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In this article, we present a stationary metric ansatz to describe a ro-
tating traversable wormhole in the presence of the topological defect pro-
duced by a global monopole charge. This particular rotating space-time is
referred to as the topologically charged rotating Schwarzschild–Klinkahmer
wormhole. Our study involves the analysis of geodesic motion for test par-
ticles and photon rays in the context of this topologically charged rotating
traversable wormhole. We aim to analyze the effects of global monopole
charge and other parameters on the outcomes of this investigation. Ad-
ditionally, we explore the matter–energy distribution within this rotating
wormhole, considering it as a non-vacuum solution of Einstein’s field equa-
tion. Notably, we demonstrate that the energy density of the matter content
satisfies the criteria of the weak energy condition.
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1. Introduction

Wormholes, intriguing hypothetical constructs within the fabric of space-
time, possess non-trivial topologies that have the potential to link distant
regions of a single universe or even bridge between separate universes. These
enigmatic passages consist of two distinct entry points known as “mouths”,
connected by a slender corridor referred to as the “throat”. The fundamen-
tal configuration of a wormhole comprises these dual mouths joined by a
narrow throat. It is important to note that wormholes do not emerge as
direct predictions of general relativity or other established theories of grav-
ity. Rather, they manifest as intricate space-time formations that could
potentially emerge within the curvature of space-time. This possibility en-
compasses a broad spectrum of gravitational models. The mechanisms gov-
erning their formation and stability vary depending on the specific theory
of gravity being considered. These mechanisms often pose challenging is-
sues and complexities, thereby complicating the assessment of the existence
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and viability of wormholes in the universe. Despite the hurdles, one cannot
definitively dismiss the prospect of wormholes within our cosmic landscape.
Numerous solutions describing wormhole space-times have been formulated,
encompassing scenarios both with and without a cosmological constant, as
outlined in Ref. [1]. Nevertheless, a significant apprehension accompany-
ing these space-time constructs is their status as exact solutions to field
equations, frequently entailing breaches of one or more energy conditions.
The violation of foundational principles such as the weak energy condition
(WEC) and the null energy condition (NEC) represents a central concern
within the realm of wormhole space-times.

Despite the challenges posed by these energy condition violations, the
exploration of wormholes has ignited substantial scientific interest, catalyz-
ing ongoing research across diverse interconnected fields. The theoretical
pursuit of understanding these extraordinary space-time geometries contin-
ues to broaden our comprehension of not only general relativity but also
other fundamental facets of physics. Through these investigations, our in-
sights into the intricate nature of space-time itself, as well as the boundaries
and possibilities of theoretical physics, are continually enriched. The field of
non-vacuum wormhole space-times has made remarkable strides, surmount-
ing the longstanding hurdle of exotic matter. Notably, the acknowledgement
that vacuum solutions of the field equations inherently align with energy con-
ditions has been instrumental. Building upon these foundational insights,
a pivotal contribution was made in Ref. [2], where a traversable wormhole
space-time, either non-vacuum or vacuum, was introduced. Importantly,
this innovative construction demonstrated adherence to both the weak and
null energy conditions, marking a significant advancement. In Ref. [3], a
multiple vacuum wormhole solution was proposed by Klinkhamer.

The non-vacuum space-time describing the Klinkhamer wormhole is de-
scribed by the following line-element [2]:

ds2 = −dt2 +

(

1 +
b2

ξ2

)−1

dξ2 +
(

ξ2 + λ2
) (

dθ2 + sin2 θ dφ2
)

, (1)

where −∞ < (t, ξ) < +∞ and other coordinates are in the usual ranges,
and λ, b are arbitrary constants. For λ2 = b2, metric (1) becomes a vac-
uum defect wormhole space-time [3]. However, in Ref. [4], we presented
non-rotating topologically charged wormholes metric (such as Klinkhamer,
Schwarzschild–Klinkhamer and it’s generalization), which are non-vacuum
solutions of Einstein’s field equations obeying the weak and null energy con-
ditions. In Ref. [5], we presented a topologically charged four-dimensional
wormhole called the topologically charged Schwarzschild–Simpson–Visser
wormhole satisfying the energy condition. The topologically charged
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Schwarzschild–Klinkhamer wormhole metric is described by the following
line-element [4]:

ds2 = −
(

1− 2M
√

ξ2 + b2

)

dt2 +

(

1 +
b2

ξ2

)−1
(

1− 2M
√

ξ2 + b2

)−1
dξ2

α2

+
(

ξ2 + b2
) (

dθ2 + sin2 θ dφ2
)

, (2)

where b > 2M is arbitrary constant.
Using the above space-time, we discussed geodesics motions of the test

particles and the bending of photon rays in detail. One can see that in the
limit of M → 0, metric (2) reduces to a topologically charged non-vacuum
wormhole space-time [4]. In the particular case of b → 0 and α → 1, it
recovers the Schwarzschild black hole solution. Notably, it is important to
highlight that in a separate study in [6], an analysis is presented indicating
that smooth metrics can effectively conceal the presence of thin shells. Fur-
thermore, an additional commentary on defect wormholes is provided in [7].
The defect wormhole solution remains a pertinent topic within the realm
of non-standard general relativity. In this context, the presence of a defect
at the point x = 0 signifies an inherent imperfection within the fabric of
space-time. It is at this juncture that the conventional elementary-flatness
condition, which characterizes smooth and unblemished space-time, fails to
hold true. Regrettably, it seems that this crucial aspect has been inadver-
tently overlooked in the more recent papers, namely, the works of [6] and [7].

Rotating wormholes of stationary and axially symmetric model has been
investigated only in a few works. The first such investigation was done by
Teo [8], an extension of Morris–Thorne traversable wormhole. The canon-
ical metric form of the Teo wormhole is described by the following line-
element [8]:

ds2 = −N2 dt2 +

(

1− b

r

)−1

dr2 + r2K2
[

dθ2 + sin2 θ (dϕ− ω dt)2
]

, (3)

where N, b,K, and ω chosen by the author are functions of r and θ rather
than simply parameters such that this metric is regular on the symmetry
axis θ = 0, π.

