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The correlations of the reduced hindrance factor Fν of the K-isomers
in Ta and Hf isotopes with respect to NpNn (the product of valence nucle-
ons), EK −ER (the isomer excitation energy referred to a rigid rotor), and
EK(Nn)−EK(Nn−max) (the energy difference between the same configura-
tion at Nn and Nn−max (middle of a shell), at given spin and isotopic chain)
have been re-examined. The analysis is performed in the valence regions
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divided into particle–particle (p–p), particle–hole (p–h), and hole–hole (h–
h) regions, based on the NpNn phenomenology. The Ta and Hf isotopes
are considered, given the availability of the same spin configuration in the
different sectors of the valence regions. In our study, we observe that the
parameter EK(Nn)−EK(Nn−max) shows a significant correlation with Fν ,
within an isotopic chain.

DOI:10.5506/APhysPolB.54.1-A4

1. Introduction

In nuclear spectroscopy, the lifetime of nuclear excited states is one of
the most important observables which helps in developing the fundamental
understanding of nuclear interaction and nuclear structure. Some of the
excited states in nuclei may have a longer lifetime in comparison to other
states, which indicates a peculiar nuclear structure [1–7]. These excited
states, termed isomers, usually have a lifetime greater than the order of
nanoseconds (t1/2 ∼ ns), and so far more than 2460 nuclear isomers with a
half-life of 10 ns or more have been listed in the atlas of nuclear isomers [5].
The classification of these isomers [6, 7] is done based on nuclear structure
details giving rise to the longer lifetime of excited nuclear states.

The lifetime τ of an excited nuclear state that decays by a single transi-
tion depends on the transition energy, Eγ , and the change in quantum num-
bers between the isomeric state and the state to which it decays, through
the following relation [8]:

τ ∝ 1

(Eγ)2λ+1 | 〈f | Tλ | i〉 |2
,

where λ is the multipole order and Tλ is the transition operator between the
initial, i, and final, f , states. The lifetime τ depends on three factors, e.g.,
the gamma-transition energy, the multipole order, and the underlying tran-
sition matrix element. The latter is a model-dependent quantity and may
vary significantly. If Eγ is small and the multipole order is large, the lifetime
is likely to be relatively long, giving rise to an isomer state. Weisskopf esti-
mated the electromagnetic transition rates due to the transition of a single
nucleon from an initial state to a final state [9]; these estimates provide us
with reasonable relative comparisons of the transition rates. The ratio of
the experimental half-life tExp1/2 to the theoretical Weisskopf estimated half-
life tW1/2 of electromagnetic transition is known as the Weisskopf hindrance
factor [7–10], FW, and is given by

FW =
tExp1/2 (Experimental)

tW1/2(Weisskopf estimate)
.
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When the experimental decay lifetime of γ-transition is several orders
of magnitude higher than the Weisskopf estimate, it can be attributed to
the poor matching of the initial and final wave functions, slowing down the
transition rate. Similarly, if the transition rate is much higher than the
Weisskopf estimate, more than one nucleon is expected to be responsible for
the transition. The Weisskopf hindrance is used for the characterization of
isomers.

In most of the deformed nuclei, the transition probabilities depend on the
difference of the K quantum numbers of the initial and final states, denoted
by ∆K [7, 11]. If this difference is larger than the multipole order λ of the
electromagnetic transition, then such a transition is hindered by the degree of
forbiddenness (also known as K-forbiddenness) given by ν = ∆K − λ. The
degree of K-forbiddenness, ν, can be further used to define the reduced-
hindrance factor Fν [12–14], expressed as

Fν = (FW)1/ν . (1)

For example, for the Jπ = 8− isomer in 180Hf (located at Ex = 1141 keV,
with t1/2 = 5.47 h), FW = 2.86 × 1016 and Fv = 224 [15]. The reduced-
hindrance factor also depends onK mixing in both initial and final states [15],
and leads to a low hindrance factor. The K mixing arises due to the Coriolis
effect, which intensifies with decreasing neutron and proton numbers in the
lower half of the shells due to the population of high-j, low-Ω orbitals. In
contrast, greater axial asymmetry occurs with increasing neutron and proton
numbers in the upper half of the shells, leading to an increase in K mixing
associated with γ tunneling, where γ is the axial asymmetry parameter.

