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We analyze the evolution of the mass density contrast in spherical
perturbations of flat Friedman–Lemaître–Robertson–Walker cosmologies.
Both dark matter and dark energy are included. In the absence of dark en-
ergy, the evolution equation coincides with that obtained by Bonnor within
the “Newtonian cosmology”.
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1. Introduction

We shall analyze the evolution of perturbations of flat FLRW spacetimes
using the 1 + 3 splitting of the spacetime. The original aim of this paper
was just to find the general relativistic version of the well-known result
of Bonnor [1] assuming isothermal perturbations and using the comoving
coordinates. The main conclusion concerning the temporal behaviour of the
mass density contrast — in the absence of dark energy — coincides with that
of Bonnor and also with a later analysis of [2] for perturbations comoving
with the background matter. The case of the nonzero cosmological constant
was not investigated by Bonnor. In such a case, the evolution equation for
the mass density contrast differs from that found earlier by Martel [2].

2. Selfgravitating fluids within spherically symmetric spacetimes

We shall assume only spherical symmetry, without spatial homogeneity.
Some of the resulting Einstein equations were found by Lemaître in the
1930s [3, 4], who studied stability of Einstein’s static universes. Tolman and
Bondi extended results of Lemaître for a selfgravitating dust [5, 6]. The
resulting class of metrics is often referred to as the Lemaître–Tolman–Bondi
spacetimes. In the 1960s, Misner and Sharp [8], and Podurets [9] again
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analyzed these equations, but in the case of perfect gas; they, in particular,
extended the Lemaître–Tolman–Bondi concept of the quasilocal material
mass. Its expression will be given below.

We assume the Einstein equations Rµν − gµν
R
2 = 8πTµν − Λgµν , where

the stress-energy tensor is defined as Tµν = (ϱ+ p)UµUν+pgµν and Λ is the
cosmological constant. The coordinate 4-velocity is normalized, UµU

µ = −1.
Here, ϱ and p denote the mass density and pressure, respectively.

We shall assume that we are given a 1+ 3 foliation, with foliation leaves
characterized by constant time, t = const. The line element is taken in the
form

ds2 = −N2dt2 + âdr2 +R2
(
dθ2 + sin2 θdϕ2

)
, (1)

where the radius 0 ≤ r < ∞ and the angular variables satisfy 0 ≤ ϕ < 2π,
−π/2 ≤ θ ≤ π/2. The lapse N and the areal radius R depend on time t and
the coordinate radius r. We adopt the standard condition that the speed of
light c and the gravitational constant G are equal to unity.

This metric is diagonal, so we shall calculate extrinsic curvatures from
the formula Kij = 1

2N ∂tgij [7]. The condition of isotropy implies that two
of them are equal, Kϕ

ϕ = Kθ
θ . The nonzero components of Kij read

trK =
∂t

(√
âR2

)
N
√
âR2

, Kr
r =

1

2Nâ
∂tâ ,

Kϕ
ϕ = Kθ

θ =
∂tR

NR
=

1

2
(trK −Kr

r ) . (2)

Usually, one assumes that coordinates are comoving. We shall impose a
foliation condition as in the standard 1 + 3 formulations of the Einstein
equations, by putting a condition onto extrinsic curvatures of leaves of a
foliation. We shall assume the following:

∆(R(r, t), t) =

(
R (trK −Kr

r )

2

)2

, (3)

where ∆ is defined as [10]

∆(R(r, t), t) =
−3

4R

R∫
0

R̃2(Kr
r )

2dR̃+
1

4R

R∫
0

R̃2(trK)2dR̃

+
1

2R

R∫
0

trKKr
r R̃

2dR̃ . (4)
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Differentiation of both sides of Eq. (4) with respect to the coordinate radius r
yields, using the momentum constraint of the Einstein equations [7] and the
definition of the mean curvature p̂ = 2∂r lnR/

√
â [10],

R (trK −Kr
r )

16πjrR

p̂
= 0 . (5)

Herein, we define jr = NT 0r/
√
â.

This implies that fluids are comoving in chosen coordinates,

jr = 0 , (6)

provided that there are no minimal surfaces, p̂ ̸= 0 and trK ̸= Kr
r . On the

other hand, it appears that in comoving coordinates trK = ∂R(R
3(trK−

Kr
r ))/(2R

2) (see Section 4.1). The areal velocity R(trK − Kr
r )/2 consti-

tutes a part of the initial data of the Einstein equations — see forthcoming
equation (15). Thus, under the conditions of p̂ ̸= 0 and trK ̸= Kr

r , our
foliation equation (3) is equivalent to the standard assumption of comoving
coordinates.

