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1. Introduction

The study of hadronic spectroscopy still represents a challenge in theoret-
ical physics — considering that Quantum Chromo-Dynamics (QCD) cannot
be applied directly to this study and numerical lattice simulations require
huge computational efforts.

On the other hand, when developing phenomenological models, many
different aspects must be taken into account at the same time. In the frame-
work of a constituent model with a fixed number of valence quarks, one has
to face primarily the problem of implementing a relativistic wave equation
for the hadronic system; within the relativistic equation model, it is also
necessary to select a suitable interaction for the quarks.

We stress once again that a completely consistent relativistic two-body
(or many-body) wave equation does not exist but, on the other hand, it nec-
essarily represents the starting point for the study of hadronic spectroscopy.

A series of works has been previously developed by the author with the
aim of constructing a consistent model for that phenomenology. In partic-
ular, in work [1], a reduced Dirac-like equation (RDLE) was introduced for
studying the spectroscopy of quark composed systems. This equation has a

∗ Funded by SCOAP3 under Creative Commons License, CC-BY 4.0.

(1-A2.1)

https://www.actaphys.uj.edu.pl/findarticle?series=reg&vol=54&aid=1-A2


1-A2.2 M. De Sanctis

local form in the coordinate space. Furthermore, our RDLE is particularly
suitable when a vector plus scalar interaction is considered. The same pro-
cedure of reduction was also applied to other relativistic equations obtaining
very similar numerical results. An accurate calculation of the charmonium
spectrum was performed using a small number of free parameters in Ref. [2].
Furthermore, in a subsequent work [3], the Lorentz structure of the interac-
tion terms was studied in more detail, considering a covariant form of the
relativistic equation of the model.

In all those works a specific form of regularized vector interaction was
used. That interaction had been introduced and studied previously in Ref. [4].
We highlight here that a vector interaction alone is not sufficient to give an
accurate reproduction of the charmonium spectrum. To this aim, the con-
tribution of a scalar interaction was included.

Starting from this observation, in the present study, we analyze in more
detail the scalar interaction. We also consider the possibility of replacing
the scalar interaction with a mass interaction.

Incidentally, we note that the use of a fully relativistic model with an
accurate interaction may also help to study the main properties of higher
excitation states in order to understand if these states can be described as
quark–antiquark states or further (exotic) physical effects must be taken into
account [5].

Going back to the present model, we also recall that, while the vector
interaction can be related to an effective reduction of the one-gluon exchange
QCD interaction, in the scalar and mass case, one should take into account,
by means of specific techniques, many-gluon exchange processes.

Furthermore, also in the framework of a rigorous derivation of a non-
relativistic potential, obtained for example by matching the short-distance
perturbative part to long-distance lattice QCD results [6], there is no clear
way to distinguish between the contributions given by the time component
of a vector interaction and those given by a hypothetical effective scalar
interaction.

In any case, within our model, the scalar and the mass interactions can be
considered phenomenological interactions given by an underlying field that
has the same quantum numbers of the vacuum. This field is necessary not
only to reproduce the charmonium spectrum but also (for the consistency
of the model) to compensate the vector repulsive quark self-energy with
an attractive counterterm, as determined by the energy balance, given in
Eq. (23) of Ref. [2]. In the present work, the balance equation will be
generalized to include the case of the mass interaction, as it will be shown
in Eqs. (25) and (26) of Sec. 4.
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The problem of a scalar quark interaction has been faced in many differ-
ent ways. We quote here only a few works that may be partially related to
the present study. Historically, a scalar interaction, quartic with respect to
the fermionic field, was introduced in the Nambu–Jona-Lasinio (NJL) model
[7, 8]. This model was extensively applied to the study of quark matter in-
teractions, also highlighting possible unusual bound states in quark matter
[9, 10]. The NJL model has been studied and modified in Ref. [11] including
a running coupling obtained by a fractal approach to QCD.

A nonlinear Klein–Gordon equation for the study of condensates in
hadronic particles has been proposed in Ref. [12]. However, considering the
difficulty of applying the NJL approach to our relativistic equation for a two-
body bound state, we shall not use directly this method in the present work,
preferring a standard relativistic interaction with a spatial phenomenological
potential.