In Ref. [9], a slowly rotating spherically symmetric wormhole was con-
structed, which is a vacuum solution of the field equations. The space-time
is described by the following line-element:

ds2 = e2Φ(ρ) dt2 − dρ2 − r2
[

dθ2 + sin2 θ
(

dϕ2 + 2h dϕ dt
)]

, (4)

where h = h(ρ, θ) has the sense of angular velocity of the local inertial frame
and r = r(ρ). A few other investigations of rotating wormhole space-times
are presented in Refs. [10–19].



11-A3.4 F. Ahmed

Topological defects are theoretical entities believed to have been formed
during the early stages of the universe’s evolution, as extensively discussed
in the review articles [20–27]. These defects could have emerged during one
of the early phase transitions in particle physics models, such as those as-
sociated with the breaking of grand unification symmetry or spontaneously
broken gauge theories, as proposed in numerous field theory models [28–30].
Among these defects, global monopoles take the form of spherically symmet-
ric objects arising from self-coupling triplet of scalar fields φa. These scalar
fields undergo a spontaneous breaking of the global O(3) gauge symmetry,
resulting in structures akin to cosmic strings with the U(1) symmetry. How-
ever, global monopoles exhibit distinct properties from the cosmic strings.
Notably, studies have demonstrated that these topological defects possess a
negative gravitational potential [31]. The concept of global monopole charge
has also been found relevant in cosmological contexts, as evidenced by the
research in [32–34]. Moreover, recent investigations have explored the exis-
tence of wormholes within the Milky Way galaxy, taking into account the
presence of global monopole charge, as discussed in [35].

In this article, our objective is to introduce a metric ansatz that describes
a topologically charged rotating Schwarzschild–Klinkhamer wormhole space-
time. We will explore the geodesic motions of test particles and photon rays
in various directions around this rotating wormhole and analyze the out-
comes. Furthermore, we discuss various physical quantities associated with
the curvature tensor, such as the Kretschmann scalar, the quadratic Ricci
invariant, and the Ricci scalar. We demonstrate that these quantities are
finite throughout the space-time and are influenced by the global monopole
charge. Finally, we study the matter–energy content of this rotating worm-
hole and show that the energy density satisfies the weak energy condition,
thus indicating an example of a rotating wormhole without the need for
exotic matter.

The paper is structured as follows: In Section 2, we conduct an anal-
ysis of a topologically charged rotating traversable wormhole. Within this
section, we examine the geodesic motions of test particles around this worm-
hole, with a detailed discussion of the outcomes provided in Subsection 2.1.
Additionally, we explore the matter–energy content associated with this ro-
tating wormhole, recognizing it as a non-vacuum solution of Einstein’s field
equations, and present our findings in Subsection 2.2. Moving on to Sec-
tion 3, we present our results and discuss the outcomes and insights derived
from our examination of this rotating wormhole. Throughout the paper, we
choose the systems of units, where c = 1 = 8πG.
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2. Analysis of a topologically charged rotating wormhole

In this section, we consider the following ansatz of a stationary topolog-
ically charged rotating wormhole of metric 2) by the following line-element:

ds2 = −A dt2 +B

(

1 +
b2

ξ2

)

dξ2

α2
+ Λ dθ2 − 2H dt dφ+K dφ2

= −
(

1− 2M
√

ξ2 + b2

ξ2 + b2 + a2 cos2 θ

)

dt2 +

(

ξ2 + b2 + a2 cos2 θ

ξ2 + b2 + a2 − 2M
√

ξ2 + b2

)

×
(

1 +
b2

ξ2

)−1
dξ2

α2
+
(

ξ2 + b2 + a2 cos2 θ
)

dθ2

−
(

4M a
√

ξ2 + b2 sin2 θ

ξ2 + b2 + a2 cos2 θ

)

dt dφ

+

(

ξ2 + b2 + a2 +
2M a2

√

ξ2 + b2 sin2 θ

ξ2 + b2 + a2 cos2 θ

)

sin2 θ dφ2 , (5)

with M ̸= 0 representing mass of the objects, a = J/M representing spin
angular momentum per unit mass, and the parameter b being strictly a non-
zero positive parameter, b > 2M . In the particular case of a = 0, metric (5)
reduces to a topologically charged non-rotating SK-wormhole space-time (2)
which was discussed in detail in Ref. [4]. The coordinates are in the ranges

−∞ < t < +∞ , −∞ < ξ < +∞ , 0 < θ < π , 0 ≤ φ < 2π .
(6)

In the particular case of b = 0 (which is restricted here), metric (5)
reduces to the following form:

ds2 = −
(

1− 2M ξ

ξ2 + a2 cos2 θ

)

dt2 +

(

ξ2 + a2 cos2 θ

ξ2 + a2 − 2M ξ

)

dξ2

α2

+
(

ξ2 + a2 cos2 θ
)

dθ2 −
(

4M aξ sin2 θ

ξ2 + a2 cos2 θ

)

dt dφ

+

(

ξ2 + a2 +
2M a2 ξ sin2 θ

ξ2 + a2 cos2 θ

)

sin2 θ dφ2 (7)

which is a non-vacuum solution of the field and becomes a vacuum one, the
Kerr-like rotating metric [36] in the limit of α → 1. Our aim is to analyze the
above considered topologically charged wormhole under the case of b ̸= 0.
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In the limit of M → 0, metric (5) reduces to the following form:

ds2 = −dt2 +

(

ξ2 + b2 + a2 cos2 θ

ξ2 + b2 + a2

)

×
[

(

1 +
b2

ξ2

)−1
dξ2

α2
+
(

ξ2 + b2 + a2
)

dθ2

]

+
(

ξ2 + b2 + a2
)

sin2 θ dφ2 . (8)

One can see that for zero rotation, a → 0, metric (8) reduces to a topologi-
cally charged Klinkhamer wormhole non-vacuum space-time [4], and subse-
quently, the Klinkhamer vacuum defect wormhole [3] for α → 1.

