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1. Introduction

In a series of previous works, the author developed a Dirac relativistic
quark–antiquark model to study the spectrum of charmonium and, possibly,
of other mesons. In particular, in Ref. [1], the relativistic reduced Dirac-like
equation (RDLE) of the model was introduced. This equation is written in
the coordinate space in a local form. An accurate calculation of the charmo-
nium spectrum was performed using a small number of free parameters in
Ref. [2]. Furthermore, in subsequent work [3], the Lorentz structure of the
interaction terms was studied in more detail, developing a covariant form of
the same RDLE.

In this model, a specific form of the regularized vector interaction has
been used. That interaction had been introduced and studied previously in
Ref. [4]. We highlight here that a vector interaction alone is not sufficient
to give an accurate reproduction of the charmonium spectrum. To this aim,
the contribution of a scalar interaction has been always included in the
interaction of the RDLE. In this respect, the scalar interaction was studied
in more detail in another work [5], also considering the possibility of using a
mass interaction. In the same work, the scalar and mass interactions have
been tentatively related to the excitation of the first scalar resonances of the
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hadronic spectrum. In the following, we shall denote the content of all these
works (and the corresponding results) as previous calculations, performed
with the RDLE.

In the present work, we go back to the study of the vector term of the in-
teraction exploring a possible relationship between this interaction term and
the Quantum Chromo-Dynamics (QCD) effective running strong coupling
constant αS(Q), where Q represents, as usual, the quark vertex momentum
transfer. In particular, we shall consider, for αS(Q), the effective charge

αg1(Q) that was extracted from the experimental data using the generalized
Bjorken sum rule. The procedure of extraction and the theoretical analysis
have been performed in different works [6–8] to which we refer specifically for
the present study. Furthermore, in the extensive review on the QCD running
coupling constant αS(Q) [9], in the previous review [10] and in the references
quoted in these papers, the theoretical and phenomenological properties of
αg1(Q) are also analyzed in detail.

As shown in the previously cited works [6–10], the extracted αg1(Q)
coincides, at high momentum transfer, with the predictions of perturbative
QCD for αS(Q). At low momentum transfer, αg1(Q) can provide a reliable
definition of the strong coupling constant, offering a potentially relevant
tool for the study of the nonperturbative hadronic phenomena, such as the
emergence of hadronic mass, quark confinement, and hadron spectroscopy.
In this respect, a crucially relevant property of αg1(Q) is that this quantity
does not present any low-Q divergence but “freezes” as Q → 0. In other
words, in this limit, it loses its Q-dependence.

Some care must be exercised considering that different forms of effec-

tive charges can be introduced in relation to different observable hadronic
quantities. In the present work, we take specifically αg1(Q) due to the great
number of high-precision experimentally extracted data that allow to con-
struct, without numerical uncertainties, a suitable vector interaction for our
RDLE.

In Refs. [9, 10], the authors also discuss the form of αS(Q) in some
nonperturbative approaches to QCD. Due to the interest in the develop-
ment of the present work, we recall that the Holographic Light-Front QCD
gives a “freezing” coupling constant [9] αHLF(Q). Also, in the Richardson
model [11], a static potential for the constituent-quark interaction is intro-
duced. This potential grows linearly with the quark distance. From this po-
tential, one can formally obtain an effective coupling constant αRich(Q) that,
however, is divergent as Q→ 0. Furthermore, in Refs. [6, 7], a comparison of
αg1(Q) with the coupling constant of the Godfrey–Isgur constituent-quark
model [12] is given.
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Finally, we highlight here that, as explained in the detailed analysis of
Refs. [9, 10], the connection between an expression of αS(Q) “in accordance”
with QCD and the quark interaction for the hadronic bound states is not
univocally defined and still represents a challenge for theoretical physics.

Taking into account the complexity of the problem, in the present work,
we shall revise the previously developed vector interaction of Refs. [1–5],
deriving from the quantities introduced there the (possibly) related form of
αS(Q). Then we shall use the effective coupling αg1(Q) of Refs. [6–8] to
construct, with some modifications, the vector potential for the model.