Notice that now the material energy-momentum tensor reads T 0
0 = −ϱ,

jr = 0 and T r
r = p = T θ

θ ; we deal with perfect fluids. The cosmological
constant is responsible for the dark energy ϱΛ and pressure pΛ contributions

ϱΛ =
Λ

8π
, pΛ = − Λ

8π
. (7)

In such a case, the quasilocal mass of Misner and Sharp [8], and Podurets [9],
contained in a coordinate sphere of a radius r, is given by the formula

m(R(r)) = 2π

r∫
0

R̃3p̂
√
a (ρ+ ϱΛ) dr . (8)

For the sake of concise notation, we shall define

U(r) =
R(r)

2
(trK(r)−K(r)rr) ; (9)

this quantity represents the areal velocity of a comoving particle of gas,
U = ∂0R/N . The mean curvature p̂ of centered spheres can be calculated
to be [10]

p̂ =
2

R(r)

√
1− 2m(R(r))

R(r)
+ U2(r) . (10)
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One can show that the mass defined in (8) changes as follows [8]:

∂tm(R(r)) = −4π
[
NR2U (p+ pΛ)

]
(r) . (11)

Moreover, by direct calculation, one gets from (8)

∂rm(R)√
â

= 2πR3p̂ϱ . (12)

These equations should be supplemented by two conservation equations

N∂rp+ ∂rN(p+ ϱ) = 0 (13)

and
∂tϱ = −NtrK(p+ ρ) . (14)

The Einstein evolution equations reduce to the single equation

∂tU = −m(r)

R2
− 4π (p+ pΛ)RN +

p̂R

2
√
â
∂rN . (15)

3. The Friedman-type solution

Assuming that matter consists of dust and imposing in addition homo-
geneity on slices of constant time t, one gets from equations (8)–(15) the
Friedman metric ds2 = −dt2 + a2

(
dr2 + r2dΩ2

)
. Thus, the lapse N = 1.

The conformal factor a(t) satisfies Friedman equations

ϱ0 + ϱΛ =
3

8π
H2 ,

−dH

dt
= 4πϱ0 ,

dϱ0
dt

= −3Hϱ0 . (16)

(Only two of the three equations are independent.)
The extrinsic curvatures of this solution are equal to the Hubble param-

eter H ≡ da
adt ,

Kr
r = Kθ

θ = Kϕ
ϕ = H , (17)

while its trace is trK = 3H. The velocity U reads now U = HR. The mean
curvature of centered 2-spheres within the t = const slice is now the same
as in the flat space: p̂ = 2/R.

This solution describes a flat, homogeneous, and isotropic universe filled
with comoving dust of the density ϱ0 that is expanding with the Hubble
recession velocity H = ȧ/a. The product ϱ0a

3 is constant in time.



The Mass Density Contrast in Perturbed FLRW Cosmologies 11-A2.5

4. Evolution of small spherical inhomogeneities
in a FLRW universe

We assume that the background (Friedman-type) universe is dotted
by isolated, locally isotropic mass density perturbations δϱ, so that the
mass density is split into the background part ϱ0 and the perturbation
δϱ: ϱ = ϱ0 + δϱ. The mass perturbations are isothermal — they exert pres-
sure p = c2sδϱ. The metric of the perturbed spacetime reads ds2 = −N2dt2+
âdr2 +R2dΩ2; we use comoving coordinates. Far from these perturbations
the lapse N tends to 1 and the spatial part of the metric is approaching the
background metric a2

(
dr2 + r2dΩ2

)
. We assume — similarly as Bonnor in

his analysis of [1] — that this perturbing isothermal gas is comoving with
the background dust. (Let us remark that perturbations do not have to co-
move with the background dust — see a different scenario discussed in [11].)
For the matter of convenience, we shall locate our coordinate system in the
symmetry center of a perturbation.

The areal velocity U = ∂0R/N = R(trK −Kr
r )/2 is split into the back-

ground and perturbed parts as follows:

U = H(t)R+ δU , (18)

where H(t) is the Hubble constant at the time t.
We need initial data — for the areal velocity U = ∂0R/N and the mass

density ϱ — for the two evolution equations (14) and (15). They are defined
as follows at an initial hypersurface labelled by the world time t0. The
initial value of the perturbing component δU is small but otherwise, it is a
free datum. The initial mass density ϱ is given as the sum of the background
mass density ϱ0 at the time t0 and the small initial perturbation δϱ, with
the condition that far from the center ϱ approaches ϱ0(t0).