Now, we recall the metric component gφφ for the space-time of (5) given
by

gφφ =

[

ξ2 + b2 + a2 +
2M a2

√

ξ2 + b2 sin2 θ

ξ2 + b2 + a2 cos2 θ

]

sin2 θ (9)

which is always positive except on the axis θ = 0, π, that is, gφφ > 0 indi-
cating that the space-time of (5) satisfies the causality condition, and thus,
no closed time-like curves will be formed unlike the Kerr metric [36]. Note
that in the Kerr metric, CTCs will disappear in the limit of M → 0.

At ξ = 0 in the equatorial plane θ = π/2, from (9), we obtain

gφφ|ξ=0,θ=π/2 =

(

b2 + a2 +
2M a2

b

)

> 0 (10)

which is positive since b > 0 and thus, no closed time-like curves will appear.
The space-time of (5) can be expressed as

ds2 = −dt2 +

[

ξ2 + b2 + a2 cos2 θ

ξ2 + b2 + a2 − 2M
√

ξ2 + b2

]

×
(

1 +
b2

ξ2

)−1
dξ2

α2
+
(

ξ2 + b2 + a2 cos2 θ
)

dθ2

+
(

ξ2+ b2+ a2
)

sin2 θ dφ2+
2M

√

ξ2 + b2

ξ2 + b2 + a2 cos2 θ

(

dt−a sin2 θ dφ
)2

.

(11)
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On the axis of rotation (θ = 0, θ = π), the line-element of (11) reduces to

ds2 = −



1− 2M
√

ξ2 + b2
(

1 + a2

ξ2+b2

)



 dt2

+



1− 2M
√

ξ2 + b2
(

1 + a2

ξ2+b2

)





−1
(

1 +
b2

ξ2

)−1
dξ2

α2
. (12)

On the equatorial plane (θ = π/2), the line-element of (11) reduces to

ds2 = −dt2 +

(

1 + a2

ξ2+b2
− 2M√

ξ2+b2

)−1

(

1 + b2

ξ2

)

dξ2

α2

+
(

ξ2 + b2 + a2
)

dφ2 +
2M

√

ξ2 + b2
(dt− a dφ)2 . (13)

Transforming to a new coordinate via r =
√

ξ2 + b2 into the space-time
of (11) results in

ds2 = −dt2 +

(

r2 + a2 cos2 θ

r2 + a2 − 2M r

)

dr2

α2
+
(

r2 + a2 cos2 θ
)

dθ2

+
(

r2 + a2
)

sin2 θ dφ2 +
2M r

r2 + a2 cos2 θ

(

dt− a sin2 θ dφ
)2

(14)

which looks for α → 1 though similar to the Kerr-like metric in Boyer and
Lindquist coordinates [36]. However, the coordinate r here is in the range of
r ∈ [b > 2M,∞) unlike the Kerr one. To check it, the metric components
gtt and grr for the space-time in (14) are

gtt|ξ=0,θ=π/2 = −
(

1− 2M

b

)

,

grr|ξ=0,θ=π/2 =
1

α2

b2

b (b− 2M) + a2
. (15)

From the above discussion, we see that the metric component gtt < 0
and grr > 0 provided the parameter b > 2M to prevent the formation
of event horizons so that it represents a wormhole space-time. Noted that
our metric (5) or (14) is a non-vacuum solution of Einstein’s field equations,
Gµν = Tµν which will be discussed here later on.

Below, we investigate the geodesic motions of particles (either time-like
or photon rays) around this topologically charged wormhole in various di-
rection and analyze the effects of global monopole charge (α), wormhole
parameter (b), rotation parameter (a) including mass M of the objects.
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2.1. Motion of photon rays in different directions

In this part, we discuss motions of photon ray in the equatorial plane
θ = π/2 in various directions as well as geodesics of test particles around
this topologically charged rotating SK-wormhole (5).

Case 1: Photon ray moving in the φ-direction:

We consider the motion of photon ray in the φ-direction. In that case
dξ = 0, therefore, for the space-time in (5), we have

−A− 2H
dφ

dt
+K

(

dφ

dt

)2

= 0 (16)

which is a quadratic equation whose solution is given by

(

dφ

dt

)

±

=
H

K
±
√

H2

K2
+

A

K
, (17)

where

H

K
=

2Ma
√

ξ2 + b2
(

ξ2 + b2 + a2 + 2Ma2√
ξ2+b2

) ,

A

K
=

(

1− 2M√
ξ2+b2

)

(

ξ2 + b2 + a2 + 2Ma2√
ξ2+b2

) . (18)

At the wormhole throat ξ = 0, we obtain

dφ

dt

∣

∣

∣

∣

ξ=0,a ̸=0

=

(

b2 + a2 +
2M a2

b

)−1 [
2M a

b
±
√

b2 + a2 − 2M b

]

. (19)

For zero rotation, that is, a = 0, it becomes dφ
dt |ξ=0 = ± 1

b

√

1− 2M
b , where

b > 2M .
In the limit of M → 0 and non-rotating case, we obtain from (17)

dφ

dt

∣

∣

∣

∣

M→0,a ̸=0

= ± 1
√

ξ2 + b2 + a2
. (20)

Thus, we see that when the photon ray propagates along the φ-direction,
the quantity dφ

dt is influenced by the wormhole parameter b, the rotation
parameter a, and the mass M of the objects.
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Case 2: Photon ray moving in the tangential direction:

The physical velocities of light moving in the tangential direction are
defined by

v± =
√

|gφφ|
(

dφ

dt

)

±

=

(

ξ2 + b2 + a2 +
2M a2
√

ξ2 + b2

)1/2
(

dφ

dt

)

±

, (21)

where (dφdt )± is given by equation (17).
At the wormhole throat, ξ = 0, we obtain

v|ξ=0,a ̸=0 =

(

b2 + a2 +
2M a2

b2

)−1/2 [
2M a

b
±
√

b2 + a2 − 2M b

]

. (22)

For zero rotation, a = 0, it becomes v|ξ=0 = ±
√

1− 2M
b , where b > 2M .