Finally, we point out that, by means of our RDLE, a truly relativistic

model is constructed. In this model, the vector interaction and the scalar
(or mass) interaction can be treated separately, allowing for a separate study
of their structure. In particular, in the present work, we shall focus our
attention on the vector interaction.

We recall that, on the contrary, in the nonrelativistic studies, the two
interactions give rise (at least at the leading order in the nonrelativistic
expansion) to a unique potential, in which the two contributions cannot be
easily disentangled.

The remainder of the paper is organized as follows. In Subsection 1.1, the
notation and conventions used in the work are introduced. In Section 2, we
study the theoretical connection between the running coupling constant, as
a function of the momentum transfer Q, with the vector interaction poten-
tial. In Section 3, we analyze from the (new) point of view of this paper our
previous calculations performed with the RDLE. In Section 4, we develop
the construction of the interaction vector potential by using the experimen-
tally extracted αg1(Q). Finally, in Section 5, the charmonium spectrum is
calculated and displayed. The role of the different parameters is analyzed
and some general considerations about the whole problem are given.

1.1. Notation and conventions

The following notation and conventions are used in the paper.

— The invariant product between four vectors is standardly written as:
V µUµ = V µUνgµν = V 0U0 − V ·U .

— The lower index i = 1, 2 represents the particle index, referred to the
quark (q) and to the antiquark (q̄).

— We shall use, for each quark, the four Dirac matrices γµi .

— The vertex 4-momentum transfer will be denoted as qµ = (q0, q).

— We shall neglect the retardation contributions, setting q0 = 0 for the
time component of the 4-momentum transfer. This approximation is
consistent with the use of the Center of Mass Reference Frame for the
study of the qq̄ bound systems.
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— In consequence, the positive squared 4-momentum transfer Q2 takes
the form Q2 = −qµqµ = q2, that is Q = |q|.

— The quantities α(Q), G(Q), V V (r), and UV (r) that will be introduced
in the paper, are used, with no label, in general expressions.

— To indicate the model to which these quantities are referred, a spe-
cific label is added: “Coul” for the pure Coulombic case, “pr” for the
previous calculations with the RDLE, and g1 for the effective charge
extracted from the experimental data. The quantity αV (0) will be also
introduced in Section 5.

— The subindex X will be used for the parameters V̄X and rX to denote
the scalar (X = S) or mass (X = M) character of the corresponding
interaction.

— Finally, throughout the work, we use the standard natural units, that
is ℏ = c = 1.

2. The vector interaction in momentum and coordinate space

Our RDLE [1, 2] has been formulated in the coordinate space. In order
to introduce the momentum-dependent running coupling constant αS(Q)
into this model, it is strictly necessary to establish the connection between
the coordinate space and the momentum space interaction. We write, in

general, the momentum dependence of the vector strong interaction (apart
from the standard 1/Q2 factor) in the form

α(Q) = α(0)G(Q) , (1)

where α(0) is a truly constant, adimensional quantity that “represents the
strength” of the vector interaction. Furthermore, G(Q) is a decreasing,
positive function of the momentum transfer Q that satisfies the condition
G(0) = 1. The momentum dependence of α(Q) can be related, at a funda-
mental level, to the running of the QCD coupling constant, identifying α(Q)
with the strong coupling constant αS(Q). In phenomenological quark mod-
els, as for example, in our previous calculations, we can say that the function
G(Q) takes phenomenologically into account the structure of the interacting,
nonpoint-like, quarks. Its physical meaning, within different models, will be
analyzed in more detail in the following sections of the paper.