We recall that the role of a scalar interaction, in the case of two interact-
ing scalar particles, was deeply studied by means of a model quantum field
theory [13, 14].

The linear sigma model was introduced for the interaction of hadronic
particles considering the exchange of the (scalar) sigma meson. This model,
considered as an effective field theory [15], was also applied to the quark
scalar interaction. For a relatively recent application, see for example Ref. [16].
In the present work, when studying the underlying structure of the scalar
and mass interaction, we establish, in a different way, a tentative connection
with the first scalar hadronic resonances, now denoted as f0(500) (formerly
sigma meson) and f0(980).

The present phenomenological study has been developed taking into ac-
count the complexity of the quark interaction, with no intent to draw defini-
tive conclusions. To avoid repetitions, the reader is frequently referred to
the previous works [1–4] that can also help to gain a better understanding
of the whole subject. The contents of the present paper are organized as
follows. In Sec. 1.1, the symbols and notation of the work are introduced.
In Sec. 2, the Lorentz structure of the scalar interaction is revised and the
mass interaction is introduced. In Sec. 3, a general discussion about the
reproduction of the charmonium spectrum is given. In Sec. 4, we construct
the scalar and mass interaction of the model, starting from an elementary
interaction of point-like particles, then introducing finite density distribu-
tions for the interacting quarks. The corresponding self-energies are also
determined and the balance equation is generalized to the case of the mass
interaction. In Sec. 5, we try to construct the scalar and mass interactions
introducing an underlying scalar field in order to improve the consistency of
the model and to interpret the physical meaning of its parameters. Finally,
the results are summarized and discussed. In the Appendix A, we give, for
the mass interaction, the reduced expressions to be inserted in the RDLE of
the model.
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1.1. Symbols and notation

The following notation is used in the paper:

The invariant product between four vectors is standardly written as
V µUµ = V 0U0 − V⃗ · U⃗ .

The lower index i(j) = 1, 2 is the particle index, referred to the quark
and to the antiquark.

The Dirac wave functions will be represented by the letter Ψ .

The subindex X will be used to indicate, for different quantities, the
scalar (X = S) or mass (X = M) character of the corresponding
interaction. In the text, we shall also write, in general, “x-interaction”,
“x-charge density”, etc.

Furthermore, the subindex E (always associated to X) will be used to
indicate, for a given quantity, the “ elementary” or “point-like” char-
acter of the corresponding x-interaction.

For the general case of two different x-charge densities, in Sec. 4, the
subindex G will be used.

Throughout the work, we use the standard natural units, that is ℏ =
c = 1.

2. The Lorentz structure of the scalar and mass interaction

We analyze here the Lorentz structure of the scalar and mass inter-
actions. In the first case we have, for a two-body scalar interaction, the
following standard expression:

VS = Ψ̄VS(r)Ψ = Ψ †γ01γ
0
2VS(r)Ψ . (1)

The scalar character of this term is obvious. This interaction, given in
Eq. (11) of Ref. [2] was used in that work to study in detail the charmonium
spectrum. For the potential, we used there the notation V S

(2)(r) to indicate

its two-body character. Here, for the same potential, we simply write VS(r).
We recall that the distance r between the quark and the antiquark is

defined in the center of mass reference frame (CMRF), that will be always
used in this work.

In more detail, as shown in Eq. (30) of Ref. [3], that interaction can
be written in the momentum space, with the CMRF momentum transfer of
Eq. (31); then, the covariant integration of Eq. (25) is performed, leading to
the covariant integral equation shown in Eq. (34) of the same work.
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On the other hand, the mass interaction operator can be formally intro-
duced by means of the following substitution in the two-body Dirac equation

mi → mi + UM
i (r) . (2)

For the charmonium, we have mi = mq. Symmetry with respect to inter-
change of c and c̄ requires

UM
i (r) =

VM (r)

2
. (3)

By using Eqs. (34), (35) and (36) of Ref. [3], one finds that the corresponding
mass interaction term, in the covariant form of the equation, takes the form
of

VM = Ψ̄
VM (r)

2

Pµ (γ
µ
1 + γµ2 )

M
Ψ . (4)

For the calculation of the charmonium spectrum, in the CMRF, where Pµ =
(M, 0⃗), Eq. (4) can be written as

VCMRF
M = Ψ̄

VM (r)

2

(

γ01 + γ02
)

Ψ = Ψ †VM (r)

2

(

γ01 + γ02
)

Ψ . (5)

From the last equation, we derive the reduced expression of the mass in-
teraction, shown in Eqs. (A.1)–(A.4) of Appendix A. That expression is
obtained by using the vinculated wave functions of our relativistic model,
applying the reduction operators as shown in Eq. (8) of Ref. [2].