Also, in the limit of M → 0, we obtain from (21)

v|M→0,a ̸=0 = ± 1 . (23)

Thus, the velocities of a light ray moving along the tangential direction is
influenced by the rotation parameter a, the wormhole parameter b including
mass M of the objects.

Case 3: Photon ray moving in the radial direction:

For the photon ray moving in the radial direction, dφ = 0. Thus, we
obtain from (5) after transforming r =

√

ξ2 + b2, where r ∈ [b > 0,∞)

B
dr2

α2
= A dt2 ⇒ dr

dt
= ±α

√

(

1− 2M

r

)(

1 +
a2

r2
− 2M

r

)

. (24)

In the limit of M → 0, from (24), we obtain

dr

dt
|M→0,a ̸=0 = ± α

r

√

r2 + a2 . (25)

At the wormhole throat, ξ = 0, from (24) we obtain

dr

dt
|ξ=0,a ̸=0 = ±α

√

(

1− 2M

b

)(

1 +
a2

b2
− 2M

b

)

, (26)

where b > 2M .
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Thus, one can see that when photon rays move along the radial direction,
the quantity dr

dt is influenced by the topological defect of global monopole
charge (α). Furthermore, different parameters (a, b) including mass M of
the objects also have influenced over it.

Lastly, we study the geodesic motions of test particles around this topo-
logically charged rotating wormhole in the equatorial plane defined by θ =
π/2. The Lagrangian of the system in the equatorial plane θ = π

2 for the
space-time of (5) is given by [4]

L =
1

2

[

−A ṫ2 +B

(

1 +
b2

ξ2

)−1
ξ̇2

α2
− 2H ṫ φ̇+K φ̇2

]

. (27)

From above, we have two constant of motions defined by

E = A ṫ+H φ̇ , L = −H ṫ+K φ̇ . (28)

Simplification of the above equation results

φ̇ = E

(

H + β A

H2 +AK

)

, ṫ = E

(

K − β H

H2 +AK

)

, (29)

where β = L/E is the impact parameter.
For geodesic motions (either time-like or null) from Eq. (27) after trans-

forming r =
√

ξ2 + b2, we obtain

ṙ2 =
α2

B

[

ε+
E2

(H2 +AK)2

×
{

A(K−βH)2+2H(H+βA)(K−βH)−K(H+βA)2
}

]

, (30)

where ε = 0 for null geodesics and −1 for time-like geodesics, and r ∈ [b >
2M,∞) with different functions

A =

(

1− 2M

r

)

, B =
r2

r2 + a2 − 2M r
,

H =
2M a

r
, K = r2 + a2 +

2M a2

r
. (31)

We write Eq. (30) as ṙ2 = Veff(r), where we introduce an effective potential
Veff given by

Veff =
α2

B

[

ε+
E2

(H2 +AK)2

×
{

A (K−β H)2+2H(H + β A)(K−β H)−K(H + β A)2
}

]

. (32)
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For zero angular momentum observer (ZAMO), L = 0 leads to the fol-
lowing quantity:

φ̇

ṫ
= ω =

H

K
=

2M a

r3 + a2 r + 2M a2
(33)

called angular velocity (also known as coordinate rate of rotation) of the
inertial frame relative to the reference frame. At ξ = 0, this angular velocity

becomes ω0 =
(

2M a
b3+a2 b+2M a2

)

and vanishes for ξ → ±∞ or r → ∞. Thus,

for ZAMO, the effective potential of the system becomes

Veff =
α2

B

[

ε+
K E2

(H2 +AK)

]

. (34)

From the above analysis, we see that the effective potential of the system
(either time-like or null geodesics) is influenced by the topological defect
produced by a global monopole charge indicated by the parameter α, the
rotating parameter a of the wormhole, and the wormhole parameter b in-
cluding mass M of the objects.

In the below part, we study the matter–energy content associated with
this topologically charged rotating SK-wormhole as the space-time described
by the line-element of (14) is a non-vacuum solution of the field equation.
In fact, we show that the energy density of the matter–energy content sat-
isfies the weak energy condition [37] even at the wormhole throat, ξ = 0.
This ensures that the considered space-time (5) or (14) is an example of a
topologically charged rotating wormhole without exotic matter.

2.2. The matter–energy content and the weak energy condition

In this part, we discuss the matter contents for this rotating wormhole
metric (14) and then the energy conditions. The non-zero components of
the Ricci tensor Rµν for the space-time of (14) are given by

Rtt=
4a2

(

−1+α2
)

Mr
{

9a2
−16Mr+4r2+4

(

2a2+r(−4M+3r)
)

cos 2θ−a2 cos 4θ
}

24 (r2+a2 cos2 θ)4
,

Rrr = −

a2
(

−1+α2
) {

7a2+4r2+4
(

2a2+3r2
)

cos 2θ+a2 cos 4θ
}

23α2 (a2+r(−2M+r)) (r2+a2 cos2 θ)2
,

Rθθ = −

2
(

−1+α2
) {

a4+2r4+a2r(−4M+r)+a2
(

a2+r(−4M+3r)
)

cos 2θ
}

22 (r2+a2 cos2 θ)2
,
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Rtφ = −
16a

(

−1+α2
)

Mr
{

3a4−2r4+a2r(−4M+r)+a2
(

3a2+r(−4M+3r)
)

cos 2θ
}

sin2 θ

24 (r2+a2 cos2 θ)4
,

Rφφ = −

(

−1+α2
)

25 (r2+a2 cos2 θ)4

[{

10a8−68a6Mr+46a6r2+32a4M2r2−88a4Mr3+84a4r4

+80a2r6+32r8+a2
(

15a6−32a2(5M−3r)r3+16r5(−8M+3r)+a4r(−62M+63r)
)

cos 2θ

+2a4
(

3a4+a2r(2M+9r)+2r2(−8M2−2Mr+3r2)
)

cos 4θ+a8 cos 6θ−2a6Mr cos 6θ

+a6r2 cos 6θ
}

sin2 θ
]

, (35)

and the Ricci scalar R = gµν R
µν is given by

R = −
2
(

−1+α2
) {

7a4−8a2Mr+8a2
(

r2+r2
)

+8a2
(

a2+r(−M+2r)
)

cos 2θ+a4 cos 4θ
}

8 (r2+a2 cos2 θ)3
.