By means of Eq. (1), the tree-level vector interaction in the momentum
space, for a qq̄ system, can be written, in general, as

WV (Q) = −4

3

4π

Q2
α(0)G(Q)γµ1 γ

ν
2gµν , (2)
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where 4/3 represents the color factor in the qq̄ case; α(0) and G(Q) have
been introduced in Eq. (1). Performing the Fourier transform, one obtains
the corresponding expression in the coordinate space

WV (r) =

∫

d3q

(2π)3
exp (iq · r)WV (Q) . (3)

Multiplying the previous expression by γ01γ
0
2 from the left, one obtains the

two-body vector interaction W V
(2), introduced in Eq. (10) of Ref. [2] for the

calculations in the Hamiltonian Dirac form.
In particular, the two-body interaction potential in the coordinate space

is given by the following Fourier transform:

V V (r) = −4

3

∫

d3q

(2π)3
exp (iq · r) 4π

Q2
α(0)G(Q) , (4)

where V V (r) is the vector (two-body) interaction potential, denoted as
V int(r) in Eqs. (12) and (14) of Ref. [2]. In the first place, we recall that in
the case of a constant G(Q), one goes back to a standard Coulombic interac-
tion. More precisely, for GCoul(Q) = 1, one would obtain in the coordinate
space the pure Coulombic potential

V V
Coul(r) = −4

3

αCoul(0)

r
. (5)

This potential is not able to reproduce with good accuracy the charmonium
spectrum. Furthermore, the choice G(Q) = GCoul(Q) = 1 is not in agree-
ment with the QCD phenomenology, because, with this choice, the running
of the coupling constant would be completely ignored.

In Section 3, we shall discuss Gpr(Q), corresponding to the potential
V V
pr (r) that was introduced in our previous works [2, 5]. In Section 4, we

shall study the case of αg1(Q) extracted from the experimental data. In any
case, the interaction potential in the coordinate space is obtained by means
of the Fourier transform of Eq. (4).

3. The quantity Gpr(Q) of our previous calculations

As discussed before, it is not possible to reproduce accurately the char-
monium spectrum with a pure Coulombic potential. For this reason, in
Ref. [2], a model of the vector interaction, that was previously introduced
in Ref.[4], was applied. In this model, the quarks are considered as extended

sources of the chromo-electric field.
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After many trials with different analytic functions, an accurate repro-
duction of the charmonium spectrum has been obtained with a Gaussian
color charge distribution for each quark

ρ(x) =
1

(2πd2)3/2
exp

(

− x2

2d2

)

. (6)

This distribution gives, in the momentum space, the following vertex form
factor:

F (Q) = exp

(

−Q
2d2

2

)

. (7)

Considering one form factor for each quark vertex, one obtains for the func-
tion G(Q) introduced in Eq. (2) the following expression, characteristic of
our previous calculations:

Gpr(Q) = [F (Q)]2 = exp
(

−Q2d2
)

. (8)

For this model, developed in our previous calculations, we have the (true)
constant αpr(0) = αV that was introduced in Refs. [2, 5].

As anticipated at the beginning of the previous section, we can say that,
within this model, the quantity αpr(Q) = αpr(0)Gpr(Q) defines an effec-
tive strong running coupling constant αS(Q). Furthermore, we observe that
αpr(Q), with Gpr(Q) of Eq. (8) is a function without singularities which
“freezes” (i.e. goes to a constant limit) as Q→ 0.

By performing the Fourier transform defined in Eq. (4), with Gpr(Q) of
Eq. (8), one obtains the interaction potential in the following analytic form:

V V
pr (r) = −4

3

αpr(0)

r
erf

( r

2d

)

. (9)

In Eq. (17) of Ref. [2], the same result, denoted there as V int(r), was obtained
by means of a different procedure completely developed in the coordinate
space. Note that the potential of Eq. (9) is regular for r → 0. More precisely,
we have

V V
pr (0) = −4

3

αpr(0)

d

1√
π
. (10)

This result was given in Eqs. (13) and (16) of Ref. [2].
We recall that also a positive constant term, denoted as V̄V , is frequently

introduced in quark models to improve the reproduction of the experimental
spectra. In our previous calculations, as shown in Eq. (13) of Ref. [2], we
fixed this constant in the following way:

V̄V = −V V
pr (0) . (11)
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With this assumption, the constant V̄V represents the positive zero-point
quark self-energy that, added to the interaction term of Eq. (9), gives a total
vector potential that is vanishing at r = 0 and approaches the maximum
value V̄V as r → ∞.