We recall that the reduced expression of the scalar interaction was given
in Eqs. (C.1)–(C.3) of Ref. [1].

Considering, for the reduced expressions of the two interactions, a “non-
relativistic” expansion in powers of p/m (being n the power of each term)
one can easily find that the leading term, with n = 0, is the same for both
interactions; the following terms, with n = 4, have an opposite sign for the
two cases.

We recall that for the scalar potential VS(r), a Gaussian function was
used to fit the charmonium spectrum. Different functions with the same
number of parameters were tested but the fit to the experimental data
strongly favored the Gaussian spatial dependence. A constant function sig-
nificantly worsened the reproduction of the data. The author has also tested
that a large distance linear scalar potential (similar to that of the Cornell
model) is unable to reproduce the data with the same accuracy.

Furthermore, in work [2], a model was studied with a two region po-
tential, with the potential of the outer spatial region of Yukawa form in
order to investigate if the scalar interaction can be related to the standard
mechanism of one scalar meson exchange. However, the comparison with
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the experimental data did not show a significant improvement with respect
to the Gaussian potential function, suggesting that the scalar interaction is
not originated in this way. This point will be examined more deeply also in
Sec. 5 of this work.

3. Study of the charmonium spectrum

In the present work, we study again the scalar interaction and also con-
sider the mass interaction of Eq. (5), inserting the reduced operator ŴM of
Eq. (A.4) in the RDLE. On the other hand, the regularized vector interac-
tion, used in Ref. [2], is left unchanged. We recall that this interaction (that
includes the self-energy term) is zero at r = 0 and approaches the value V̄V
as r → ∞.

The technique for solving the RDLE and the fit procedure are exactly
the same as in Ref. [2]. For the charmonium spectrum we use here the new
experimental data [17] that present some small differences with respect to
the old data [18] used in our previous work [2].

For the quality of the fit, we define

Θ =

√

∑

k

(

Eth
k −M exp

k

)2

Nd
, (6)

where Eth
k and M exp

k respectively represent the result of the theoretical cal-
culation and the experimental value of the mass, for the k-th resonance and
Nd = 16 is the number of the fitted resonances.

Taking into account the results obtained in the previous work for the
scalar interaction and those obtained in the present work, with many differ-
ent trials, for both interactions, we make the following general comments.

(i) Results of the same quality are obtained with the scalar and mass
interaction. As discussed before, a difference between the scalar and
mass reduced interactions would appear only at the order n = 4 of
a nonrelativistic expansion. In consequence, one can argue that the
motion of the charm quark and antiquark (due to their relatively high
mass) is not sufficiently relativistic to distinguish between the two
interactions. We conclude that, at least for the charmonium case,
both the scalar and the mass interaction are able to reproduce, with
high accuracy, the spectrum.

(ii) To obtain a good fit, VX(r) must have a Gaussian form, both for the
scalar and for the mass interaction case. We can write the x-potential
in the form of

VX(r) = −V̄X exp

(

− r2

r2X

)

. (7)
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(iii) A fit of the same quality as that of Ref. [2] is now obtained also for
the mass interaction, enforcing the same balance equation, shown in
Eq. (23) of Ref. [2]. In this work, the balance equation will be rewrit-
ten, for a general x-interaction, in Eqs. (25) and (26) of Sec. 4.

(iv) Finally, the values obtained in the fit for rM and V̄M are numerically
very similar to rS and V̄S .