(36)

From the above analysis, we see that the non-zero components of the
Ricci tensor Rµν and the Ricci scalar R are all vanish in the limit of α → 1,
otherwise are non-zeros for α ̸= 1. Thus, in the limit of α → 1, this rotat-
ing space-time of (5) or (14) becomes a vacuum solution of Einstein’s field
equations, Rµν = 0. In this work, we are mainly interested in analysing the
effects of the global monopole charge, where α ̸= 1 in this rotating wormhole.
Below, we show that the global monopole charge influences the curvature
properties and hence, changes the physical properties of this rotating worm-
hole space-time.

The quadratic Ricci invariant I = Rµν Rµν is given by

I =

(

−1 + α2
)2

26 (r2 + a2 cos2 θ)6

[

123a8 + 128r8 + 192a2r5(−2M + r)

+8a6r(−50M + 39r) + 384a4r2
(

3M2 − 2Mr + r2
)

+4a2
{

45a6 + 80r5(−2M + r) + a4r(−130M + 123r)

+16a2r2
(

24M2 − 16Mr + 7r2
)

}

cos 2θ

+4a4
{

17a4 + 2a2r(−14M + 25r)

+16r2
(

6M2 − 4Mr + 3r2
)

}

cos 4θ

+4a6
(

3a2 + r(2M + 5r)
)

cos 6θ + a8 cos 8θ
]

. (37)
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The Kretschmann scalar curvature K = Rµνλσ Rµνλσ is given by

K =
1

26 (r2+a2 cos2 θ)6

[

83a8
(

−1+α2
)2

+128r6
{

12b4M2−4b2
(

−1+α2
)

Mr +
(

−1+α2
)2

r2
}

+128a2r4
{

−10α2
(

7+2α2
)

M2−2
(

2−3α2+α4
)

Mr+
(

−1+α2
)2

r2
}

+32a4r2
{

6
(

11+20α2+14α4
)

M2−2
(

13−15α2+2α4
)

Mr+5
(

−1+α2
)2
r2
}

+16a6
{

−30α2M2+2,
(

1+19α2−20α4
)

Mr+9
(

−1+α2
)2

r2
}

+8a2
{

15a6
(

−1+α2
)2
+16r4

(

− 10α2
(

7+2α2
)

M2

+2
(

−4+3α2+α4
)

Mr+
(

−1+α2
)2

r2
)

+16a2r2
(

(

22+40α2+28α4
)

M2−2
(

3−5α2+2α4
)

Mr+
(

−1+α2
)2

r2
)

+a4
(

−90α2M2+2
(

1+49α2−50α4
)

Mr+31
(

−1+α2
)2

r2
)}

cos 2θ

+4a4
{

11a4
(

−1+α2
)2
+8r2

(

(

22+40α2+28α4
)

M2

+2
(

1+5b2−6α4
)

Mr+3
(

−1+α2
)2

r2
)

+4a2
(

−18α2M2−2
(

1−5α2+4α4
)

Mr+7
(

−1+α2
)2

r2
)}

cos 4θ

+8a6
{

a2
(

−1+α2
)2
+r (−2M+r)+α4r(4M+r)

−2α2
(

3M2+Mr+r2
)

}

cos 6θa8
(

−1+α2
)2

cos 8θ
]

. (38)

One can easily verify that these scalar curvatures obtained above become
finite at ξ = 0 and vanish for ξ → ±∞.

Now, we check behaviour of these quantities at the wormhole throat
defined by ξ = 0 in the equatorial plane. At ξ = 0, that is, r = b > 2M
and in the equatorial plane defined by θ = π

2 , the components of the Ricci
tensor (35) become
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Rtt|ξ=0,θ=π/2 = −2M a2
(

−1 + α2
)

b5
,

Rrr|ξ=0,θ=π/2 =
a2
(

−1 + α2
)

α2 b2 (a2 + b (−2M + b))
,

Rθθ|ξ=0,θπ/2 =

(

−1 + α2
) (

a2 − b2
)

b2
,

Rtφ|ξ=0,θ=π/2 =
2 aM

(

−1 + α2
) (

a2 + b2
)

b5
,

Rφφ|ξ=0,θ=π/2 = −
(

−1 + α2
) (

b5 + 2 a4M + a2 b2 (b+ 4M)
)

b5
. (39)

Also the Ricci scalar, the quadratic Ricci invariant, and the Kretschmann
scalar curvature in this case (ξ = 0 or r = b > 2M , θ = π

2 ) become

R|ξ=0,θ=π/2 =
2
(

a2 − b2
) (

−1 + α2
)

b4
,

I|ξ=0,θ=π/2 =
2
(

−1 + α2
)2

b8
[

a4 + b4 − a2 b (b− 2M)
]

,

K|ξ=0,θ=π/2 =
4

b8

[

a4
(

−1 + α2
)2 − 4a2bM

(

−1 + α4
)

+b2
{

12M2α4 − 4bMα2
(

−1 + α2
)

+ b2
(

−1 + α2
)2
}]

. (40)

From the above analysis, we see that none of the physical quantities
associated with the curvature tensor diverge at the wormhole throat ξ = 0
considered in the equatorial plane. One can show that the different curvature
invariants such as the Ricci scalar (R), the quadratic Ricci invariant (I),
and the Kretschamnn scalar (K) all are vanish at ξ → ±∞ or r → ∞ and
remain finite at ξ → 0. This point is also cleared by analysing the quantity

