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In this paper, we have introduced two versions of the jerk model. These
versions are commensurate fractional and distributed orders. They ap-
pear in several applications of physics and engineering, e.g., laser physics,
damped harmonic oscillators, and secure communications. The sufficient
condition for the existence and uniqueness of the solution of commensu-
rate fractional-order (CFO) jerk model is studied. We state and prove a
theorem to test the dependence of the solutions of the CFO jerk model on
initial conditions. The dynamics of the three versions of the jerk model are
investigated. Using the largest Lyapunov exponent (LLE), we determine
the values of the parameters at which these proposed versions have chaotic
solutions. The linear feedback control is used to stabilize the chaotic solu-
tions of these versions. Numerical simulations are used to show the chaotic
solutions after control.
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1. Introduction

In the last few decades, fractional calculus has been used in many ap-
plications such as chaotic models [1], biological population models [2], fluid
mechanics [3], neural networks [4], and signal processing [5]. Compared to
integer-order derivatives, fractional-order (FO) ones offer a great tool for
describing memory and the inherited characteristics of distinct materials
and processes [6]. Therefore, using FO derivatives instead of integer-order
ones may yield more accurate results. The FO hyperchaotic complex systems
have been studied [7, 8]. On the other hand, Caputo put forward the concept
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behind the distributed-order (DO) calculus [9]. The DO dynamical models
have numerous uses in physics and engineering [10, 11]. Mahmoud et al.
[10] introduced the DO hyperchaotic forced and unforced complex van der
Pol models. The hyperchaotic masking for a text is investigated using these
models. The DO neural networks which are the generalization of integer and
FOs neural networks were investigated [11]. Many FO and DO hyperchaotic
models were presented [12].

Gottlieb jerk models [13] can be given by d3x
dt3

= J(x, dxdt ,
d2x
dt2

), where
the jerk function is the time derivative of the acceleration [14]. The jerk
model can be used to practically represent real-world phenomena such as a
special case of the Nosé–Hoover thermostated dynamic model [15]. There
exist many forms of jerk models in terms of type of its nonlinearity. A
jerk circuit using a sine function is introduced [16]. Louodop et al. [17]
investigated a jerk model with the cubic function. The authors of Ref. [18]
proposed a jerk model with an exponential function. Quadratic jerk models
and their complex behaviour analysis are given by Innocenti et al. [19].
Ramadoss et al. [20] used a six-order Tchebytchev polynomial to propose a
novel chaotic jerk model as follows:

u̇1 = u2 ,

u̇2 = au3 ,

u̇3 = −cu2 − du3 − 1
2η(u1) ,

η(u1) = 32u61 − 48u41 + 18u21 − 1 + b , (1)

where a, b, c, d are real constant parameters and u1, u2, u3 ∈ R. Model (1)
can be written in a simple form as

u̇ = 𭟋(u) , (2)

where u = (u1, u2, u3)
T and 𭟋(u) = (𭟋1,𭟋2,𭟋3)

T = (u2, au3,−cu2 − du3 −
1
2(32u

6
1 − 48u41 + 18u21 − 1 + b))T .

In this work, we propose two versions of model (2):

1. The chaotic commensurate fractional-order (CFO) version:

CDαu = 𭟋(u) , (3)

where CDα is the Caputo FO derivative of the order of 0 < α ≤ 1 [9].

2. The chaotic distributed-order (CDO) version:

Dw(α)u = 𭟋(u) , (4)

where Dw(α) is the DO derivative [21].
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We study the CFO version (3) of the jerk model (1). The other version (4)
of this model is also investigated. The existence and uniqueness of the
solutions of the CFO jerk model (3) are studied. To verify whether the
CFO jerk model solution (3) is dependent on initial conditions, we establish
and prove a theorem. The dynamics of these versions such as symmetry,
dissipative, fixed points, and stability are studied. We also determine the
intervals of parameters at which these versions have chaotic solutions and
solutions that go to fixed points. The new versions of jerk model (3) can
be used in many applications such as mechanical oscillators, laser physics,
and electrical circuits. The linear feedback control is applied to show that
the solutions of our versions approach to fixed points. The solutions of the
CDO version of jerk model (3) after control take less time to converge to fixed
points than the fractional version. We used the Predictor–Corrector method
[22] in numerical treatments for fractional version (3) and spectral numerical
method [23] for the solution of CDO one (4). Numerical calculations are
presented to verify the analytical results of these theorems.