The results of the spectrum are shown in Table 1. The values of the
parameters for the interaction are given in Table 2. For the mass of the
quark we have taken the same value of the previous work [2], that is mq =

1.27 GeV. This value represents the “running” charm quark mass in the MS
scheme [17].

For reasons that will be explained in Sec. 5, when choosing the free
parameters of the fit, we set here a slightly different strategy with respect
to the previous work [2]. In that work the free parameters were αV , d
and rS , representing respectively the adimensional coupling constant of the
vector interaction, the regularization distance of the vector interaction’ and
the distance parameter of the Gaussian scalar potential. The dependent
parameters were V̄V and V̄S ; V̄V is the two quark vector self-energy that
depends on αV and d, as shown in Eq. (16) of that work; V̄S is the two
quark scalar self-energy, determined by the balance equation Eq. (23) of the
same work.

On the other hand, in the present work, we take as free parameters V̄X ,
d, and rX . V̄V is determined by the balance equation, then αV is obtained
by means of Eq. (16) of Ref. [2], as function of V̄V and d, that is

αV =
√
π
3

4
V̄V d . (8)

We now make some comments on the parameter V̄X . In our previous work
[2], the fit procedure with the old data [18] gave V̄S = 0.7268 GeV (see Table
II of Ref. [2]). With the new data [17], we now obtain V̄S = 0.7050 GeV.
For the case of the mass interaction, we obtain V̄M = 0.7237 GeV. Instead of
these values, according to the phenomenological model that will be discussed
in Sec. 5, we give, in Table 1 and Table 2, only the results obtained by fixing
V̄X (for both X = S and X =M) at the value V̄X = 0.7350 GeV, as it will
be discussed in Sec. 5; see, in particular, Eq. (34). This value is not very
different with respect to the results obtained by the fit; in consequence, this
choice of V̄X (instead of taking the fit results) does not alter significantly
the reproduction of the charmonium spectrum.
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Table 1. Comparison between the experimental average values [17] of the char-

monium spectrum (last column) and the theoretical results of the model. All the

masses are in MeV. The quantum numbers n, L, S and J , introduced in Ref. [2], re-

spectively represent the principal quantum number, the orbital angular momentum,

the spin, and the total angular momentum. The results of the columns “Scalar” and

“Mass” respectively refer to the scalar (S) and mass (M) interaction. A line divides

the resonances below and above the open Charm threshold. At the bottom, the

quantity Θ, formally in MeV, defined in Eq. (6), gives an indication of the quality

of the fit.

Name n2S+1LJ Scalar Mass Experiment

ηc(1S) 11S0 2998 2981 2983.9 ± 0.4

J/ψ(1S) 13S1 3090 3102 3096.9 ± 0.006

χc0(1P ) 13P0 3420 3405 3414.71 ± 0.30

χc1(1P ) 13P1 3498 3497 3510.67 ± 0.05

hc(1P ) 11P1 3510 3514 3525.38 ± 0.11

χc2(1P ) 13P2 3564 3577 3556.17 ± 0.07

ηc(2S) 21S0 3648 3641 3637.5 ± 1.1

ψ(2S) 23S1 3679 3680 3686.10 ± 0.06

ψ(3770) 13D1 3796 3795 3773.7 ± 0.4

ψ2(3823) 13D2 3831 3833 3823.7 ± 0.5

χc1(3872) 23P1 3893 3887 3871.65 ± 0.06

χc2(3930) 23P2 3928 3932 3922.5 ± 1.0

ψ(4040) 33S1 4014 4014 4039 ± 1

χc1(4140) 33P1 4144 4143 4146.5 ± 3.0

ψ(4230) 43S1 4211 4216 4222.7 ± 2.6

χc1(4274) 43P1 4267 4273 4286 ± 9

Θ 13.4 12.8

Concerning the form of the x-potential, we consider that the Gaussian
form is strongly favored by the fit to the data. For this reason, in all this
work, we focus our attention on the Gaussian x-potential function: in the
next Section 4, we try to develop a microscopic model for this interaction and
for the corresponding contribution to the quark self-energies; as anticipated,
in Sec. 5, we shall discuss a possible phenomenological model for the origin
of this interaction.