As discussed above, the parameters of the vector interaction, in our pre-
vious calculations, are d and αpr(0). Their numerical values were obtained
by fitting the resonance masses of the charmonium spectrum. The following
numerical values were obtained: d = (0.1526) 0.1511 fm corresponding to
λ = 1/d = (1.293) 1.306 GeV and αpr(0) = (1.864) 1.838 where the first
values (in brackets) are those of Table II of Ref. [2] and the second ones
are those of Table II of Ref. [5]. In the latter case, an updated set of char-
monium resonance masses [13] were used to determine the values of d and
αpr(0). In the remainder of this work, we shall consider only the second
group of values.

Incidentally, these results can be compared with HLF QCD that gives for
the effective running coupling constant exactly the same analytic expression

αHLF(Q) = αHLF(0) exp

[

− Q2

(2κ)2

]

. (12)

The numerical value is 2κ = 1.046 ± 0.048 GeV, as given in Ref. [9]. This
value has the same order of magnitude as λ of our model.

4. The use of αg1(Q)

In this section, we analyze the possibility of using the quantity αg1(Q),
extracted from the experimental data, to construct the vector interaction
potential. In the first place, considering the results of Refs. [6–8], we write

αg1(Q) = αg1(0)Gg1(Q) , (13)

where one would have αg1(0) = π (this numerical value will be discussed
in the following). Then, in order to perform (numerically) the Fourier
transform of Eq. (4) required for the calculation of the vector potential,
we parametrize Gg1(Q) with a continuous analytic function, in the following
way:

Gg1(Q) = aA(Q) + (1− a)B(Q) , (14)

where the two momentum dependent functions A(Q) and B(Q) satisfy the
condition

A(0) = 1 , B(0) = 1 . (15)

In more detail, we take these functions in the form

A(Q) = exp
(

−Q2d2a
)

(16)
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and

B(Q) =
1 + c0αb ln(xb)

1 + c0αb ln (xb +Q2(η(Q))2)
(17)

with
η(Q) = η0 + bQ ,

c0 =

(

11− nf
2

3

)

1

4π
. (18)

The total function of Eq. (14) has been fitted to the experimentally ex-
tracted data [6–8], from Q = 0 to Q = 50 GeV, obtaining the following
values for the parameters of Eqs. (14)–(18): a = 0.35415, da = 0.1611 fm,
αb = 1.395, xb = 0.9164, η0 = 0.7385 GeV−1, b = 1.479 GeV−2, and nf = 6.
In the parametrization displayed above, B(Q) of Eq. (17) is related to the
low momentum behavior of αg1(Q), while B(Q) takes into account the high
momentum logarithmic terms, peculiar of perturbative QCD. However, we
point out that our parametrization does not pretend to have a specific phys-
ical meaning but has been introduced essentially to perform the numerical
calculation.

The experimentally extracted data, the corresponding fit for Gg1(Q),
and Gpr(Q) of Eq. (8) are shown in Fig. 1. In this figure, the sources of
the experimentally extracted data are not differentiated. For more details
regarding this point, the reader is referred to works [6–9].

 0
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G
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Fig. 1. The function G(Q) introduced in Eqs. (1) and (2). The points with error

bars, in red, represent the experimentally extracted g1 data; the blue continu-

ous line represents Gg1(Q), that is the fit of Eq. (14) to these data. The green

continuous line represents Gpr(Q) of our previous calculations, given by Eq. (8).
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The coordinate space potentials are obtained by means of Eq. (4). In
particular, for the experimentally extracted data, we use the parametrization
of Gg1(Q) given in Eq. (14) with the functions A(Q) and B(Q) defined in
Eqs. (16) and (17), respectively. The calculation is performed analytically
for A(Q) and numerically for B(Q).