The rest of this paper is organized as follows. In Section 2, we present
and prove two theorems for the existence and uniqueness of the CFO jerk
model solution (3) and the dependence of its solution on initial conditions.
The dynamics of our equations (3) and (4) are investigated. The values
of the parameters of these equations at which the proposed versions have
chaotic solutions are calculated based on the sign of their largest Lyapunov
exponent (LLE) via the modified technique of the Wolf algorithm [24]. The
control of the chaotic versions (3) and (4) is illustrated in Section 3. Finally,
Section 4 concludes our investigations.

2. Dynamics of chaotic versions (3) and (4) of jerk models

In this section, we study the dynamics of our new versions (3) and (4)
of the jerk model (1). The dynamics of these equations contain symmetry,
dissipation, fixed points, stability, and chaotic solutions.

2.1. The existence and uniqueness of CFO jerk version (3)

We study the existence and uniqueness of the solution in the Λ × [0, T ]
region, where Λ = {(u1, u2, u3) : max(|u1|, |u2|, |u3|) ≤ ζ}.

For the class of continuous functions C[0, T ], the supremum norm used
in the analysis that follows is defined as ∥ψ∥ = sup

t∈(0,T ]
|ψ(t)|, ψ(t) ∈ C[0, T ].

Then the norm of the matrix M = [mij [t]] is ∥M∥ =
∑
i,j

sup
t∈(0,T ]

|mij [t]|.
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Theorem 1. In the Λ × [0, T ] region with initial conditions U(0) = U0

and t ∈ [0, T ], a sufficient condition for the existence and uniqueness of the
solution of FO jerk version (3) is

B =
Tα

Γ (α+ 1)
max{a+ b, 1 + c, A} < 1 . (5)

Proof. The FO jerk version (3) can be written as

DαU(t) = φ(U(t)) , t ∈ (0, T ] , U(0) = U0 , (6)

where

U =

 u1
u2
u3

 , U0 =

 u10
u20
u30

 ,

φ(U) =

 u2
au3

−cu2 − du3 − 16u61 + 24u41 − 9u21 +
1
2 − 1

2b

 . (7)

Thus, the solution of CFO jerk version (3) is obtained as

U = U0 +
1

Γ (α)

t∫
0

(t− θ)α−1φ(U(θ)) dθ = H(U) , (8)

so

H(U1)−H(U2) =
1

Γ (α)

t∫
0

(t− θ)α−1(φ(U1(θ))− φ(U2(θ))) dθ . (9)

As a result, we get

|H(U1)−H(U2)| ≤
t∫

0

∣∣∣∣(t− θ)α−1

Γ (α)
(φ(U1(θ))− φ(U2(θ)))

∣∣∣∣dθ , (10)

which is condensed to

∥H(U1)−H(U2)∥ ≤ Tα

Γ (α+ 1)
max{a+b, 1+c, A}∥U1−U2∥ ≤ B∥U1−U2∥ ,

where

A = 96ζ5 + 96ζ3 + 36ζ , B =
Tα

Γ (α+ 1)
max{a+ b, 1 + c, A} .

Then the mapping U = H(U) is a contraction mapping, therefore the proof
of this theorem is completed.
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2.2. Continuous dependence on initial conditions

The consistent reliance on starting conditions is a characteristic of system
solutions that contradicts the sensitive reliance on initial conditions, which
is a defining feature of chaotic behaviour. The aim of this subsection is to
investigate the period of time and parameter range in which the solution
of the system exhibits a consistent reliance on initial conditions. Therefore,
being aware of this parameter range allows researchers to identify the time
period T and parameter range where the system does not display chaotic
dynamics.

Theorem 2. Suppose that the FO jerk version (3) is satisfying the condition
of Theorem 1 where B is given by (5). Then,∀ ϵ > 0 ∃ δ(ϵ) = (1− B)ϵ > 0
such that ∥U01 − U02∥ ≤ δ implies that ∥U1 − U2∥ ≤ ϵ, i.e. the solution
exhibits continuous dependence on initial conditions.