Finally, we note that the model is unable to reproduce the resonance
χc0(3915). The new experimental data [17] give, for this resonance, a mass
of 3921.7±1.8 MeV. Our model, taking the quantum numbers 23P0, gives the
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Table 2. Numerical values of the free and dependent parameters of the model; mq is

fixed at the value of Ref. [17], as explained in the text; according to the discussion

of Sec. 5, V̄X has the value given by Eq. (34) for both scalar and mass case; in

consequence, V̄V has the value determined by Eq. (26); d and rX are the truly

free parameters of the model; finally, αV is a dependent parameter, determined by

Eq. (8).

Units

mq 1.27 GeV

V̄X 0.735 GeV

V̄V 1.805 GeV

Scalar Mass

d 0.1511 0.14045 fm

rX 1.849 1.846 fm

αV 1.838 1.708

mass values of 3862 MeV and 3850 MeV, for the S and the M interactions,
respectively. Our model and other quark models give a wrong order for
the masses of this resonance and its partner χc1(3872). On the other hand,
the analysis of the decay processes leaves open the possibility of different
quantum number assignments and of a description in terms of multiquark
states, as discussed, for example, in the work [19]. For all these reasons, this
resonance has not been included in the fit of Table 1.

4. A model for the scalar and mass interaction

In this section, we try to develop a model for the scalar and mass interac-
tion, starting from an elementary x-interaction. This model, analogously to
the vector interaction case, takes into account a finite x-charge distribution
of the quarks. The same form, for the scalar and mass interactions, will be
considered. We assume that the quarks, with an extended distribution of
x-charge, represent the source of the attractive x-interaction.

The procedure that determines the interaction also allows to analyze in
more detail the self-energy of those charge distributions. This topic was not
examined with sufficient accuracy in our previous works where the scalar
interaction was only introduced and used to fit the charmonium spectrum.

As a starting point, we now make the hypothesis that an elementary
x-potential VEX(r) between two point-like charges at distance r has the
following Gaussian form

VEX(r) = −V̄EX exp

(

− r2

r2EX

)

, (9)
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where rEX represents the distance parameter of the elementary x-interaction.
Furthermore, analogously to the vector interaction case, we also consider a
Gaussian distribution for the quark x-charge density

ρ
X
(x) =

1

(2πd
2

X)3/2
exp

(

− x⃗ 2

2d
2

X

)

, (10)

where dX is related the radius of x-charge distribution density.
In order to construct the global x-potential avoiding cumbersome cal-

culations, we introduce the corresponding Fourier transformed quantities
where q⃗ represents the vertex momentum transfer and also, q = |q⃗ |. For the
potential, transforming Eq. (9), we obtain

VEX(q) = −V̄EX
r3EX

8π3/2
exp

(

−q
2r2EX

4

)

. (11)

From the x-charge density of Eq. (10), by means of the Fourier transform,
we obtain the standard vertex form factor

F
X
(q) = exp

(

− q2d
2

X

2

)

(12)

with the normalization FX(q = 0) = 1. The global interaction in the q⃗ space
is obtained inserting the form factors at the two vertices. For further devel-
opments, we consider the general case of two different x-charge distributions
for the two sources, with spatial parameters d1X and d2X . We have

VG(q) = F
1X

(q)VEX(q)F
2X

(q) = −V̄EX
r3EX

8π3/2
exp

(

−q
2r2G
4

)

, (13)

where rG is defined as:

rG =
√

r2EX + 2
(

d21X + d22X
)

. (14)

Eq. (13) is easily transformed to the r⃗ space. The result is

VG(r) = −V̄EX

(

rEX

rG

)3

exp

(

− r2

r2G

)

. (15)

Finally, to reproduce the x-potential of the present model, given by Eq. (7),
we take for the two quarks d1X = d2X = dX . By means of Eq. (14), we
obtain

rX =
√

r2EX + 4d2X (16)



The Role of Scalar and Mass Interactions in a Relativistic Model . . . 1-A2.11

and, identifying in Eq. (15)

V̄X = V̄EX

(

rEX

rX

)3

, (17)

we have the same expression for the x-potential given by Eq. (7).
We now calculate the self-energy of a spherical Gaussian x-charge distri-

bution density. To this aim, we consider (taking the general Eq. (15)) the
potential of a spherical Gaussian distribution interacting with a point-like
particle, setting d1X = dX and d2X = 0 in Eq. (14). In this case, we have

r1X =
√

r2EX + 2d2X . (18)