The main aim of the forthcoming calculation is the derivation of the
wave equation that rules the evolution of the mass density contrast δϱ/ϱ0.
We shall get also an evolution equations for the velocity perturbation δU .

4.1. The extrinsic curvature

The first part of the calculation is actually exact — we do not need the
assumption of small perturbations in order to get the trace of the extrinsic
curvature

trK =
∂R

(
R2U

)
R2

(19)

of hypersurfaces of constant world time t.
Formula (19) is valid in all slicings of spherically symmetric spacetimes

cosmological models that asymptotically coincide with flat slicings of cosmo-
logical flat FLRW models. We allow for dark energy (cosmological constant)
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and various forms of comoving matter — dust and fluids. This formula is
known (see, for instance, [10, 12]), but we derive it here for the sake of
completeness.

We have from the definition of extrinsic curvatures

trK =
∂0

(
R2

√
â
)

NR2
√
â

. (20)

The quantity
√
â in the nominator of (20) can be replaced by

√
â =

2∂rR

p̂R
; (21)

here, p̂ is the mean curvature of the coordinate sphere r = const. Thus, (20)
yields

trK = 2
∂0R

NR
+

2∂0∂rR

Np̂R
√
â
+

p̂R

N
√
â
∂0

1

p̂R
. (22)

The first term is just 2U/R. Changing the order of differentiation, we can
write the second term as

2∂r

(
∂0R
N N

)
Np̂R

√
â

= 2
∂rU

p̂R
√
â
+ 2U

∂rN

Np̂R
√
â
.

Replace now the coordinate radius r with the areal radius R and notice that
2∂r
p̂R = ∂R. We obtain the following form of the second term of (22):

2∂0∂rR

Np̂R
= ∂RU + U

∂RN

N
.

The calculation of the third term in (22) is a little bit longer. Recall (see
formula (10)) that the mean curvature p̂R = 2

√
1− 2m(R(r,t),t)

R(r,t) + U2(r, t).
Its differentiation with respect to time yields, after using the mass conser-
vation equation (11) and the Einstein equation describing the evolution of
U = R(tr−Kr

r )/2 (see equation (15)),

∂t
2

p̂R
= −2U

p̂R
∂RN . (23)

Combining the three terms of (22), we arrive at formula (19).
In the case of small spherically symmetric perturbations, we can use the

splitting (18) of the radial velocity. We immediately arrive at the following
corollary.
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Conclusion. Assume a perturbed FLRW flat universe. The trace of the
extrinsic curvature of constant time hypersurfaces, in the foliation defined
by the assumption of comoving particles, is given by

trK = 3H +
∂R

(
R2δU

)
R2

. (24)

Remark. The alternative way to derive formula (19) is to write down the
momentum constraint (i.e., the Einstein equation R0i− R

2 g0i = 8πT0i), using
metric (1). The r-component of the constraint can be expressed as (19) in
comoving coordinates.

4.2. The lapse

In what follows, we need the lapse function N ; it can be obtained
from (13). We assumed that the pressure is isothermal in perturbed FLRW
universes, p = c2sδϱ = c2sϱ0δ, where we introduced the mass density contrast

δ ≡ δϱ

ϱ0
. (25)

If the mass density contrast is small, δ ≪ 1, then (13) yields ∂rN ≈ −c2s∂rδ.
Far from the center, N → 1; thus

N ≈ 1− c2sδ . (26)

This implies that the time derivative of the areal radius evolves as

∂0R = UN ≈ (HR+ δU )
(
1− c2sδ

)
≈ HR+ δU − c2sδHR . (27)

4.3. Evolution of the mass density contrast

We investigate perturbations of (flat) FLRW universes with dust (includ-
ing dark matter) and dark energy. Let us summarise the relevant informa-
tion. The material pressure p0 = 0 and the sum of the background energy
density satisfies ϱ0 + ϱΛ = 3H2

8π . The metric scale factor a(t) of the back-
ground metric can be obtained from equations (16). The lapse up to the first
perturbation is given by (26) and Eq. (27) reads now ∂0R ≈ HR+δU−c2sHR.