Proof. Assume that there are two sets of initial conditions to system (6),
U01 and U02 , which satisfy

∥U01 − U02∥ ≤ δ .

Firstly, we suppose that the condition of the last theorem holds. Thus,

U1(t) = U01 +

t∫
0

φ(U1(θ)) dθ ,

U2(t) = U02 +

t∫
0

φ(U2(θ)) dθ ,

and also we obtain

∥U1 − U2∥ ≤ ∥U01 − U02∥+B ∥U1 − U2∥ ,

hence
(1−B)∥U1 − U2∥ ≤ ∥U01 − U02∥ ,

where 0 < B < 1 is defined by (5). Finally, we get ∥U1 − U2∥ ≤ ϵ, where
ϵ = δ

1−B .

Remark 1. The existence and uniqueness of the solutions and their depen-
dence on the initial conditions for model (4) can be similarly studied.



11-A1.6 T.M. Abed-Elhameed, G.M. Mahmoud, A.M. AboElkher

2.3. The FO jerk version (3)

Model (3) is not symmetric. The divergence of (3) is

∇ · F =

3∑
i,j=1

∂u̇ij
∂uij

= −d .

Therefore model (3) is dissipative for d > 0. Model (3) has six fixed points
(FPs): Ē = (ū1, 0, 0), where ū1 is the solution of the equation 32u61−48u41+
18u21 − 1 + b = 0. If b = 0.45, the values of the six FPs are: E1,2 =
(±0.183, 0, 0)T , E3,4 = (±0.78, 0, 0)T , and E5,6 = (±0.943, 0, 0)T .

To study the stability of our FPs, we calculate the Jacobian matrix for
the FP Ē = (ū1, 0, 0) as

JĒ =

 0 1 0
0 0 a

η′(ū1) −c −d

 , (11)

where η′(ū1) = 96ū51 − 96ū31 + 18ū1. The corresponding characteristic equa-
tion of our model at the FP Ē is

µ3 + dµ2 + acµ− 96aū51 + 96aū31 − 18aū1 = 0 . (12)

If ∥ arg(µi(JĒ))∥ > απ
2 , i = 1, 2, 3, then the FP Ē is stable, where µi(JĒ),

i = 1, 2, 3 are the solutions of Eq. (12).

2.3.1. The behaviour of solutions of the CFO jerk model (3)

We study the solution behaviours of the CFO jerk model (3) numerically
and evaluate the largest Lyapunov exponent (LLE) by a modified technique
of the Wolf algorithm [24]. We calculate the LLE for the initial values
(u1, u2, u3)

T (0) = (0.1, 0.2, 0.14)T for different values for the parameters as:
Fix α = 0.99, a = 27.5, b = 0.45, d = 1.9 and vary c.
The LLE of model (3) is calculated for the values of c ∈ [0.65, 10] as shown in
figure 1. It has chaotic solutions for c ∈ [0.65, 0.84), [1.02, 1.06), [1.09, 1.13),
and [1.16, 1.18). For the values of c ∈ [0.84, 1.02), [1.06, 1.09), [1.13, 1.16),
and [1.18, 10], the solutions of model (3) approach FPs. For the choice of
α = 0.99, a = 27.5, b = 0.45, d = 1.9, and c = 0.65, we calculated the LLE
which is λL = 0.3354. This means that model (3) has a chaotic solution as
shown in figure 2.
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Fig. 1. The LLE for model (3) versus c ∈ [0.65, 10].

Fig. 2. A chaotic attractor for model (3) for α = 0.99, a = 27.5, b = 0.45, d = 1.9,
and c = 0.65 and the initial conditions u0 = (0.1, 0.2, 0.14)T .

