I, which leads to

§
£

As the function k(I) has to be smooth by assumption, the modulus |€ - 1]
cannot vanish, which implies that the vectors Re&, Im¢ span a timelike
2-surface or a timelike straight line. Multiplying { by a suitable complex
number one can bring this vector (without changing k) to the form { = v+ix,
where v € H and x - v = 0. If we identify functions D and F' by the condition

k(1) = inek?

(46)

-1
J(D,F) = inek? log [f} + const, (47)

vl

then k given by (46) takes the form of (43) with v replacing u, which
proves its admissibility. Extracting D and F from (47), and then calcu-
lating ¢ = ne, + 0>F, one obtains (D, ¢) as given in equivalence (27). This
completes the proof ‘from left to right’.
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For implication ‘from right to left’, we observe that given D and c as

in (27), one can recover vector k in the form of (46), with £ = v + iz, and it
then follows easily that the first term in (44) vanishes. Moreover, as D and
c are determined by only two constant vectors v and x, the antisymmetric
tensor quantity mgp(D, ¢) is proportional to v,z — Vpxe. It is now easy to
see that also the remaining terms in (44) vanish. This completes the proof
of equivalence (27).

Finally, it is now evident that for W (D, c) satisfying the conditions of

the equivalence, the antisymmetrization with £ = v.+ix. of the r.h.s. of (40)
applied to {2 gives zero. Identity (28) follows.
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