The systematic effect of Coriolis and γ-induced K mixing may be well
characterized through a single variable, NpNn. The NpNn [16–19] is the
product of the number of valence protons (Np) and neutrons (Nn), relative
to the nearest closed shells (counted as a number of holes past the mid
shell). For example, the Np and Nn values are counted as follows: for
118
56Ba62, Np = 6, Nn = 12; for 128

56Ba72, Np = 6, Nn = 10; for 154
70Yb84,

Np = 12, Nn = 2, and for 172
70Yb102, Np = 12, Nn = 20. The NpNn

reflects the characteristics of the deformation. The deformation increases
with NpNn. Here, one would expect a correlation with hindrance factors
since low values of NpNn (i.e. small deformation) imply higher rotational
frequencies (for a given spin) and large Coriolis effects, resulting in more
K mixing in both initial and final states. The K mixing increases with
increasing level density [20] and level density appears as dependence on the
isomer’s excitation energy relative to a rigid rotor (EK−ER). Furthermore,
strong correlations have been observed between the reduced-hindrance factor
and other variables [15, 21], namely, the isomer energy relative to a rigid
rotor [22] and the quasi-particle configurations involved [23].
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The correlation of Fν with NpNn needs to be re-examined as some of the
earlier studies [24–26] showed a good correlation (see Fig. 1 (a) as an exam-
ple), whereas other work [27] showed almost no correlation (see Fig. 1 (b)).
The graph shows data from Refs. [26, 27]. In the present work, we re-
examined the correlation of Fν with NpNn, EK − ER, and EK(Nn) −
EK(Nn−max) for different valence regions based on the particle and the hole
consideration. The ENpNn −E(NpNn)max

is the isomer energy relative to the
isomer at Nn−max. An isotopic chain can be divided into particle–particle
(p–p), hole–hole (h–h), and particle–hole (p–h) valence regions [17, 18, 28].
This means that both the proton and neutron are in the first half of the
shell (p–p), or both in the second half (h–h), and one fills below and the
other above the mid shell (p–h) The tantalum and hafnium isotope series
were preferred due to the availability of the same spin configuration isomer
data in (h–p) and (h–h) valence regions, in spite of unavailability of data in
the p–p region for these series. For the sake of consistency, the Fν values
from the E1, E2, and M1 decay branches have been preferred in the present
study.
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Fig. 1. The reduced hindrance of E2, ν ≥ 4 transitions for (a) two quasi-particle
isomer data [26] and (b) two- and three-quasi-particle isomers data [27] in the
N = 82–126 shell as a function of NpNn. The fit-dashed line is of the form of
Fν = A+exp[(NpNn−80)B/C] [26, 27], where A = 2.3, B = 1.873, and C = 3×103.

2. K-isomer

The shell model [29] predicts the existence of isomers when excited states
require large multipole order or/and low-energy γ-transitions for their decay.
Nuclei with or/near the magic number (Z, N = 2, 8, 20, 28, 50, 82, 126)
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are more or less spherical in their ground state, and as one moves towards
the mid shell, the nuclear shape usually becomes deformed. An example of
a prolate shape, with symmetry about the long axis, is shown in Fig. 2 (a)
and 2 (b). The deformed-shell model (Nilsson model [30, 31]) predicts the
existence of isomers in non-spherical nuclei [12–14]. A deformed even–even
nucleus rotates around an axis perpendicular to the axis of symmetry, re-
sulting in the ground-state band populated with Iπ = 0+ and K = 0 (see
Fig. 2 (a)). Excitation of the nucleus can break up a pair of nucleons and
move one or both nucleons to higher orbits. This excitation is called a two
quasi-particle [7] state, emphasizing the importance of the pairing interac-
tion [31, 35], which changes the energy and wave function of the nuclear
level. When a pair of nucleons breaks near the Fermi surface, the quasi-
particle spins (j1, j2) can be aligned along the symmetry axis, leading to a
high K-value (

∑
Ωi = K), where Ωi = 1, 2 is the projection of the single-

particle angular momentum ji = 1, 2. With such an orientation as shown
in Fig. 2 (b), the spin of the band-head results from completely unpaired
nucleons rather than collective rotation. Other excited states of the band
can arise either from unpaired nucleons or from the rotation of the core. For
example, the 4+ state in Fig. 2 (b) is a K-isomer, where the ν(= 3, 2), where
∆K = 4 and λ = 1, 2.
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Fig. 2. (a) Schematic diagrams showing a collective rotation band (Band 1) with
Iπ = 0+, K = 0 of an even–even nucleus. (b) A collective rotation band (Band 2),
with Iπ = 4+, K = 4, and the coupling scheme of two individual nucleons (after
breaking pair) with the collective rotation of the core.
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3. Fν systematics with NpNn, EK − ER, and
EK(Nn) − EK(Nn−max)