In order to display graphically the coordinate space potentials, we divide
the potentials by α(0), introducing the following coordinate space function:

UV (r) =
V V (r)

α(0)
. (19)

This function is plotted in Fig. 2. In more detail, in this figure, we display:

— UV
g1(r), obtained from the fit of the experimentally extracted data;

— UV
pr(r) given by Eq. (9);

— UV
Coul(r) that is given by the pure Coulombic potential of Eq. (5).

-2
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-1

-0.5

 0

 0  0.2  0.4  0.6  0.8  1

U
V
(r

) 
(G

e
V

)

r (fm)

Fig. 2. The coordinate space function UV (r) of Eq. (19). The blue line, UV
g1(r), is

obtained from the fit of the experimental data; the green line, UV
pr(r), is given by

the potential of the previous model; the black line, UV
Coul(r), represents the pure

Coulombic case.

We note that, as r → ∞, the three functions have the same Coulombic
behavior. As r → 0, UV

pr(r) takes the finite value determined by Eq. (10);

numerically, this value is UV
pr(0) = −0.9824 GeV. This regularization of the

potential is given by the fastly decreasing function Gpr(Q). On the other
hand, UV

g1(r) diverges as r → 0, with a slower rate than UV
Coul(r). In this
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respect, we observe that the function B(Q) of Gg1(Q) does not decrease
sufficiently fast, as Q→ ∞, to regularize the corresponding coordinate space
potential when r → 0.

5. The charmonium spectrum

We can now try to reproduce the charmonium spectrum with the vector
potential given by UV

g1(r).
The technique for solving the RDLE and the fit procedure are exactly

the same as in Refs. [2, 5]. For the charmonium spectrum, we use here the
experimental data [13].

For the quality of the fit, as in [5], we define

Θ =

√

∑

k

(

Eth
k −M exp

k

)2

Nd
, (20)

where Eth
k and M exp

k respectively represent the result of the theoretical cal-

culation and the experimental value of the mass for the kth resonance and
Nd = 16 is the number of the fitted resonances.

We point out that the model, to reproduce accurately the spectrum,
necessarily includes also a scalar (S) [1, 2] or mass (M) [5] interaction.

We have started the analysis by trying to fix the vector interaction
strength at the value αg1(0) = π, as given in Refs. [6–8]. However, this
choice did not allow to reproduce accurately the charmonium spectrum. In
this respect, many trials have been performed modifying the form of the
scalar or mass potentials. We have also tried to modify the form of G(Q)
but, in any case, the fit of the charmonium spectrum refused the value
αg1(0) = π of the vector interaction strength.

Subsequently, this quantity that we denote from now on as αV (0) has
been left as a free parameter of the fit. This choice has allowed an acceptable
reproduction of the charmonium spectrum, as shown in Table 1, where the
theoretical and experimental values of the resonance masses are displayed.
The values of the parameters used for the interaction are given in Table 2.

In particular, for the mass of the quark, we have taken the same value of
the previous works [2] and [5], that is mq = 1.27 GeV. This value represents

the “running” charm quark mass in the MS scheme [13].
As discussed before, αV (0) is determined by the fit to the spectrum.

Comparing the results obtained for αV (0) with αg1(0) = π, we have αV (0)=
0.65 αg1(0) and αV (0) = 0.62 αg1(0), when the scalar or mass interactions
are used, respectively. As discussed in the introduction, the nonunivocal
definition of the effective charge, that affects particularly the low-Q region,
can explain why the value αg1(0) = π is not adequate for obtaining a suitable
bound state quark interaction for our calculation.
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Table 1. Comparison between the experimental average values [13] of the char-

monium spectrum (last column) and the theoretical results of the model. All the

masses are in MeV. The quantum numbers n, L, S, and J , introduced in Ref. [2]

represent, respectively, the principal quantum number, the orbital angular momen-

tum, the spin and the total angular momentum. The results of the columns “Scalar”

and “Mass” refer, respectively, to the scalar (S) and mass (M) interaction. A line

divides the resonances below and above the open charm threshold. At the bottom,

the quantity Θ, in MeV, defined in Eq. (20), gives an indication of the quality of

the fit.