2.4. The DO jerk model (4)

Model (4) has the same dynamics as model (3) but the study of stability
is different. Firstly, the first condition of Theorem 3.1 [25] is tested as

lim
∥u(t)∥→0

∥f(u(t))∥
∥u(t)∥

= lim
∥u(t)∥→0

|32u61 − 48u41 + 18u21|
∥u(t)∥

= lim
∥u(t)∥→0

u21|32u41 − 48u21 + 18|
∥u(t)∥

≤ lim
∥u(t)∥→0

∥u∥2(32∥u∥4 + 48∥u∥2 + 18)

∥u(t)∥
= 0 , (13)

where u = (u1, u2, u3)
T .
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By testing the second condition in Theorem 3.1 [25], we put m = 40,
ω(α) = α2

1000(1−α)2
, i = 1, and ∆τ1 =

1
m ; then

−θ0
θ1

= 7.8× 103

 0 1 0
0 0 a

η′(ū1) −c −d

 , (14)

where θ0 = −A, θ1 = 1
40Iω(

1
80), A is the Jacobian of the linear part of

model (4) and I is the (3× 3) identity matrix.
The characteristic equation of matrix (14) is the same as in model (3).

If the condition | arg(µk(− θ0
θ1
))| > π

80 , (k = 1, 2, 3) holds, then the FP Ē is
stable. The previous condition is verified for the other values of i as∣∣∣∣arg(µk (−θi−1

θi

))∣∣∣∣ = π >
µiπ

2
=

π

40
, i = 2, 3, ...,m ; k = 1, 2, 3 .

(15)

2.4.1. The solution behaviours of model (4)

For the choice of a = 27.5, b = 0.45, c = 0.65, d = 2, ω(α) = α2

1000(1−α)2
,

and the initial conditions u0 = (0.1, 0.2, 0.14)T , the LLE has the value
λL = 0.0073. This means that model (4) has a chaotic solution as shown in
figure 3.
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Fig. 3. A chaotic attractor for model (4), for a = 27.5, b = 0.45, c = 0.65, d = 2,
ω(α) = α2

1000(1−α)2 , and u0 = (0.1, 0.2, 0.14)T .
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Remark 2. The DO jerk model (4) has chaotic behaviour and solutions
that reach FPs by varying parameter a, while model (3) has only chaotic
behaviour.

3. Control of chaotic new versions (3) and (4)

In this section, we use the linear feedback method to stabilize the solu-
tions of the chaotic FO jerk model (3) and the chaotic DO jerk model (4).
We discussed the difference between these results. Equations (3) and (4)
can be stabilized after adding the control function V to the right-hand side
of their second equations, where V = −ku2 is the linear control function.

For the same choice of parameters as in figures 2 and 3, the solutions
of models (3) and (4) after adding the linear control approach to the fixed
point E1 as shown in figures 4 and 5. The solutions of these models take
different times to converge to E1, which are, t = 26.8 and t = 5, respectively.
This means that the DO version of jerk model (4) takes less time to reach
to fixed point than the fractional version (3).

0 10 20 30 40 50

t

-0.5

0

0.5
u

1
u

2
u

3

t: 26.8

u_1: 0.183

Fig. 4. The chaotic attractor of Fig. 2 after adding control for k = 2 and approaches
to the E1 = (0.183, 0, 0)T .

Remark 3. According to figures 4 and 5, it is noticed that the solutions
of the DO version of the jerk model (4) reach FP faster than the fractional
version (3) by using control.
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Fig. 5. The chaotic attractor of Fig. 3 after adding control for k = 2 and approaches
to the E1 = (0.183, 0, 0)T .

4. Conclusion

In this work, we introduced the chaotic FO (3) and DO (4) versions of
jerk model (1). We also stated and proved Theorems 1 and 2 for the exis-
tence and uniqueness of the FO jerk model solutions (3) and the dependence
of their solutions on initial conditions. The dynamics of these models such
as symmetry, dissipative, fixed points, and stability are investigated. The
intervals of the parameters at which these models have chaotic solutions and
solutions that go to FPs are calculated in Section 2. There are many differ-
ences between the two versions and they are mentioned in Remark 2. We
controlled these models using the linear feedback control as shown in fig-
ures 4 and 5. These figures show the chaotic solutions after adding control
and approach to fixed points. It can be noticed that the solutions of the DO
version of jerk model (4) approach to fixed point faster than the fractional
version by using control. Numerical simulations are used in these investiga-
tions as depicted in figures 1–5. Jerk models appeared in many applications
in physics, biology, and engineering, e.g. laser physics and jerk circuit.
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