3.1. Fν correlation with NpNn in different valence regions

The collectivity grows faster in the p–p and h–h valence regions compared
to the p–h/h–p valence region [28]. To check the effect on Fν values, the
data have to be shown for (p–p), (h–p), and (h–h) valence regions separately.
In the present study, for the above purpose, the tantalum (Jπ = 21/2−)
and hafnium (Jπ = 6+, 8−) isotopes for which the same spin configuration
isomers data are available for p–h and h–h regions have been considered and
listed in Table 1. The Fν values were calculated with respect to decaying
branches via M1, E1, and E2 multipolarities.

Figure 3 shows the comparison of logFν values withNpNn in split valence
regions and non-split valence regions based on particle–hole consideration.
Clearly, the logFν values in Fig. 3 (a), and (e) appear to be scattered. How-
ever, Fig. 3 (b), (d), and (f) shows interesting trends by seeing the same
data plotting in hole–hole (h–h) and hole–particle (h–p) regions. Remark-
ably, the logFν values are increasing with decreasing state excitation energy
in different valence regions, which has not been discussed before. The logFν
value of 179Ta is showing anomalous behavior which can be interpreted in
terms of strong configuration mixing [15, 36, 37].
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Fig. 3. The upper panels show logFν values and the lower panels show exited states
energy, plotted against NpNn for tantalum and hafnium isotopes. Data in (b), (d),
(f) panels are shown divided into hole–hole (h–h) and hole–particle (h–p) valence
regions. Data in (a), (c), (e) panels are shown without particle–hole distinction.
The dotted lines are drawn for visual aid.
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3.2. Fν correlation with EK − ER and EK(Nn)− EK(Nn−max)
for different valence regions

Figure 4 shows logFν as a function of isomer energy relative to a rigid
rotor, EK − ER. The rotor energy, ER = ~2

2J I(I + 1) with I ≡ K, which is
considered from [20, 27, 36]. The logFν values are expected to be correlated
with the EK − ER.
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Fig. 4. The reduced hindrance factors as a function of isomer energy relative to a
rigid rotor, EK − ER.

Figure 5 shows logFν as a function of isomer energy relative to a rigid
rotor, EK − ER and EK(Nn) − EK(Nn−max) for different valence regions
for the states of tantalum and hafnium isotopes with spin and parity Jπ =
21/2− and 6+, 8−, respectively. Similar trends are observed in different
valence regions with EK(Nn) − EK(Nn−max) (see Fig. 5). This correlation
can be described by a polynomial of degree 2 (see Fig. 6). However, there is
no similar trend observed for tantalum isotopes when plotted with respect
to NpNn for different valence regions (see Fig. 3 (b)). The logFν value of
179Ta is showing anomalous behavior as observed from the overall data trend,
which can be interpreted in terms of strong configuration mixing [15, 36, 37].
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4. Conclusion

The correlation of reduced-hindrance factor Fν with NpNn has been
re-examined for the K-isomers of tantalum and hafnium isotopes. Earlier
studies related to the correlation showed a good correlation for two quasi-
particles and almost no correlation for two- and three-quasi-particle isomers.
In the present work, we have found that this contradiction weakens when
the correlation is viewed in the valence regions divided into particle–particle,
particle–hole, and hole–hole regions based on NpNn phenomenology. The
logFν values seem to increase with decreasing state excitation energy in dif-
ferent valence regions. The known correlation of Fν with the isomer energy
relative to a rigid rotor, EK − ER, is more clearly observed in different va-
lence regions. A new correlation of Fν with the isomer energy relative to
the middle shell isotope isomer, EK(Nn)−EK(Nn−max), has been proposed
which can be described by a polynomial of degree 2. However, a quantita-
tive understanding of these correlations remains elusive. Expansion of these
ideas along with the availability of more experimental data will provide a
better understanding of the decay rates from isomers in deformed regions
which could be quite promising for nuclear structure studies.
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