Name n2S+1LJ Scalar Mass Experiment

ηc(1S) 11S0 2989 2994 2983.9 ± 0.4

J/ψ(1S) 13S1 3100 3114 3096.9 ± 0.006

χc0(1P ) 13P0 3418 3407 3414.71 ± 0.30

χc1(1P ) 13P1 3498 3494 3510.67 ± 0.05

hc(1P ) 11P1 3511 3510 3525.38 ± 0.11

χc2(1P ) 13P2 3558 3564 3556.17 ± 0.07

ηc(2S) 21S0 3631 3626 3637.5 ± 1.1

ψ(2S) 23S1 3675 3677 3686.10 ± 0.06

ψ(3770) 13D1 3791 3784 3773.7 ± 0.4

ψ2(3823) 13D2 3823 3819 3823.7 ± 0.5

χc1(3872) 23P1 3898 3891 3871.65 ± 0.06

χc2(3930) 23P2 3932 3933 3922.5 ± 1.0

ψ(4040) 33S1 4017 4018 4039 ± 1

χc1(4140) 33P1 4153 4151 4146.5 ± 3.0

ψ(4230) 43S1 4222 4227 4222.7 ± 2.6

χc1(4274) 43P1 4284 4292 4286 ± 9

Θ 36.0 38.0

With respect to Ref. [5], here the additional constant of the vector inter-
action V̄V is considered as a completely free parameter: the vector interac-
tion obtained from Gg1(Q) does not allow to relate V̄V to the quark vector
self-energy.

Following the phenomenological model discussed in [5], we have fixed the
constant V̄X for both the scalar (X = S) and the mass (X =M) interaction
at the value V̄X = 0.7350 GeV. Also for the distance parameters rX , the
same values of [5] have been used, as shown in Table 2.
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Table 2. Numerical values of the parameters of the model; for more details, see

Section 5. The quark mass mq is fixed at the value of Ref. [13]. The constant αV (0)

represents the strength of the vector interaction; V̄V is the additional constant of

the vector interaction. The parameters of the scalar or mass interaction V̄X and rX
have the same values as in Ref. [5].

Units

mq 1.27 GeV

Scalar Mass

αV (0) 2.030 1.946

V̄V 1.837 1.843 GeV

V̄X 0.735 0.735 GeV

rX 1.849 1.846 fm

Analyzing in more detail the obtained results for the spectrum, we note
that the quality of the fit is slightly worse here than in Ref. [5]. For the
parameter Θ defined in Eq. (20), we have here Θ = 36.0 MeV and Θ =
38.0 MeV for the scalar and mass interaction, respectively. In Ref. [5],
the corresponding values were Θ = 13.4 MeV and Θ = 12.8 MeV. The
quality of the fit can be improved if the parameters VX and rX are left as
free parameters. We decided to fix these parameters at the same values
as in Ref. [5] to show that the vector potential obtained from Gg1(Q) is
compatible with the model for the scalar and mass interactions studied in
Ref. [5] without changing their parameters.

For completeness, we also note that, as in [5], the model is unable to
reproduce the resonance χc0(3915). The new experimental data [13] give, for
this resonance, a mass of 3921.7±1.8 MeV. Our model, taking the quantum
numbers 23P0, gives the mass values of 3857 MeV and 3846 MeV, for the S
and M interactions, respectively. Our model and other quark models give a
wrong order for the masses of this resonance and its partner χc1(3872).

We conclude this paper with the following considerations. The momen-
tum dependence of the QCD experimentally extracted, αg1(Q), gives a vec-
tor interaction potential that is compatible with our quark model based on
a RDLE. However, to fit accurately the spectrum, the constant of the vector
interaction strength must be reduced with respect to αg1(0). Moreover, the
additional constant V̄V must be added to the vector potential. Finally, a
scalar or mass interaction is also strictly necessary to reproduce in detail
the charmonium spectrum. Further investigation is necessary to establish a
deeper connection between the effective bound state quark interaction and
the phenomenology related to the QCD analysis.
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