Defining

V̄1X = V̄EX

(

rEX

r1X

)3

, (19)

we can write this potential as

V1X(r) = −V̄1X exp

(

− r2

r21X

)

. (20)

We now replace the point-like x-charge with the x-charge dQ contained in a
volume element. For the x-charge density we use the expression of Eq. (10).
We have

dQ = r2dr dΩρX(r) . (21)

The integration for determining the self-energy is performed taking into
account the spherical symmetry of the problem. Furthermore, we insert a
factor 1/2 to avoid double counting in the integral for the total self-energy.
In this way, the total self-energy of the x-charge distribution of one quark is
written in the form of

W self
1X =

1

2
4π

∞
∫

0

dr r2V1X(r)ρX(r) . (22)

A standard calculation finally gives

W self
1X =

1

2
VX(0) = −1

2
V̄X . (23)

Obviously, for charmonium (and q q̄ systems) the total self-energy due to the
x-interaction is

W self
X = 2W self

1X = VX(0) = −V̄X . (24)
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We now comment critically the obtained results.

As successful achievements, in the first place, we note that the Gaus-
sian interaction used in the fit can be obtained by means of an elementary
Gaussian x-interaction and a Gaussian x-charge distribution for the quarks.
Moreover, this model determines the self-energy W self

X that was used in the
balance equation, given in Eq. (23) of previous work [2]. For clarity, we
generalize here this equation for a x-interaction:

W self
V = 2mq +W self

X (25)

or, more explicitly

V̄V = 2mq − V̄X . (26)

On the other hand, the following two inconveniencies are found.

(i) The negative x-self-energy W self
X of Eq. (24) correctly appears in the

balance equation but gives no contribution to the energies of the char-
monium spectrum. Different trials have been performed to include
directly this quantity in the potential functions but the quality of the
fit is always greatly worsened. Note that, on the contrary, for the
vector interaction, the self-energy V̄V makes part of the regularized
potential function and gives VV (0) = 0, as shown in Eqs. (13)–(17) of
Ref. [2]. Some mechanism should be found to cancel the (unwanted)
negative x-energy W self

X .

(ii) As shown in Eq. (16) for rX , this model as such is unable to determine
independently the parameters rEX and dX , introduced respectively
in Eqs. (9) and (10). The potential used for the x-interaction only
depends on rX , that is, in any case, a free fit parameter, determined
by the charmonium spectroscopy. From Eq. (16) one can only obtain
the following inequalities:

dX ≤ rX
2
, rE ≤ rX . (27)

In the limiting (extreme) case of a point-like x-interaction (rE = 0),
we have dX = rX

2 . On the other hand, for a point-like x-charge distri-
bution (dX = 0) we have rE = rX .

To solve these two difficulties and to investigate the physical origin of the
Gaussian form of the elementary x-interaction, we developed a phenomeno-
logical model that will be discussed in the following section.
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5. A model for the origin of the scalar and mass interaction

As a starting point, we introduce an underlying Gaussian field for the q q̄
system. This field depends only on the interquark distance r = |r⃗|; in this
way, it carries a vanishing orbital angular momentum and can represent a
completely scalar field with the same quantum numbers of the vacuum. We
shall try to relate this field to the elementary potential VEX(r), introduced
in Eq. (9) of the previous section. We can write

Φ(r) = Acoupl exp

(

−r
2

r̄2

)

, (28)

where Acoupl represents a dimensional coupling constant that will be fixed
in the following.

In order to understand the dynamical origin of that field, we apply to
Φ(r) the operator p⃗ 2 = −∇⃗2, obtaining the following equation:

[

p⃗ 2 + σ2r2
]

Φ(r) = µ2Φ(r) (29)

with

σ =
2

r̄2
(30)

and

µ =

√
6

r̄
. (31)

Examining Eq. (29), we note that the second term in the brackets of the
l.h.s. represents a harmonic “potential” that determines Φ(r) as a “confined”
Gaussian field; in the r.h.s. we have the squared energy µ2 that can be
related to the mass (µ) of the quantum associated to the Gaussian field. We
recall that in the case of a vector Coulombic interaction, the situation is
completely different and no term of this kind is present.