1
(r2+a2 cos2 θ)

that remains finite (non-divergence) even at θ = π/2 for all

values of r since the radial coordinate r lies in the interval of r ∈ [b > 2M,∞)
instead of r ∈ [0,∞). From the field equations Gµ

ν = Rµ
ν − 1

2 δ
µ
ν R = Tµ

ν , we
have the energy density

ρ = −Gt
t = −

(

gttRtt + gtφRφt

)

+
1

2
R . (41)
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Here, Rtt, Rtφ are given in (35) and

gtt = −a4 + 2 r4 + a2 r (2M + 3 r) + a2
(

a2 + r (−2M + r)
)

cos 2θ

2 (r2 + a2 − 2M r) (r2 + a2 cos2 θ)
,

gφt = gtφ = − 2M ar

(r2 + a2 − 2M r) (r2 + a2 cos2 θ)
. (42)

At ξ = 0, that is, r = b in the equatorial plane defined by θ = π
2 , these

metric components become

gtt|ξ=0 = −
(

1 +
a2

b2
− 2M

b

)−1 [

1 +
a2

b2

(

1 +
2M

b

)]

,

gtφ|ξ=0 = −
(

1 +
a2

b2
− 2M

b

)−1(
2M a

b3

)

. (43)

Therefore, the energy density at ξ = 0, that is, r = b in the equatorial plane
θ = π

2 is given by

ρ|ξ=0,θ=π/2 =

(

1− α2

b2

)[

1− a2

b2

(

1− 2M

b

)]

> 0 (44)

which is positive since b > 2M and the global monopole parameter 0<α<1
in the gravitation and cosmology. Thus, the energy-density of the matter
content satisfies the weak energy condition (WEC) provided the condition

a < b/
√

1− 2M
b hold. For non-rotating wormhole case, where the parameter

a = 0, the energy-density becomes ρ|ξ=0,θ=π/2 =
(

1−α2

b2

)

which is similar

to the result obtained in Ref. [4] for a topologically charged non-rotating
Klinkhamer-type wormhole space-time.

We have generated a few plots illustrating the scalar quantities (Figs. 1–3)
tied to the curvature of space-time, along with the energy density (Fig. 4),
for varying values of the topological defect of global monopole parameter
α. In this analysis, we have set the rotation parameter a = 1/2 and the
mass parameter M = 1 in a system of units, focusing on the equatorial
plane defined at θ = π/2. It is evident that these scalar quantities exhibit a
progressive decline as the radial distance r increases, given a specific α value.
As we increase the parameter α, we observe a downward shift in the levels
of the Ricci scalar, the quadratic Ricci invariant, and the energy-density of
the matter content. Conversely, when considering the Kretschmann scalar
curvature case, its levels experience an upward shift as the global monopole
parameter α increases. We also show in Fig. 4 that the energy-density of
the matter content is positive for all values of ξ ∈ (−∞,+∞) including the
wormhole throat ξ = 0 considered in the equatorial plane θ = π/2.
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Fig. 1. The quadratic Ricci invariant Rµν Rµν .
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Fig. 3. The Kretschmann scalar K.
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Fig. 4. The energy-density.

3. Conclusions

Traversable wormhole solutions are often associated with the need for
exotic matter, which violates the weak energy condition. However, this re-
quirement for exotic matter can be potentially avoided in modified theories
of gravity that incorporate higher curvature corrections into their gravita-
tional actions. In such theories, the presence of these higher-order terms
can lead to the violation of the null-energy condition, effectively mimicking
the exotic matter contribution necessary for traversable wormholes. For in-
stance, traversable wormholes without the need for exotic matter have been
derived in theories such as quadratic gravity and Chern–Simons modified
gravity. Researchers have explored various avenues within both general rel-
ativity and modified gravity theories in attempts to construct traversable
wormholes without the use of exotic matter. It is important to note that
while some of these wormhole solutions have been identified, many have
been found to be inherently unstable. This highlights the complexity and
challenges associated with achieving stable traversable wormholes without
exotic matter, even in modified gravity frameworks. In the context of general
relativity theory, only a handful works on the rotating wormhole solutions of
Einstein’s field equations are well-known in the literature. Here, we attempt
to present one example of a rotating defect wormhole with a topological
defect produced by a global monopole charge.

In this paper, we have introduced a novel topologically charged rotating
Schwarzschild–Klinkhamer defect wormhole space-time within the frame-
work of general relativity. Our investigation delves into the trajectories of
photon rays across various directions, revealing the influence of key param-
eters such as the spin parameter a, the wormhole parameter b, and the
global monopole charge α. Our analysis extends to the study of geodesic
motions, particularly in the equatorial plane defined by θ = π/2, as well



11-A3.18 F. Ahmed

as a special case pertinent to the perspective of a zero angular momentum
observer (ZAMO). Examining the physical characteristics of this rotating
wormhole, we find that several quantities associated with space-time curva-
ture, including the Kretschmann scalar, the Ricci scalar, and the quadratic
Ricci invariant, remain finite even as the wormhole throat (ξ = 0) vanishes
for ξ → ±∞ or r → ∞. This observation underscores the singularity-free
wormhole under consideration. Furthermore, we have undertaken an ex-
ploration of the matter–energy content associated with this topologically
charged rotating wormhole, as it is a non-vacuum solution of Einstein’s field
equations. Our findings indicate that the energy density of the matter–
energy content adheres to the weak energy condition (WEC). Consequently,
this rotating wormhole does not necessitate exotic matter for its stability.

As a prospective avenue for future research, we propose a comprehensive
examination of the deflection angle (gravitational lensing) of photon rays
within the context of this stationary and rotating wormhole. This investiga-
tion aims to enhance our understanding of the optical properties associated
with the wormhole’s gravitational field. Additionally, we plan to conduct
an analysis of the geometrical properties inherent in this rotating worm-
hole model. This detailed study will contribute valuable insights into the
intricate structure and characteristics of the space-time geometry, further
advancing our comprehension of the physical implications and behaviors of
the proposed defect wormhole.