Equation (15) can be written as

∂0U = −m(R)

R2
N − 4π

(
c2sRϱ0δ + pΛ

)
RN +

p̂2R2

4
∂RN . (28)

Zeroth order terms (see Section 3) drop out. Thus the linear perturbations
satisfy the equation

1

a
∂0 (aδU ) = −δm(R)

R2
− c2s∂Rδ . (29)

We employed (18) and (26)–(28) in the process of deriving (29).
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One can show that in the leading order of O(δ) the following rule holds:

∂0∂R
(
R2δU

)
= ∂R

(
R2

a
∂0 (aδU )

)
. (30)

The mass density conservation equation is given by (14). Using the derived
earlier expressions for the lapse N and the trace of the extrinsic curvature
trK, we get

∂0δϱ+ 3Hδϱ+
ϱ0
R2

∂R
(
R2δU

)
= 0 . (31)

Dividing both sides by ϱ0, we obtain

∂0δ +
1

R2
∂R

(
R2δU

)
= 0 . (32)

Differentiate now both sides of (32) with respect to time, using formula (30)
and equation (29). After straightforward calculation, we arrive at

∂2
0δ −

c2s
R2

∂R
(
R2∂Rδ

)
− 3

2
H2δ + 2H∂0δ = 0 . (33)

Notice also that Eq. (33) is a wave equation — thus, it possesses a kind of
travelling wave pulses that move within the coordinate sphere that encloses
the perturbed initial data.

Equation (33) is equivalent to the corresponding Bonnor equation de-
scribing the evolution of the mass density contrast [1, 2] when the cosmo-
logical constant is absent. In order to see this, perform the Fourier trans-
formation of (33) and insert H2 = 8πϱ0/3. Then one arrives exactly at the
result of Bonnor.

Our equation (33) differs from the corresponding equation of Martel (see
Eq. (8) in [2]) in the case of the nonzero cosmological constant.

The two descriptions differ in the part concerning the evolution of ve-
locity perturbations. In the model of Bonnor, the perpendicular velocity
components behave like V⃗T ∝ 1/a(t) [1]; thus their length has to decrease.
In the general relativistic analysis, we have only a partly coincident be-
haviour of velocity perturbations — ∂0(aδU ) ≤ 0, assuming that ∂Rδ ≥ 0.
In the case of dust-like perturbations — with the vanishing speed of sound,
c2s = 0 — the velocity perturbation δU is strictly decreasing. Positive veloc-
ity perturbations might decrease at least like the inverse of the scale factor,
1/a(t), but there is no a bound onto the absolute value of negative velocity
disturbances δU .
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5. The influence of dark energy

We shall investigate how dark energy would influence the evolution of
the mass density contrast δ after the end of the recombination epoch, that
is for times t ≥ tre. We neglect — as in the whole paper — the contribution
of the radiation energy. The speed of sound cs is negligible in this period
and the evolution equation becomes

∂2
0δ −

3

2
H2δ + 2H∂0δ = 0 . (34)

5.1. Absence of dark energy

In this case the conformal factor a(t) ∝ t2/3 and H = 2/(3t). The
increasing solution of (34) reads δ(t) ∝ a(t) ∝ t2/3. According to astro-
nomical observations a(t0)/a(tre) ≈ 1100 [13]; here t0 is the present age of
the Universe. Thus, the mass density contrast δ of dust-like perturbations
of dust Friedman universes would increase 1100 times since the end of the
recombination era.

5.2. Including dark energy

In this case, the coefficients H(t) and H2(t) are given as related solutions
of the Friedman equations (see Section 3); the latter can be solved numeri-
cally, assuming dust and the cosmological constant. The evolution equation
reads

∂2
0δ −

3

2
H2δ + 2H∂0δ = 0 . (35)

At the recombination era, the material density ϱ exceeds the dark energy
density ϱΛ by a factor of the order of 108. Thus as initial data, we can
choose

δ(tre) = t2/3re ,
dδ

dt

∣∣∣
tre

=
2

3t
1/3
re

(36)

— these are data dictated by the solution δ(t) ∝ a(t), valid in the case of
no-dark energy.

The solution of Eq. (35) with initial data (36) is very close to δ(t) = t2/3;
the difference becomes clear at relatively late times t ≥ t0/10 [14].

Assuming a flat universe with present data Ω(t0)d= 0.3 and ΩΛ(t0) = 0.7,
one gets δ(t0)/δ(tre) ≈ 975 [14]. The cosmological constant slows the pro-
cess of formation of bound structures; its influence is comparable to that
obtained from the equation of Martel — see [13].
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