At this point, in order to avoid the inconveniency (i) found at the end
of the previous section, we make the hypothesis that the (positive) value of
the quantum µ cancels the negative x-self-energy of the quarks. To this aim,
with the help of Eq. (24), we fix:

µ = −W self
X = V̄X . (32)

In consequence, from Eq. (31), the parameter r̄ of the Gaussian field can be
expressed in the form of

r̄ =

√
6

V̄X
. (33)

Taking into account the phenomenology of the hadronic interactions, we
note, from Eq. (32), that the values of µ obtained by fitting the charmonium
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spectrum lie between the masses of the first two scalar meson resonances
that have the vacuum quantum numbers. More precisely, we recall that for
the f0(500) and the f0(980), the peak of the mass is roughly estimated at
0.475 GeV and at 0.995 GeV, respectively [17]. In consequence, the mean
value of these two peaks is, indicatively, at ⟨m0⟩ = 0.7350 GeV.

As anticipated in Sec. 3, we take this value for both the cases (X = M
or X = S) obtaining an accurate reproduction of the spectrum. We have

V̄X = µ = ⟨m0⟩ = 0.7350 GeV . (34)

From the numerical value of µ fixed in the previous equation, we also obtain,
from Eq. (33), r̄ = 0.6575 fm and, from Eq. (30), σ = 0.9126 GeV/fm.

Phenomenologically, one could consider V̄X = ⟨m0⟩ as an input of the
model and not as a free parameter. In this way, it is possible to say that the
charmonium spectrum is fitted using only two truly free parameters: d and
rX , as shown in Table 2.

We have seen that our field Φ(r) can be phenomenologically related to
the mesonic excitations that have the vacuum quantum numbers. In this
sense, Eq. (29) can be tentatively generalized to give the whole spectrum of
these excitations

[

p⃗ 2 + σ2r2
]

Φn(r) = (En)2Φn(r) (35)

with

En =
2

r̄

√

n+
3

2
. (36)

The scalar resonances (L = 0), that couple to the vacuum, have n =
0, 2, 4, . . . The case discussed above for Eq. (29) corresponds to ground state
with n = 0; more explicitly, in that case we have µ = E0.

We stress that Eqs. (35) and (36) are not able, as such, to describe the
spectrum of the scalar resonances. To this aim one should take into account
further terms in the “potential” (besides σ2r2) and, in any case, consider the
quark contributions. Our model could represent a phenomenological starting
point for investigating this highly controversial item of hadronic physics with
a different method. All this subject goes beyond the scope of the present
work.

In order to solve the inconvenience (ii) of the previous section, we now
study a possible relationship between the Gaussian field Φ(r) and the phe-
nomenological potential VX(r).

We first consider the case of a direct coupling to the fermion fields. In
this case, the Gaussian field Φ(r) of Eq. (28) represents the elementary x-
potential of Eq. (9), that is

VEX(r) = Φ(r) (37)
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that implies
Acoupl = Adir = −V̄EX , r̄ = r

EX
. (38)

This direct coupling is of the same kind of the one studied in Refs. [13,
14]. However, in our model, for the field Φ(r) no self-interaction term is
considered. On the other hand, as shown in Eq. (29), we have introduced
the “attractive term” σ2r2.

By using Eq. (16) and rEX from Eq. (38) it is now possible to determine
the distance parameter of x-charge distribution density:

dX =
1

2

√

r2X − r̄2 . (39)

Furthermore, by using Eq. (17), the elementary coupling of the x-interaction
can be written as

V̄EX = V̄X

(rX
r̄

)3
, (40)

where, as discussed above, we have V̄X = µ. For completeness, we give the
corresponding numerical values. Using the results of Table 2, for the scalar
interaction, we have: dS = 0.8640 fm and V̄ES = 16.35 GeV; for the mass
interaction, we have: dM = 0.8625 fm and V̄EM = 16.27 GeV.