REFERENCES

[1] M. Visser, «Lorentzian Wormholes: From Einstein to Hawking», American
Institute of Physics, Melville, NY 1996.

[2] F.R. Klinkhamer, «Defect Wormhole: A Traversable Wormhole Without
Exotic Matter», Acta Phys. Pol. B 54, 5-A3 (2023),
arXiv:2301.00724 [gr-qc].

[3] F.R. Klinkhamer, «Vacuum-Defect Wormholes and a Mirror World», Acta
Phys. Pol. B 54, 7-A3 (2023), arXiv:2305.13278 [gr-qc].

[4] F. Ahmed, «Geodesics motion of test particles around
Schwarzschild–Klinkhamer wormhole with topological defects and
gravitational lensing», J. Cosmol. Astropart. Phys. 2023, 010 (2023),
arXiv:2307.08503 [gr-qc].

[5] F. Ahmed, «A topologically charged four-dimensional wormhole and the
energy conditions», J. Cosmol. Astropart. Phys. 2023, 082 (2023),
arXiv:2308.00012 [gr-qc].

[6] J.C. Feng, «Smooth metrics can hide thin shells», Class. Quantum Grav. 40,
197002 (2023), arXiv:2308.11885 [gr-qc].

http://dx.doi.org/10.5506/APhysPolB.54.5-A3
http://arxiv.org/abs/2301.00724
http://dx.doi.org/10.5506/APhysPolB.54.7-A3
http://dx.doi.org/10.5506/APhysPolB.54.7-A3
http://arxiv.org/abs/2305.13278
http://dx.doi.org/10.1088/1475-7516/2023/11/010
http://arxiv.org/abs/2307.08503
http://dx.doi.org/10.1088/1475-7516/2023/11/082
http://arxiv.org/abs/2308.00012
http://dx.doi.org/10.1088/1361-6382/acf2de
http://dx.doi.org/10.1088/1361-6382/acf2de
http://arxiv.org/abs/2308.11885


Topologically Charged Rotating Wormhole 11-A3.19

[7] J. Baines, R. Gaur, M. Visser, «Defect Wormholes Are Defective», Universe
2023, 452 (2023), arXiv:2308.16624 [gr-qc].

[8] E. Teo, «Rotating traversable wormholes», Phys. Rev. D 58, 024014 (1998),
arXiv:gr-qc/9803098.

[9] V.M. Khatsymovsky, «Rotating vacuum wormhole», Phys. Lett. B 429, 254
(1998), arXiv:gr-qc/9803027.

[10] G. Clément, D. Gal’tsov, «Rotating traversable wormholes in
Einstein–Maxwell theory», Phys. Lett. B 838, 137677 (2023),
arXiv:2210.08913 [gr-qc].

[11] X.Y. Chew et al., «Rotating wormhole solutions with a complex phantom
scalar field», Phys. Rev. D 100, 044019 (2019), arXiv:1906.08742 [gr-qc].

[12] E. Caceres, A.S. Misobuchi, M.-L. Xiao, «Rotating traversable wormholes in
AdS», J. High Energy Phys. 2018, 5 (2018), arXiv:1807.07239 [hep-th].

[13] M.S. Volkov, «Stationary generalizations for the Bronnikov–Ellis wormhole
and for the vacuum ring wormhole», Phys. Rev. D 104, 124064 (2021),
arXiv:2109.14496 [gr-qc].

[14] B. Kleihaus, J. Kunz, «Rotating Ellis wormholes in four dimensions», Phys.
Rev. D 90, 121503(R) (2014), arXiv:1409.1503 [gr-qc].

[15] M. Azreg-Aïnou, «From static to rotating to conformal static solutions:
rotating imperfect fluid wormholes with(out) electric or magnetic field», Eur.
Phys. J. C 74, 2865 (2014), arXiv:1401.4292 [gr-qc].

[16] M. Azreg-Aïnou, «Generating rotating regular black hole solutions without
complexification», Phys. Rev. D 90, 064041 (2014),
arXiv:1405.2569 [gr-qc].

[17] M. Azreg-Aïnou, «Regular and conformal regular cores for static and
rotating solutions», Phys. Lett. B 730, 95 (2014),
arXiv:1401.0787 [gr-qc].

[18] M. Azreg-Aïnou, «Wormhole solutions sourced by fluids, II: three-fluid
two-charged sources», Eur. Phys. J. C 76, 7 (2016),
arXiv:1509.00234 [gr-qc].

[19] A. Cisterna, K. Müller, K. Pallikaris, A. Viganò, «Exact rotating wormholes
via Ehlers transformations», Phys. Rev. D 108, 024066 (2023),
arXiv:2306.14541 [gr-qc].

[20] T.W.B. Kibble, «Topology of cosmic domains and strings», J. Phys. A:
Math. Gen. 9, 1387 (1976).

[21] T.W.B. Kibble, «Some implications of a cosmological phase transition»,
Phys. Rep. 67, 183 (1980).

[22] T.W.B. Kibble, «Phase Transitions in the Early Universe», Acta Phys.
Pol. B 13, 723 (1982).

[23] A. Vilenkin, E P.S. Shellard, «Strings and Other Topological Defects»,
Cambridge University Press, Cambridge 1994.