Another possibility, at purely phenomenological level, consists in taking
a quadratic coupling of the form

VEX(r) = −Φ†(r)Φ(r) . (41)

In this case,

Acoupl = Aquad =
√

V̄EX , r̄ =
√
2 r

EX
. (42)

Taking into account the expression of r̄, the distance parameter of the
x-charge distribution density is obtained from Eq. (16), in the form of

dX =
1

2

√

r2X − r̄2

2
(43)

and the elementary coupling of the x-interaction, from Eq. (17), can be
written as

V̄EX = V̄X

(

r
X

√
2

r̄

)3

(44)

with, as before, V̄X = µ. The numerical values, for the scalar interaction,
are: dS = 0.8948 fm, V̄ES = 46.23 GeV; for the mass interaction, they are:
dM = 0.8932 fm, V̄EM = 46.01 GeV.
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We point out that, in any case, the Gaussian character of the elemen-
tary interaction is essential to obtain the Gaussian spatial x-potential. In
more detail, we have also tried to use a Yukawa function for the elementary
interaction (as it would be given by the standard linear sigma model) with
Gaussian x-densities for the quarks but the total x-interaction obtained in
this way is not able to reproduce, with sufficient accuracy, the charmonium
spectrum. Moreover, in Ref. [2], we tried to reproduce the experimental
charmonium spectrum with a “two region” scalar potential. For the outer
region, we used an exponential function with a spatial decay parameter
rb = 0.7594 fm, possibly corresponding to a mass mb = 1/rb = 0.2598 GeV.
We observe that this last value cannot be associated to any relevant observ-
able hadronic state. On the other hand, the Gaussian model studied in the
present work allows for a possible physical interpretation in the framework
of the hadronic phenomenology.

We can now try to summarize the results of the work and to draw some
conclusions. Using a reduced relativistic, energy-dependent, equation, an
accurate reproduction of the charmonium spectrum is obtained with a reg-
ularized vector interaction and a scalar or mass x-interaction. For the latter
interactions, a Gaussian spatial potential is required to fit the data. A bal-
ance relationship among the quark mass and the vector and x-interaction
self-energies is established. In this last section, we have shown that the
elementary Gaussian x-interaction VEX(r) can be associated to a scalar
field Φ(r) whose energy quantum µ cancels the negative self-energy of the
x-charge distributions of the quarks. Phenomenologically, the mass µ is of
the order of the first scalar hadronic resonances.

Furthermore, the scalar field Φ(r) can be related to VEX(r) by means of
a direct or quadratic coupling allowing to determine, in the two cases, the
distance parameter dX of the x-charge distribution density of the quarks
and the coupling V̄EX of the elementary x-interaction.

The author thanks the group of “Centro de Excelencia en Computación
Científica”, Laboratorio de Biología Computacional, Facultad de Ciencias —
Universidad Nacional de Colombia for the computation facilities that were
used to perform the numerical calculations of this work.

Appendix A

Reduction of the two-body mass interaction

For the mass interaction of Eq. (5), we apply the same procedure used in
Ref. [2] for the vector and scalar interactions. We use the reduction operators
K1 and K2, as in Eq. (8) of Ref. [2]. For more generality, we start by taking
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U1(r) ̸= U2(r) and obtain

ŴM = K†
1K

†
2

[

γ01U
M
1 (r) + γ02U

M
2 (r)

]

K2K1

= UM
+ (r)− 1

(m1 + E1)2
σ⃗1 · p⃗1UM

− (r)σ⃗1 · p⃗1

+
1

(m2 + E2)2
σ⃗2 · p⃗2UM

− (r)σ⃗2 · p⃗2

− 1

(m1 + E1)2(m2 + E2)2
(σ⃗1 · p⃗1)(σ⃗2 · p⃗2)UM

+ (r)(σ⃗2 · p⃗2)(σ⃗1 · p⃗1) ,

(A.1)

where we have defined

UM
± (r) = UM

1 (r)± UM
2 (r) . (A.2)

For equal mass quarks, we havem1 = m2 = mq , E1 = E2 = E/2. Recalling
Eq. (3), one also has

UM
− (r) = 0, UM

+ (r) = VM (r) . (A.3)

Furthermore, using p⃗2 = −p⃗1 = p⃗ we obtain the following expression that is
used for the calculation of the charmonium spectrum:

ŴM = VM (r)− 1
(

mq +
E
2

)4 (σ⃗1 · p⃗ ) (σ⃗2 · p⃗ )VM (r) (σ⃗2 · p⃗ ) (σ⃗1 · p⃗ ) . (A.4)
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