[24] R. Brandenberger, «Inflation and Cosmic Strings: Two Mechanisms for
Producing Structure in the Universe», Int. J. Mod. Phys. A 02, 77 (1987).

http://dx.doi.org/10.3390/universe9100452
http://dx.doi.org/10.3390/universe9100452
http://arxiv.org/abs/2308.16624
http://dx.doi.org/10.1103/PhysRevD.58.024014
http://arxiv.org/abs/gr-qc/9803098
http://dx.doi.org/10.1016/S0370-2693(98)00448-1
http://dx.doi.org/10.1016/S0370-2693(98)00448-1
http://arxiv.org/abs/gr-qc/9803027
http://dx.doi.org/10.1016/j.physletb.2023.137677
http://arxiv.org/abs/2210.08913
http://dx.doi.org/10.1103/PhysRevD.100.044019
http://arxiv.org/abs/1906.08742
http://dx.doi.org/10.1007/JHEP12(2018)005
http://arxiv.org/abs/1807.07239
http://dx.doi.org/10.1103/PhysRevD.104.124064
http://arxiv.org/abs/2109.14496
http://dx.doi.org/10.1103/PhysRevD.90.121503
http://dx.doi.org/10.1103/PhysRevD.90.121503
http://arxiv.org/abs/1409.1503
http://dx.doi.org/10.1140/epjc/s10052-014-2865-8
http://dx.doi.org/10.1140/epjc/s10052-014-2865-8
http://arxiv.org/abs/1401.4292
http://dx.doi.org/10.1103/PhysRevD.90.064041
http://arxiv.org/abs/1405.2569
http://dx.doi.org/10.1016/j.physletb.2014.01.041
http://arxiv.org/abs/1401.0787
http://dx.doi.org/10.1140/epjc/s10052-015-3836-4
http://arxiv.org/abs/1509.00234
http://dx.doi.org/10.1103/PhysRevD.108.024066
http://arxiv.org/abs/2306.14541
http://dx.doi.org/10.1088/0305-4470/9/8/029
http://dx.doi.org/10.1088/0305-4470/9/8/029
http://dx.doi.org/10.1016/0370-1573(80)90091-5
https://www.actaphys.uj.edu.pl/findarticle?series=Reg&vol=13&page=723
https://www.actaphys.uj.edu.pl/findarticle?series=Reg&vol=13&page=723
http://dx.doi.org/10.1142/S0217751X8700003X


11-A3.20 F. Ahmed

[25] R. Brandenberger, L. Perivolaropoulos, A. Stebbins, «Cosmic Strings, Hot
Dark Matter and the Large-scale Structure of the Universe», Int. J. Mod.
Phys. A 05, 1633 (1990).

[26] R. Brandenberger, «Topological Defects and Structure Formation», Int. J.
Mod. Phys. A 9, 2117 (1994), arXiv:astro-ph/9310041.

[27] M. Hindmarsh, T.W.B. Kibble, «Cosmic strings», Rep. Prog. Phys. 58, 477
(1995), arXiv:hep-ph/9411342.

[28] S. Sarangi, S.H.H. Tye, «Cosmic string production towards the end of brane
inflation», Phys. Lett. B 536, 185 (2002), arXiv:hep-th/0204074.

[29] R. Jeannerot, J. Rocher, M. Sakellariadou, «How generic is cosmic string
formation in supersymmetric grand unified theories», Phys. Rev. D 68,
103514 (2003), arXiv:hep-ph/0308134.

[30] G. Dvali, A. Vilenkin, «Formation and evolution of cosmic D strings», J.
Cosmol. Astropart. Phys. 2004, 010 (2004), arXiv:hep-th/0312007.

[31] D. Harari, C. Loust’o, «Repulsive gravitational effects of global monopoles»,
Phys. Rev. D 42, 2626 (1990).

[32] A. Vilenkin, «Topological inflation», Phys. Rev. Lett. 72, 3137 (1994),
arXiv:hep-th/9402085.

[33] R. Basu, A.H. Guth, A. Vilenkin, «Quantum creation of topological defects
during inflation», Phys. Rev. D 44, 340 (1991).

[34] R. Basu, A. Vilenkin, «Evolution of topological defects during inflation»,
Phys. Rev. D 50, 7150 (1994), arXiv:gr-qc/9402040.

[35] P. Das, M. Kalam, «Wormhole in the Milky Way galaxy with global
monopole charge», Eur. Phys. J C 82, 342 (2022).

[36] R.H. Boyer, R.W. Lindquist, «Maximal Analytic Extension of the Kerr
Metric», J. Math. Phys. 8, 265 (1967).

[37] S.W. Hawking, G.F.R. Ellis, «The Large Scale Structure of Space-Time»,
Cambridge University Press, Cambridge 1975.

http://dx.doi.org/10.1142/S0217751X9000074X
http://dx.doi.org/10.1142/S0217751X9000074X
http://dx.doi.org/10.1142/S0217751X9400090X
http://dx.doi.org/10.1142/S0217751X9400090X
http://arxiv.org/abs/astro-ph/9310041
http://dx.doi.org/10.1088/0034-4885/58/5/001
http://dx.doi.org/10.1088/0034-4885/58/5/001
http://arxiv.org/abs/hep-ph/9411342
http://dx.doi.org/10.1016/S0370-2693(02)01824-5
http://arxiv.org/abs/hep-th/0204074
http://dx.doi.org/10.1103/PhysRevD.68.103514
http://dx.doi.org/10.1103/PhysRevD.68.103514
http://arxiv.org/abs/hep-ph/0308134
http://dx.doi.org/10.1088/1475-7516/2004/03/010
http://dx.doi.org/10.1088/1475-7516/2004/03/010
http://arxiv.org/abs/hep-th/0312007
http://dx.doi.org/10.1103/PhysRevD.42.2626
http://dx.doi.org/10.1103/PhysRevLett.72.3137
http://arxiv.org/abs/hep-th/9402085
http://dx.doi.org/10.1103/PhysRevD.44.340
http://dx.doi.org/10.1103/PhysRevD.50.7150
http://arxiv.org/abs/gr-qc/9402040
http://dx.doi.org/10.1140/epjc/s10052-022-10322-z
http://dx.doi.org/10.1063/1.1705193

	1 Introduction
	2 Analysis of a topologically charged rotating wormhole
	2.1 Motion of photon rays in different directions
	2.2 The matter–energy content and the weak energy condition

	3 Conclusions

